executor.cc 16.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
qijun 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/framework/executor.h"
S
sneaxiy 已提交
16
#include <deque>
S
sneaxiy 已提交
17 18 19 20
#include <memory>
#include <unordered_map>
#include <unordered_set>
#include <utility>
Y
Yang Yang 已提交
21

S
sneaxiy 已提交
22
#include "paddle/fluid/framework/executor_gc_helper.h"
Y
Yi Wang 已提交
23 24 25 26 27
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/reader.h"
28
#include "paddle/fluid/framework/threadpool.h"
29
#include "paddle/fluid/framework/transfer_scope_cache.h"
W
Wang Guibao 已提交
30
#include "paddle/fluid/framework/variable_helper.h"
S
sneaxiy 已提交
31
#include "paddle/fluid/operators/controlflow/while_op_helper.h"
W
Wu Yi 已提交
32
#include "paddle/fluid/operators/distributed/distributed.h"
Y
Yi Wang 已提交
33
#include "paddle/fluid/platform/place.h"
X
Xin Pan 已提交
34
#include "paddle/fluid/platform/profiler.h"
Y
Yang Yu 已提交
35

36
#ifdef PADDLE_WITH_NGRAPH
B
baojun 已提交
37
#include "paddle/fluid/operators/ngraph/ngraph_engine.h"
38
DEFINE_bool(use_ngraph, false, "Use NGRAPH to run");
39 40
#endif

D
dzhwinter 已提交
41
DECLARE_bool(benchmark);
42
DEFINE_bool(use_mkldnn, false, "Use MKLDNN to run");
Q
qijun 已提交
43 44 45

namespace paddle {
namespace framework {
X
Xin Pan 已提交
46 47 48 49 50
namespace {
// block id starts from 0. This id is used to represent the codeblock
// wrapping the first block 0.
int kProgramId = -1;
}  // namespace
Q
qijun 已提交
51

Q
Qiao Longfei 已提交
52
ExecutorPrepareContext::ExecutorPrepareContext(
S
sneaxiy 已提交
53 54 55 56 57 58 59 60
    const framework::ProgramDesc& prog, size_t block_id)
    : prog_(prog), block_id_(block_id) {}

void ExecutorPrepareContext::PrepareUnusedVars(
    const std::vector<std::string>& keep_vars, bool force_disable_gc) {
  force_disable_gc_ = force_disable_gc;
  if (GetEagerDeletionThreshold() < 0 || force_disable_gc_) {
    return;
S
sneaxiy 已提交
61
  }
S
sneaxiy 已提交
62
  unused_vars_ = GetUnusedVars(prog_.Block(block_id_), ops_, keep_vars);
S
sneaxiy 已提交
63
}
Y
Yu Yang 已提交
64

Q
Qiao Longfei 已提交
65
ExecutorPrepareContext::~ExecutorPrepareContext() {
M
minqiyang 已提交
66
  VLOG(5) << "destroy ExecutorPrepareContext";
Q
Qiao Longfei 已提交
67
}
Y
Yu Yang 已提交
68

D
dzhwinter 已提交
69
Executor::Executor(const platform::Place& place) : place_(place) {}
Q
qijun 已提交
70

Y
Yancey1989 已提交
71
void Executor::Close() {
W
Wu Yi 已提交
72
#ifdef PADDLE_WITH_DISTRIBUTE
W
Wu Yi 已提交
73 74
  // TODO(typhoonzero): complete message will need to use real trainer_id,
  // except 0.
75 76 77
  auto client =
      paddle::operators::distributed::RPCClient::GetInstance<RPCCLIENT_T>(0);
  client->SendComplete();
W
Wu Yi 已提交
78
#endif
Y
Yancey1989 已提交
79
}
W
Wu Yi 已提交
80

