executor.cc 17.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
qijun 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/framework/executor.h"
S
sneaxiy 已提交
16
#include <deque>
17
#include <memory>
18
#include <unordered_map>
19
#include <unordered_set>
S
sneaxiy 已提交
20
#include <utility>
D
dongdaxiang 已提交
21 22 23
#include "google/protobuf/io/zero_copy_stream_impl.h"
#include "google/protobuf/message.h"
#include "google/protobuf/text_format.h"
Y
Yi Wang 已提交
24 25 26 27 28
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/reader.h"
D
dongdaxiang 已提交
29 30
#include "paddle/fluid/framework/trainer_desc.pb.h"
#include "paddle/fluid/framework/trainer_factory.h"
31
#include "paddle/fluid/framework/transfer_scope_cache.h"
W
Wang Guibao 已提交
32
#include "paddle/fluid/framework/variable_helper.h"
S
sneaxiy 已提交
33
#include "paddle/fluid/operators/controlflow/while_op_helper.h"
W
Wu Yi 已提交
34
#include "paddle/fluid/operators/distributed/distributed.h"
Y
Yi Wang 已提交
35
#include "paddle/fluid/platform/place.h"
X
Xin Pan 已提交
36
#include "paddle/fluid/platform/profiler.h"
Y
Yang Yu 已提交
37

38
#ifdef PADDLE_WITH_NGRAPH
B
baojun 已提交
39
#include "paddle/fluid/operators/ngraph/ngraph_engine.h"
40
DEFINE_bool(use_ngraph, false, "Use NGRAPH to run");
41 42
#endif

D
dzhwinter 已提交
43
DECLARE_bool(benchmark);
44
DEFINE_bool(use_mkldnn, false, "Use MKLDNN to run");
Q
qijun 已提交
45 46 47

namespace paddle {
namespace framework {
X
Xin Pan 已提交
48 49 50 51 52
namespace {
// block id starts from 0. This id is used to represent the codeblock
// wrapping the first block 0.
int kProgramId = -1;
}  // namespace
Q
qijun 已提交
53

Q
Qiao Longfei 已提交
54
ExecutorPrepareContext::ExecutorPrepareContext(
S
sneaxiy 已提交
55 56 57 58 59 60 61 62
    const framework::ProgramDesc& prog, size_t block_id)
    : prog_(prog), block_id_(block_id) {}

void ExecutorPrepareContext::PrepareUnusedVars(
    const std::vector<std::string>& keep_vars, bool force_disable_gc) {
  force_disable_gc_ = force_disable_gc;
  if (GetEagerDeletionThreshold() < 0 || force_disable_gc_) {
    return;
S
sneaxiy 已提交
63
  }
S
sneaxiy 已提交
64
  unused_vars_ = GetUnusedVars(prog_.Block(block_id_), ops_, keep_vars);
S
sneaxiy 已提交
65
}
Y
Yu Yang 已提交
66

Q
Qiao Longfei 已提交
67
ExecutorPrepareContext::~ExecutorPrepareContext() {
M
minqiyang 已提交
68
  VLOG(5) << "destroy ExecutorPrepareContext";
Q
Qiao Longfei 已提交
69
}
Y
Yu Yang 已提交
70

D
dzhwinter 已提交
71
Executor::Executor(const platform::Place& place) : place_(place) {}
Q
qijun 已提交
72

Y
Yancey1989 已提交
73
void Executor::Close() {
W
Wu Yi 已提交
74
#ifdef PADDLE_WITH_DISTRIBUTE
W
Wu Yi 已提交
75 76
  // TODO(typhoonzero): complete message will need to use real trainer_id,
  // except 0.
77 78 79
  auto client =
      paddle::operators::distributed::RPCClient::GetInstance<RPCCLIENT_T>(0);
  client->SendComplete();
W
Wu Yi 已提交
80
#endif
Y
Yancey1989 已提交
81
}
W
Wu Yi 已提交
82