L
Liu Yiqun 已提交
81 82 83
void Executor::CreateVariables(const ProgramDesc& pdesc, Scope* scope,
                               int block_id) {
  auto& global_block = pdesc.Block(block_id);
84 85 86 87 88 89 90 91 92 93 94 95 96 97

  const Scope* ancestor_scope = scope;
  while (ancestor_scope->parent()) {
    ancestor_scope = ancestor_scope->parent();
  }

  if (ancestor_scope != scope) {
    for (auto& var : global_block.AllVars()) {
      if (var->Name() == framework::kEmptyVarName) {
        continue;
      }

      if (var->Persistable()) {
        auto* ptr = const_cast<Scope*>(ancestor_scope)->Var(var->Name());
98
        InitializeVariable(ptr, var->GetType());
M
minqiyang 已提交
99 100
        VLOG(3) << "Create Variable " << var->Name()
                << " global, which pointer is " << ptr;
101 102
      } else {
        auto* ptr = scope->Var(var->Name());
103
        InitializeVariable(ptr, var->GetType());
M
minqiyang 已提交
104 105
        VLOG(3) << "Create Variable " << var->Name()
                << " locally, which pointer is " << ptr;
106 107 108 109 110
      }
    }
  } else {
    for (auto& var : global_block.AllVars()) {
      auto* ptr = scope->Var(var->Name());
111
      InitializeVariable(ptr, var->GetType());
M
minqiyang 已提交
112 113
      VLOG(3) << "Create variable " << var->Name() << ", which pointer is "
              << ptr;
114 115 116 117
    }
  }
}

D
dongdaxiang 已提交
118 119 120 121
void Executor::RunFromDataset(const ProgramDesc& pdesc, const Dataset& dataset,
                              const std::string& trainer_desc_str,
                              const bool debug) {}

Y
Yu Yang 已提交
122
void Executor::Run(const ProgramDesc& pdesc, Scope* scope, int block_id,
S
sneaxiy 已提交
123 124 125
                   bool create_local_scope, bool create_vars,
                   const std::vector<std::string>& skip_ref_cnt_vars,
                   bool force_disable_gc) {
X
Xin Pan 已提交
126
  platform::RecordBlock b(block_id);
127
  if (FLAGS_use_mkldnn) EnableMKLDNN(pdesc);
S
sneaxiy 已提交
128
  auto ctx = Prepare(pdesc, block_id, skip_ref_cnt_vars, force_disable_gc);
Q
Qiao Longfei 已提交
129
  RunPreparedContext(ctx.get(), scope, create_local_scope, create_vars);
Q
qijun 已提交
130 131
}

132 133 134 135 136 137 138
// Check whether the block already has feed operators and feed_holder.
// Return false if the block does not have any feed operators.
// If some feed operators have been prepended to the block, check that
// the info contained in these feed operators matches the feed_targets
// and feed_holder_name. Raise exception when any mismatch is found.
// Return true if the block has feed operators and holder of matching info.
static bool has_feed_operators(
139
    const BlockDesc& block,
L
Liu Yiqun 已提交
140
    const std::map<std::string, const LoDTensor*>& feed_targets,
141 142
    const std::string& feed_holder_name) {
  size_t feed_count = 0;
143
  for (auto* op : block.AllOps()) {
144 145
    if (op->Type() == kFeedOpType) {
      feed_count++;
L
Liu Yiqun 已提交
146
      // The input variable's name of feed_op should be feed_holder_name.
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
      PADDLE_ENFORCE_EQ(op->Input("X")[0], feed_holder_name,
                        "Input to feed op should be '%s'", feed_holder_name);
      std::string feed_target_name = op->Output("Out")[0];
      PADDLE_ENFORCE(
          feed_targets.find(feed_target_name) != feed_targets.end(),
          "Feed operator output name '%s' cannot be found in 'feed_targets'",
          feed_target_name);
    }
  }

  if (feed_count > 0) {
    PADDLE_ENFORCE_EQ(
        feed_count, feed_targets.size(),
        "The number of feed operators should match 'feed_targets'");

162
    if (!feed_holder_name.empty()) {
L
Liu Yiqun 已提交
163
      // When feed operator are present, so should be feed_holder.
164 165 166 167 168 169 170
      auto var = block.FindVar(feed_holder_name);
      PADDLE_ENFORCE_NOT_NULL(var, "Block should already have a '%s' variable",
                              feed_holder_name);
      PADDLE_ENFORCE_EQ(var->GetType(), proto::VarType::FEED_MINIBATCH,
                        "'%s' variable should be 'FEED_MINIBATCH' type",
                        feed_holder_name);
    }
171 172 173 174 175 176 177 178 179 180 181 182
  }

  return feed_count > 0;
}

// Check whether the block already has fetch operators and fetch_holder.
// Return false if the block does not have any fetch operators.
// If some fetch operators have been appended to the block, check that
// the info contained in these fetch operators matches the fetch_targets
// and fetch_holder_name. Raise exception when any mismatch is found.
// Return true if the block has fetch operators and holder of matching info.
static bool has_fetch_operators(
L
Liu Yiqun 已提交
183 184
    const BlockDesc& block,
    const std::map<std::string, LoDTensor*>& fetch_targets,
185 186
    const std::string& fetch_holder_name) {
  size_t fetch_count = 0;
187
  for (auto* op : block.AllOps()) {
188 189
    if (op->Type() == kFetchOpType) {
      fetch_count++;
L
Liu Yiqun 已提交
190
      // The output variable's name of fetch_op should be fetch_holder_name.
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
      PADDLE_ENFORCE_EQ(op->Output("Out")[0], fetch_holder_name,
                        "Output of fetch op should be '%s'", fetch_holder_name);
      std::string fetch_target_name = op->Input("X")[0];
      PADDLE_ENFORCE(
          fetch_targets.find(fetch_target_name) != fetch_targets.end(),
          "Fetch operator input name '%s' cannot be found in 'fetch_targets'",
          fetch_target_name);
    }
  }

  if (fetch_count > 0) {
    PADDLE_ENFORCE_EQ(
        fetch_count, fetch_targets.size(),
        "The number of fetch operators should match 'fetch_targets'");

206
    if (!fetch_holder_name.empty()) {
L
Liu Yiqun 已提交
207
      // When fetch operator are present, so should be fetch_holder.
208 209 210 211 212 213 214
      auto var = block.FindVar(fetch_holder_name);
      PADDLE_ENFORCE_NOT_NULL(var, "Block should already have a '%s' variable",
                              fetch_holder_name);
      PADDLE_ENFORCE_EQ(var->GetType(), proto::VarType::FETCH_LIST,
                        "'%s' variable should be 'FETCH_LIST' type",
                        fetch_holder_name);
    }
215 216 217 218 219 220
  }

  return fetch_count > 0;
}

void Executor::Run(const ProgramDesc& program, Scope* scope,
221 222
                   std::map<std::string, const LoDTensor*>* feed_targets,
                   std::map<std::string, LoDTensor*>* fetch_targets,
W
Wu Yi 已提交
223 224
                   bool create_local_scope, bool create_vars,
                   const std::string& feed_holder_name,
225
                   const std::string& fetch_holder_name) {
X
Xin Pan 已提交
226
  platform::RecordBlock b(kProgramId);
227
  if (FLAGS_use_mkldnn) EnableMKLDNN(program);
228
  bool has_feed_ops =
229
      has_feed_operators(program.Block(0), *feed_targets, feed_holder_name);
230
  bool has_fetch_ops =
231
      has_fetch_operators(program.Block(0), *fetch_targets, fetch_holder_name);
232 233

  ProgramDesc* copy_program = const_cast<ProgramDesc*>(&program);
S
sneaxiy 已提交
234
  std::unique_ptr<ProgramDesc> unique_ptr_of_copy_program;
235
  if (!has_feed_ops || !has_fetch_ops) {
S
sneaxiy 已提交
236 237
    unique_ptr_of_copy_program.reset(new ProgramDesc(program));
    copy_program = unique_ptr_of_copy_program.get();
238
  }
239 240
  auto* global_block = copy_program->MutableBlock(0);