L
Liu Yiqun 已提交
83 84 85
void Executor::CreateVariables(const ProgramDesc& pdesc, Scope* scope,
                               int block_id) {
  auto& global_block = pdesc.Block(block_id);
86 87 88 89 90 91 92 93 94 95 96 97 98 99

  const Scope* ancestor_scope = scope;
  while (ancestor_scope->parent()) {
    ancestor_scope = ancestor_scope->parent();
  }

  if (ancestor_scope != scope) {
    for (auto& var : global_block.AllVars()) {
      if (var->Name() == framework::kEmptyVarName) {
        continue;
      }

      if (var->Persistable()) {
        auto* ptr = const_cast<Scope*>(ancestor_scope)->Var(var->Name());
100
        InitializeVariable(ptr, var->GetType());
M
minqiyang 已提交
101 102
        VLOG(3) << "Create Variable " << var->Name()
                << " global, which pointer is " << ptr;
103 104
      } else {
        auto* ptr = scope->Var(var->Name());
105
        InitializeVariable(ptr, var->GetType());
M
minqiyang 已提交
106 107
        VLOG(3) << "Create Variable " << var->Name()
                << " locally, which pointer is " << ptr;
108 109 110 111 112
      }
    }
  } else {
    for (auto& var : global_block.AllVars()) {
      auto* ptr = scope->Var(var->Name());
113
      InitializeVariable(ptr, var->GetType());
M
minqiyang 已提交
114 115
      VLOG(3) << "Create variable " << var->Name() << ", which pointer is "
              << ptr;
116 117 118 119
    }
  }
}

D
dongdaxiang 已提交
120
void Executor::RunFromDataset(const ProgramDesc& main_program, Scope* scope,
X
xujiaqi01 已提交
121
                              Dataset* dataset,
D
dongdaxiang 已提交
122
                              const std::string& trainer_desc_str) {
D
dongdaxiang 已提交
123 124 125 126 127 128 129 130 131 132 133 134
  VLOG(3) << "Start to RunFromDataset in executor";
  TrainerDesc trainer_desc;
  google::protobuf::TextFormat::ParseFromString(trainer_desc_str,
                                                &trainer_desc);
  VLOG(3) << "Going to create trainer, trainer class is "
          << trainer_desc.class_name();
  std::shared_ptr<TrainerBase> trainer;
  trainer = TrainerFactory::CreateTrainer(trainer_desc.class_name());
  // initialize trainer
  VLOG(3) << "Going to initialize trainer";
  trainer->Initialize(trainer_desc, dataset);
  VLOG(3) << "Set root scope here";
D
dongdaxiang 已提交
135
  trainer->SetScope(scope);
D
dongdaxiang 已提交
136 137 138 139 140 141 142 143 144 145 146 147
  // prepare training environment and helper environment
  VLOG(3) << "Try to init train environment";
  trainer->InitTrainerEnv(main_program, place_);
  VLOG(3) << "Try to init other environment";
  trainer->InitOtherEnv(main_program);
  // training and finalize training
  VLOG(3) << "Trainer starts to run";
  trainer->Run();
  VLOG(3) << "Trainer going to finalize";
  trainer->Finalize();
  return;
}
D
dongdaxiang 已提交
148

Y
Yu Yang 已提交
149
void Executor::Run(const ProgramDesc& pdesc, Scope* scope, int block_id,
S
sneaxiy 已提交
150 151 152
                   bool create_local_scope, bool create_vars,
                   const std::vector<std::string>& skip_ref_cnt_vars,
                   bool force_disable_gc) {
X
Xin Pan 已提交
153
  platform::RecordBlock b(block_id);
154
  if (FLAGS_use_mkldnn) EnableMKLDNN(pdesc);
S
sneaxiy 已提交
155
  auto ctx = Prepare(pdesc, block_id, skip_ref_cnt_vars, force_disable_gc);
Q
Qiao Longfei 已提交
156
  RunPreparedContext(ctx.get(), scope, create_local_scope, create_vars);
Q
qijun 已提交
157 158
}

159 160 161 162 163 164 165
// Check whether the block already has feed operators and feed_holder.
// Return false if the block does not have any feed operators.
// If some feed operators have been prepended to the block, check that
// the info contained in these feed operators matches the feed_targets
// and feed_holder_name. Raise exception when any mismatch is found.
// Return true if the block has feed operators and holder of matching info.
static bool has_feed_operators(
166
    const BlockDesc& block,
L
Liu Yiqun 已提交
167
    const std::map<std::string, const LoDTensor*>& feed_targets,
168 169
    const std::string& feed_holder_name) {
  size_t feed_count = 0;
170
  for (auto* op : block.AllOps()) {
171 172
    if (op->Type() == kFeedOpType) {
      feed_count++;
L
Liu Yiqun 已提交
173
      // The input variable's name of feed_op should be feed_holder_name.
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
      PADDLE_ENFORCE_EQ(op->Input("X")[0], feed_holder_name,
                        "Input to feed op should be '%s'", feed_holder_name);
      std::string feed_target_name = op->Output("Out")[0];
      PADDLE_ENFORCE(
          feed_targets.find(feed_target_name) != feed_targets.end(),
          "Feed operator output name '%s' cannot be found in 'feed_targets'",
          feed_target_name);
    }
  }