241
  if (!has_feed_ops) {
242 243
    // create feed_holder variable
    auto* feed_holder = global_block->Var(feed_holder_name);
244
    feed_holder->SetType(proto::VarType::FEED_MINIBATCH);
245 246 247
    feed_holder->SetPersistable(true);

    int i = 0;
248
    for (auto& feed_target : (*feed_targets)) {
249
      std::string var_name = feed_target.first;
M
minqiyang 已提交
250
      VLOG(3) << "feed target's name: " << var_name;
251 252 253 254 255 256 257 258 259 260 261 262 263

      // prepend feed op
      auto* op = global_block->PrependOp();
      op->SetType(kFeedOpType);
      op->SetInput("X", {feed_holder_name});
      op->SetOutput("Out", {var_name});
      op->SetAttr("col", {static_cast<int>(i)});
      op->CheckAttrs();

      i++;
    }
  }

264
  if (!has_fetch_ops) {
265 266
    // create fetch_holder variable
    auto* fetch_holder = global_block->Var(fetch_holder_name);
267
    fetch_holder->SetType(proto::VarType::FETCH_LIST);
268 269 270
    fetch_holder->SetPersistable(true);

    int i = 0;
271
    for (auto& fetch_target : (*fetch_targets)) {
272
      std::string var_name = fetch_target.first;
M
minqiyang 已提交
273
      VLOG(3) << "fetch target's name: " << var_name;
274 275 276 277 278 279 280 281 282 283 284 285 286

      // append fetch op
      auto* op = global_block->AppendOp();
      op->SetType(kFetchOpType);
      op->SetInput("X", {var_name});
      op->SetOutput("Out", {fetch_holder_name});
      op->SetAttr("col", {static_cast<int>(i)});
      op->CheckAttrs();

      i++;
    }
  }

287
  auto ctx = Prepare(*copy_program, 0);
W
Wu Yi 已提交
288 289 290
  RunPreparedContext(ctx.get(), scope, feed_targets, fetch_targets,
                     create_local_scope, create_vars, feed_holder_name,
                     fetch_holder_name);
291 292
}

Q
Qiao Longfei 已提交
293
std::unique_ptr<ExecutorPrepareContext> Executor::Prepare(
S
fix bug  
sneaxiy 已提交
294
    const ProgramDesc& program, int block_id,
S
sneaxiy 已提交
295
    const std::vector<std::string>& skip_ref_cnt_vars, bool force_disable_gc) {
S
sneaxiy 已提交
296 297
  std::unique_ptr<ExecutorPrepareContext> ctx(
      new ExecutorPrepareContext(program, block_id));
Y
Yu Yang 已提交
298 299 300 301 302
  PADDLE_ENFORCE_LT(static_cast<size_t>(block_id), program.Size());
  auto& block = program.Block(block_id);
  for (auto& op_desc : block.AllOps()) {
    ctx->ops_.push_back(OpRegistry::CreateOp(*op_desc));
  }
303 304 305 306 307 308
#ifdef PADDLE_WITH_NGRAPH
  if (FLAGS_use_ngraph) {
    paddle::operators::NgraphEngine::FuseNgraphOps(
        ctx->prog_.Block(ctx->block_id_), &ctx->ops_);
  }
#endif
S
sneaxiy 已提交
309
  ctx->PrepareUnusedVars(skip_ref_cnt_vars, force_disable_gc);
Q
Qiyang Min 已提交
310
  return ctx;
Y
Yu Yang 已提交
311 312
}