  if (feed_count > 0) {
    PADDLE_ENFORCE_EQ(
        feed_count, feed_targets.size(),
        "The number of feed operators should match 'feed_targets'");

189
    if (!feed_holder_name.empty()) {
L
Liu Yiqun 已提交
190
      // When feed operator are present, so should be feed_holder.
191 192 193 194 195 196 197
      auto var = block.FindVar(feed_holder_name);
      PADDLE_ENFORCE_NOT_NULL(var, "Block should already have a '%s' variable",
                              feed_holder_name);
      PADDLE_ENFORCE_EQ(var->GetType(), proto::VarType::FEED_MINIBATCH,
                        "'%s' variable should be 'FEED_MINIBATCH' type",
                        feed_holder_name);
    }
198 199 200 201 202 203 204 205 206 207 208 209
  }

  return feed_count > 0;
}

// Check whether the block already has fetch operators and fetch_holder.
// Return false if the block does not have any fetch operators.
// If some fetch operators have been appended to the block, check that
// the info contained in these fetch operators matches the fetch_targets
// and fetch_holder_name. Raise exception when any mismatch is found.
// Return true if the block has fetch operators and holder of matching info.
static bool has_fetch_operators(
L
Liu Yiqun 已提交
210 211
    const BlockDesc& block,
    const std::map<std::string, LoDTensor*>& fetch_targets,
212 213
    const std::string& fetch_holder_name) {
  size_t fetch_count = 0;
214
  for (auto* op : block.AllOps()) {
215 216
    if (op->Type() == kFetchOpType) {
      fetch_count++;
L
Liu Yiqun 已提交
217
      // The output variable's name of fetch_op should be fetch_holder_name.
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
      PADDLE_ENFORCE_EQ(op->Output("Out")[0], fetch_holder_name,
                        "Output of fetch op should be '%s'", fetch_holder_name);
      std::string fetch_target_name = op->Input("X")[0];
      PADDLE_ENFORCE(
          fetch_targets.find(fetch_target_name) != fetch_targets.end(),
          "Fetch operator input name '%s' cannot be found in 'fetch_targets'",
          fetch_target_name);
    }
  }

  if (fetch_count > 0) {
    PADDLE_ENFORCE_EQ(
        fetch_count, fetch_targets.size(),
        "The number of fetch operators should match 'fetch_targets'");

233
    if (!fetch_holder_name.empty()) {
L
Liu Yiqun 已提交
234
      // When fetch operator are present, so should be fetch_holder.
235 236 237 238 239 240 241
      auto var = block.FindVar(fetch_holder_name);
      PADDLE_ENFORCE_NOT_NULL(var, "Block should already have a '%s' variable",
                              fetch_holder_name);
      PADDLE_ENFORCE_EQ(var->GetType(), proto::VarType::FETCH_LIST,
                        "'%s' variable should be 'FETCH_LIST' type",
                        fetch_holder_name);
    }
242 243 244 245 246 247
  }

  return fetch_count > 0;
}

void Executor::Run(const ProgramDesc& program, Scope* scope,
248 249
                   std::map<std::string, const LoDTensor*>* feed_targets,
                   std::map<std::string, LoDTensor*>* fetch_targets,
W
Wu Yi 已提交
250 251
                   bool create_local_scope, bool create_vars,
                   const std::string& feed_holder_name,
252
                   const std::string& fetch_holder_name) {
X
Xin Pan 已提交
253
  platform::RecordBlock b(kProgramId);
254
  if (FLAGS_use_mkldnn) EnableMKLDNN(program);
255
  bool has_feed_ops =
256
      has_feed_operators(program.Block(0), *feed_targets, feed_holder_name);
257
  bool has_fetch_ops =
258
      has_fetch_operators(program.Block(0), *fetch_targets, fetch_holder_name);
259 260