T
refine  
typhoonzero 已提交
313
std::vector<std::shared_ptr<ExecutorPrepareContext>> Executor::Prepare(
S
fix bug  
sneaxiy 已提交
314
    const ProgramDesc& program, const std::vector<int>& block_ids,
S
sneaxiy 已提交
315 316
    const std::vector<std::vector<std::string>>& skip_ref_cnt_vars,
    bool force_disable_gc) {
S
fix bug  
sneaxiy 已提交
317 318 319 320
  PADDLE_ENFORCE(
      skip_ref_cnt_vars.empty() || skip_ref_cnt_vars.size() == block_ids.size(),
      "skip_ref_cnt_vars should be either empty or equals to block number %d",
      block_ids.size());
T
typhoonzero 已提交
321
  std::vector<std::shared_ptr<ExecutorPrepareContext>> result;
S
fix bug  
sneaxiy 已提交
322
  size_t idx = 0;
T
typhoonzero 已提交
323 324
  for (auto& bid : block_ids) {
    PADDLE_ENFORCE_LT(static_cast<size_t>(bid), program.Size());
S
sneaxiy 已提交
325
    auto* ctx = new ExecutorPrepareContext(program, bid);
T
typhoonzero 已提交
326 327 328 329
    auto& block = program.Block(bid);
    for (auto& op_desc : block.AllOps()) {
      ctx->ops_.push_back(OpRegistry::CreateOp(*op_desc));
    }
S
sneaxiy 已提交
330 331 332 333 334
    if (skip_ref_cnt_vars.empty()) {
      ctx->PrepareUnusedVars(std::vector<std::string>(), force_disable_gc);
    } else {
      ctx->PrepareUnusedVars(skip_ref_cnt_vars[idx], force_disable_gc);
    }
T
typhoonzero 已提交
335
    result.push_back(std::shared_ptr<ExecutorPrepareContext>(ctx));
S
fix bug  
sneaxiy 已提交
336
    ++idx;
T
typhoonzero 已提交
337 338 339 340
  }
  return result;
}

Y
Yu Yang 已提交
341
void Executor::RunPreparedContext(ExecutorPrepareContext* ctx, Scope* scope,
Q
qiaolongfei 已提交
342 343
                                  bool create_local_scope, bool create_vars,
                                  bool keep_kids) {
344
  PADDLE_ENFORCE_NOT_NULL(scope);
Y
Yu Yang 已提交
345 346 347 348
  Scope* local_scope = scope;
  if (create_vars) {
    if (create_local_scope) {
      local_scope = &scope->NewScope();
349 350
    }
    CreateVariables(ctx->prog_, local_scope, ctx->block_id_);
L
Liu Yiqun 已提交
351
  }
Y
Yu Yang 已提交
352

S
sneaxiy 已提交
353
  int64_t max_memory_size = GetEagerDeletionThreshold();
S
sneaxiy 已提交
354
  std::unique_ptr<GarbageCollector> gc;
S
sneaxiy 已提交
355 356 357
  // FIXME(zjl): recurrent_op is rather complex, we would
  // disable gc forcely in recurrent_op
  if (!ctx->force_disable_gc_ && max_memory_size >= 0) {
S
sneaxiy 已提交
358 359
#ifdef PADDLE_WITH_CUDA
    if (platform::is_gpu_place(place_)) {
S
fix bug  
sneaxiy 已提交
360
      if (IsFastEagerDeletionModeEnabled()) {
S
sneaxiy 已提交
361
        gc.reset(new UnsafeFastGPUGarbageCollector(
S
fix bug  
sneaxiy 已提交
362 363
            boost::get<platform::CUDAPlace>(place_), max_memory_size));
      } else {
S
sneaxiy 已提交
364
        gc.reset(new DefaultStreamGarbageCollector(
S
fix bug  
sneaxiy 已提交
365 366 367
            boost::get<platform::CUDAPlace>(place_), max_memory_size));
      }
    } else if (platform::is_cpu_place(place_)) {
S
sneaxiy 已提交
368
#endif
S
sneaxiy 已提交
369 370
      gc.reset(new CPUGarbageCollector(boost::get<platform::CPUPlace>(place_),
                                       max_memory_size));
S
sneaxiy 已提交
371 372 373
#ifdef PADDLE_WITH_CUDA
    }
#endif
S
sneaxiy 已提交
374 375
    // If gc is enabled and block size > 1
    if (gc && ctx->prog_.Size() > 1) {
S
sneaxiy 已提交
376 377 378
      operators::PrepareSafeEagerDeletionOnWhileOpAndWhileGradOp(ctx->block_id_,
                                                                 ctx->ops_);
    }
S
sneaxiy 已提交
379 380
  }

Y
Yu Yang 已提交
381
  for (auto& op : ctx->ops_) {
382
    op->Run(*local_scope, place_);
S
sneaxiy 已提交
383