  ProgramDesc* copy_program = const_cast<ProgramDesc*>(&program);
S
sneaxiy 已提交
261
  std::unique_ptr<ProgramDesc> unique_ptr_of_copy_program;
262
  if (!has_feed_ops || !has_fetch_ops) {
S
sneaxiy 已提交
263 264
    unique_ptr_of_copy_program.reset(new ProgramDesc(program));
    copy_program = unique_ptr_of_copy_program.get();
265
  }
266 267
  auto* global_block = copy_program->MutableBlock(0);

268
  if (!has_feed_ops) {
269 270
    // create feed_holder variable
    auto* feed_holder = global_block->Var(feed_holder_name);
271
    feed_holder->SetType(proto::VarType::FEED_MINIBATCH);
272 273 274
    feed_holder->SetPersistable(true);

    int i = 0;
275
    for (auto& feed_target : (*feed_targets)) {
276
      std::string var_name = feed_target.first;
M
minqiyang 已提交
277
      VLOG(3) << "feed target's name: " << var_name;
278 279 280 281 282 283 284 285 286 287 288 289 290

      // prepend feed op
      auto* op = global_block->PrependOp();
      op->SetType(kFeedOpType);
      op->SetInput("X", {feed_holder_name});
      op->SetOutput("Out", {var_name});
      op->SetAttr("col", {static_cast<int>(i)});
      op->CheckAttrs();

      i++;
    }
  }

291
  if (!has_fetch_ops) {
292 293
    // create fetch_holder variable
    auto* fetch_holder = global_block->Var(fetch_holder_name);
294
    fetch_holder->SetType(proto::VarType::FETCH_LIST);
295 296 297
    fetch_holder->SetPersistable(true);

    int i = 0;
298
    for (auto& fetch_target : (*fetch_targets)) {
299
      std::string var_name = fetch_target.first;
M
minqiyang 已提交
300
      VLOG(3) << "fetch target's name: " << var_name;
301 302 303 304 305 306 307 308 309 310 311 312 313

      // append fetch op
      auto* op = global_block->AppendOp();
      op->SetType(kFetchOpType);
      op->SetInput("X", {var_name});
      op->SetOutput("Out", {fetch_holder_name});
      op->SetAttr("col", {static_cast<int>(i)});
      op->CheckAttrs();

      i++;
    }
  }

314
  auto ctx = Prepare(*copy_program, 0);
W
Wu Yi 已提交
315 316 317
  RunPreparedContext(ctx.get(), scope, feed_targets, fetch_targets,
                     create_local_scope, create_vars, feed_holder_name,
                     fetch_holder_name);
318 319
}

Q
Qiao Longfei 已提交
320
std::unique_ptr<ExecutorPrepareContext> Executor::Prepare(
S
fix bug  
sneaxiy 已提交
321
    const ProgramDesc& program, int block_id,
S
sneaxiy 已提交
322
    const std::vector<std::string>& skip_ref_cnt_vars, bool force_disable_gc) {
S
sneaxiy 已提交
323 324
  std::unique_ptr<ExecutorPrepareContext> ctx(
      new ExecutorPrepareContext(program, block_id));
Y
Yu Yang 已提交
325 326 327 328 329
  PADDLE_ENFORCE_LT(static_cast<size_t>(block_id), program.Size());
  auto& block = program.Block(block_id);
  for (auto& op_desc : block.AllOps()) {
    ctx->ops_.push_back(OpRegistry::CreateOp(*op_desc));
  }
330 331 332 333 334 335
#ifdef PADDLE_WITH_NGRAPH
  if (FLAGS_use_ngraph) {
    paddle::operators::NgraphEngine::FuseNgraphOps(
        ctx->prog_.Block(ctx->block_id_), &ctx->ops_);
  }
#endif
S
sneaxiy 已提交
336
  ctx->PrepareUnusedVars(skip_ref_cnt_vars, force_disable_gc);
Q
Qiyang Min 已提交
337
  return ctx;
Y
Yu Yang 已提交
338 339
}

T
refine  
typhoonzero 已提交
340
std::vector<std::shared_ptr<ExecutorPrepareContext>> Executor::Prepare(
S
fix bug  
sneaxiy 已提交
341
    const ProgramDesc& program, const std::vector<int>& block_ids,
S
sneaxiy 已提交
342 343
    const std::vector<std::vector<std::string>>& skip_ref_cnt_vars,
    bool force_disable_gc) {
S
fix bug  
sneaxiy 已提交
344 345 346 347
  PADDLE_ENFORCE(
      skip_ref_cnt_vars.empty() || skip_ref_cnt_vars.size() == block_ids.size(),
      "skip_ref_cnt_vars should be either empty or equals to block number %d",
      block_ids.size());
T
typhoonzero 已提交
348
  std::vector<std::shared_ptr<ExecutorPrepareContext>> result;
S
fix bug  
sneaxiy 已提交
349
  size_t idx = 0;
T
typhoonzero 已提交
350 351
  for (auto& bid : block_ids) {
    PADDLE_ENFORCE_LT(static_cast<size_t>(bid), program.Size());
S
sneaxiy 已提交
352
    auto* ctx = new ExecutorPrepareContext(program, bid);
T
typhoonzero 已提交
353 354 355 356
    auto& block = program.Block(bid);
    for (auto& op_desc : block.AllOps()) {
      ctx->ops_.push_back(OpRegistry::CreateOp(*op_desc));
    }
S
sneaxiy 已提交
357 358 359 360 361
    if (skip_ref_cnt_vars.empty()) {
      ctx->PrepareUnusedVars(std::vector<std::string>(), force_disable_gc);
    } else {
      ctx->PrepareUnusedVars(skip_ref_cnt_vars[idx], force_disable_gc);
    }
T
typhoonzero 已提交
362
    result.push_back(std::shared_ptr<ExecutorPrepareContext>(ctx));
S
fix bug  
sneaxiy 已提交
363
    ++idx;
T
typhoonzero 已提交
364 365 366 367
  }
  return result;
}

Y
Yu Yang 已提交
368
void Executor::RunPreparedContext(ExecutorPrepareContext* ctx, Scope* scope,
Q
qiaolongfei 已提交
369 370
                                  bool create_local_scope, bool create_vars,
                                  bool keep_kids) {
371
  PADDLE_ENFORCE_NOT_NULL(scope);
Y
Yu Yang 已提交
372 373 374 375
  Scope* local_scope = scope;
  if (create_vars) {
    if (create_local_scope) {
      local_scope = &scope->NewScope();
376 377
    }
    CreateVariables(ctx->prog_, local_scope, ctx->block_id_);
L
Liu Yiqun 已提交
378
  }
Y
Yu Yang 已提交
379

S
sneaxiy 已提交
380
  int64_t max_memory_size = GetEagerDeletionThreshold();
S
sneaxiy 已提交
381
  std::unique_ptr<GarbageCollector> gc;
S
sneaxiy 已提交
382 383 384
  // FIXME(zjl): recurrent_op is rather complex, we would
  // disable gc forcely in recurrent_op
  if (!ctx->force_disable_gc_ && max_memory_size >= 0) {
S
sneaxiy 已提交
385 386
#ifdef PADDLE_WITH_CUDA
    if (platform::is_gpu_place(place_)) {
S
fix bug  
sneaxiy 已提交
387
      if (IsFastEagerDeletionModeEnabled()) {
S
sneaxiy 已提交
388
        gc.reset(new UnsafeFastGPUGarbageCollector(
S
fix bug  
sneaxiy 已提交
389 390
            boost::get<platform::CUDAPlace>(place_), max_memory_size));
      } else {
S
sneaxiy 已提交
391
        gc.reset(new DefaultStreamGarbageCollector(
S
fix bug  
sneaxiy 已提交
392 393 394
            boost::get<platform::CUDAPlace>(place_), max_memory_size));
      }
    } else if (platform::is_cpu_place(place_)) {
S
sneaxiy 已提交
395
#endif
S
sneaxiy 已提交
396 397
      gc.reset(new CPUGarbageCollector(boost::get<platform::CPUPlace>(place_),
                                       max_memory_size));
S
sneaxiy 已提交
398 399 400
#ifdef PADDLE_WITH_CUDA
    }
#endif
S
sneaxiy 已提交
401 402
    // If gc is enabled and block size > 1
    if (gc && ctx->prog_.Size() > 1) {
S
sneaxiy 已提交
403 404 405
      operators::PrepareSafeEagerDeletionOnWhileOpAndWhileGradOp(ctx->block_id_,
                                                                 ctx->ops_);
    }
S
sneaxiy 已提交
406 407
  }