S
fix bug  
sneaxiy 已提交
384
    if (gc) {
S
sneaxiy 已提交
385
      DeleteUnusedTensors(*local_scope, op.get(), ctx->unused_vars_, gc.get());
S
sneaxiy 已提交
386
    }
Y
Yu Yang 已提交
387
  }
S
sneaxiy 已提交
388

S
fix bug  
sneaxiy 已提交
389
  platform::DeviceContextPool::Instance().Get(place_)->Wait();
S
sneaxiy 已提交
390

Q
qiaolongfei 已提交
391
  if (local_scope != scope) {
Y
Yu Yang 已提交
392
    scope->DeleteScope(local_scope);
393
  } else {
Q
qiaolongfei 已提交
394 395 396 397 398
    if (!keep_kids) {
      // By default, we should delete all kid scopes after run executor because
      // some operators may create local scope when running, such as while_op.
      // But when while_op also create a local executor to run it's sub block,
      // the sub scopes it created should not be dropped immediately, because
Q
qiaolongfei 已提交
399 400
      // while_grad_op will use some variables created during while_op run, so
      // we need to keep the kids and wait for the outer executor to drop them.
Q
qiaolongfei 已提交
401 402
      scope->DropKids();
    }
Y
Yu Yang 已提交
403 404 405
  }
}

406 407
void Executor::RunPreparedContext(
    ExecutorPrepareContext* ctx, Scope* scope,
408
    std::map<std::string, const LoDTensor*>* feed_targets,
W
Wu Yi 已提交
409 410 411
    std::map<std::string, LoDTensor*>* fetch_targets, bool create_local_scope,
    bool create_vars, const std::string& feed_holder_name,
    const std::string& fetch_holder_name) {
412 413
  auto& global_block = ctx->prog_.Block(ctx->block_id_);

414
  PADDLE_ENFORCE(
415
      has_feed_operators(global_block, *feed_targets, feed_holder_name),
416 417
      "Program in ExecutorPrepareContext should has feed_ops.");
  PADDLE_ENFORCE(
418
      has_fetch_operators(global_block, *fetch_targets, fetch_holder_name),
419 420
      "Program in the prepared context should has fetch_ops.");

421 422 423 424 425
  // map the data of feed_targets to feed_holder
  for (auto* op : global_block.AllOps()) {
    if (op->Type() == kFeedOpType) {
      std::string feed_target_name = op->Output("Out")[0];
      int idx = boost::get<int>(op->GetAttr("col"));
426 427
      SetFeedVariable(scope, *(*feed_targets)[feed_target_name],
                      feed_holder_name, idx);
428 429 430
    }
  }

W
Wu Yi 已提交
431
  RunPreparedContext(ctx, scope, create_local_scope, create_vars);
432 433 434 435 436 437

  // obtain the data of fetch_targets from fetch_holder
  for (auto* op : global_block.AllOps()) {
    if (op->Type() == kFetchOpType) {
      std::string fetch_target_name = op->Input("X")[0];
      int idx = boost::get<int>(op->GetAttr("col"));
438
      *(*fetch_targets)[fetch_target_name] =
439 440 441 442 443
          GetFetchVariable(*scope, fetch_holder_name, idx);
    }
  }
}

444 445
void Executor::EnableMKLDNN(const ProgramDesc& program) {
#ifdef PADDLE_WITH_MKLDNN
M
minqiyang 已提交
446
  VLOG(3) << "use_mkldnn=True";
447 448 449 450 451 452 453 454
  for (size_t bid = 0; bid < program.Size(); ++bid) {
    auto* block = const_cast<ProgramDesc&>(program).MutableBlock(bid);
    for (auto* op : block->AllOps()) {
      if (op->HasAttr("use_mkldnn")) {
        op->SetAttr("use_mkldnn", true);
      }
    }
  }
455 456 457
#else
  LOG(WARNING)
      << "'MKLDNN' is not supported, Please re-compile with WITH_MKLDNN option";
458 459
#endif
}
Q
qijun 已提交
460 461
}  // namespace framework
}  // namespace paddle