Y
Yu Yang 已提交
408
  for (auto& op : ctx->ops_) {
409
    op->Run(*local_scope, place_);
S
sneaxiy 已提交
410

S
fix bug  
sneaxiy 已提交
411
    if (gc) {
S
sneaxiy 已提交
412
      DeleteUnusedTensors(*local_scope, op.get(), ctx->unused_vars_, gc.get());
S
sneaxiy 已提交
413
    }
Y
Yu Yang 已提交
414
  }
S
sneaxiy 已提交
415

S
fix bug  
sneaxiy 已提交
416
  platform::DeviceContextPool::Instance().Get(place_)->Wait();
S
sneaxiy 已提交
417

Q
qiaolongfei 已提交
418
  if (local_scope != scope) {
Y
Yu Yang 已提交
419
    scope->DeleteScope(local_scope);
420
  } else {
Q
qiaolongfei 已提交
421 422 423 424 425
    if (!keep_kids) {
      // By default, we should delete all kid scopes after run executor because
      // some operators may create local scope when running, such as while_op.
      // But when while_op also create a local executor to run it's sub block,
      // the sub scopes it created should not be dropped immediately, because
Q
qiaolongfei 已提交
426 427
      // while_grad_op will use some variables created during while_op run, so
      // we need to keep the kids and wait for the outer executor to drop them.
Q
qiaolongfei 已提交
428 429
      scope->DropKids();
    }
Y
Yu Yang 已提交
430 431 432
  }
}

433 434
void Executor::RunPreparedContext(
    ExecutorPrepareContext* ctx, Scope* scope,
435
    std::map<std::string, const LoDTensor*>* feed_targets,
W
Wu Yi 已提交
436 437 438
    std::map<std::string, LoDTensor*>* fetch_targets, bool create_local_scope,
    bool create_vars, const std::string& feed_holder_name,
    const std::string& fetch_holder_name) {
439 440
  auto& global_block = ctx->prog_.Block(ctx->block_id_);

441
  PADDLE_ENFORCE(
442
      has_feed_operators(global_block, *feed_targets, feed_holder_name),
443 444
      "Program in ExecutorPrepareContext should has feed_ops.");
  PADDLE_ENFORCE(
445
      has_fetch_operators(global_block, *fetch_targets, fetch_holder_name),
446 447
      "Program in the prepared context should has fetch_ops.");

448 449 450 451 452
  // map the data of feed_targets to feed_holder
  for (auto* op : global_block.AllOps()) {
    if (op->Type() == kFeedOpType) {
      std::string feed_target_name = op->Output("Out")[0];
      int idx = boost::get<int>(op->GetAttr("col"));
453 454
      SetFeedVariable(scope, *(*feed_targets)[feed_target_name],
                      feed_holder_name, idx);
455 456 457
    }
  }

W
Wu Yi 已提交
458
  RunPreparedContext(ctx, scope, create_local_scope, create_vars);
459 460 461 462 463 464

  // obtain the data of fetch_targets from fetch_holder
  for (auto* op : global_block.AllOps()) {
    if (op->Type() == kFetchOpType) {
      std::string fetch_target_name = op->Input("X")[0];
      int idx = boost::get<int>(op->GetAttr("col"));
465
      *(*fetch_targets)[fetch_target_name] =
466 467 468 469 470
          GetFetchVariable(*scope, fetch_holder_name, idx);
    }
  }
}

471 472
void Executor::EnableMKLDNN(const ProgramDesc& program) {
#ifdef PADDLE_WITH_MKLDNN
M
minqiyang 已提交
473
  VLOG(3) << "use_mkldnn=True";
474 475 476 477 478 479 480 481
  for (size_t bid = 0; bid < program.Size(); ++bid) {
    auto* block = const_cast<ProgramDesc&>(program).MutableBlock(bid);
    for (auto* op : block->AllOps()) {
      if (op->HasAttr("use_mkldnn")) {
        op->SetAttr("use_mkldnn", true);
      }
    }
  }
482 483 484
#else
  LOG(WARNING)
      << "'MKLDNN' is not supported, Please re-compile with WITH_MKLDNN option";
485 486
#endif
}
Q
qijun 已提交
487 488
}  // namespace framework
}  // namespace paddle