executor.cc 18.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
qijun 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/framework/executor.h"
S
sneaxiy 已提交
16
#include <deque>
Y
Yang Yang 已提交
17

Y
Yi Wang 已提交
18 19 20 21 22
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/reader.h"
23
#include "paddle/fluid/framework/threadpool.h"
24
#include "paddle/fluid/framework/transfer_scope_cache.h"
W
Wang Guibao 已提交
25
#include "paddle/fluid/framework/variable_helper.h"
S
sneaxiy 已提交
26
#include "paddle/fluid/operators/controlflow/while_op_helper.h"
W
Wu Yi 已提交
27
#include "paddle/fluid/operators/distributed/distributed.h"
Y
Yi Wang 已提交
28
#include "paddle/fluid/platform/place.h"
X
Xin Pan 已提交
29
#include "paddle/fluid/platform/profiler.h"
Y
Yang Yu 已提交
30

31
#ifdef PADDLE_WITH_NGRAPH
B
baojun 已提交
32
#include "paddle/fluid/operators/ngraph/ngraph_engine.h"
33 34
#endif

D
dzhwinter 已提交
35
DECLARE_bool(benchmark);
36
DEFINE_bool(use_mkldnn, false, "Use MKLDNN to run");
B
baojun-nervana 已提交
37
DEFINE_bool(use_ngraph, false, "Use NGRAPH to run");
Q
qijun 已提交
38 39 40

namespace paddle {
namespace framework {
X
Xin Pan 已提交
41 42 43 44 45
namespace {
// block id starts from 0. This id is used to represent the codeblock
// wrapping the first block 0.
int kProgramId = -1;
}  // namespace
Q
qijun 已提交
46

S
fix bug  
sneaxiy 已提交
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
static std::unordered_map<std::string, size_t> GetNonPersistableReferenceCounts(
    const BlockDesc& block, const std::vector<std::string>& skip_var_list) {
  std::unordered_map<std::string, size_t> ref_cnts;
  std::unordered_set<std::string> skip_vars(skip_var_list.begin(),
                                            skip_var_list.end());

  auto update_ref_cnts = [&](OpDesc* op_desc, const VariableNameMap& name_map) {
    for (auto& name_pair : name_map) {
      for (auto& name : name_pair.second) {
        if (skip_vars.count(name)) continue;
        auto* var_desc = block.FindVar(name);
        if (var_desc == nullptr || var_desc->Persistable()) continue;
        auto type = var_desc->Proto()->type().type();
        if (type != proto::VarType::LOD_TENSOR &&
            type != proto::VarType::SELECTED_ROWS &&
            type != proto::VarType::LOD_TENSOR_ARRAY) {
          continue;
        }
S
sneaxiy 已提交
65
        ++ref_cnts[name];
S
fix bug  
sneaxiy 已提交
66 67 68 69 70 71 72 73 74 75 76
      }
    }
  };

  for (auto op_desc : block.AllOps()) {
    update_ref_cnts(op_desc, op_desc->Inputs());
    update_ref_cnts(op_desc, op_desc->Outputs());
  }
  return ref_cnts;
}

Q
Qiao Longfei 已提交
77
ExecutorPrepareContext::ExecutorPrepareContext(
S
fix bug  
sneaxiy 已提交
78 79
    const framework::ProgramDesc& prog, size_t block_id,
    const std::vector<std::string>& skip_ref_cnt_vars)
S
sneaxiy 已提交
80 81
    : prog_(prog), block_id_(block_id) {
  if (GetEagerDeletionThreshold() >= 0) {
S
sneaxiy 已提交
82 83
    global_ref_cnts_ = GetNonPersistableReferenceCounts(prog.Block(block_id),
                                                        skip_ref_cnt_vars);
S
sneaxiy 已提交
84 85
  }
}
Y
Yu Yang 已提交
86

Q
Qiao Longfei 已提交
87
ExecutorPrepareContext::~ExecutorPrepareContext() {
M
minqiyang 已提交
88
  VLOG(5) << "destroy ExecutorPrepareContext";
Q
Qiao Longfei 已提交
89
}
Y
Yu Yang 已提交
90

S
fix bug  
sneaxiy 已提交
91
static void DeleteUnusedTensors(
S
sneaxiy 已提交
92
    const Scope& scope, const OperatorBase* op, GarbageCollector* gc,
S
fix bug  
sneaxiy 已提交
93
    std::unordered_map<std::string, size_t>* ref_cnts) {
S
sneaxiy 已提交
94
  std::deque<std::shared_ptr<memory::Allocation>> garbages;
S
sneaxiy 已提交
95 96 97 98 99 100

  auto handler = [&](const VariableNameMap& name_map) {
    for (auto& name_pair : name_map) {
      for (auto& name : name_pair.second) {
        auto it = ref_cnts->find(name);
        if (it == ref_cnts->end()) continue;
S
sneaxiy 已提交
101 102 103 104
        if (--(it->second) != 0) {
          continue;
        }
        auto* var = scope.FindVar(name);
S
sneaxiy 已提交
105
        if (var == nullptr) {
S
sneaxiy 已提交
106 107 108 109 110 111
          continue;
        }

        VLOG(2) << "Erase variable " << name;
        if (var->IsType<LoDTensor>()) {
          garbages.emplace_back(
S
sneaxiy 已提交
112 113 114 115 116
              var->GetMutable<LoDTensor>()->MoveMemoryHolder());
        } else if (var->IsType<SelectedRows>()) {
          garbages.emplace_back(var->GetMutable<SelectedRows>()
                                    ->mutable_value()
                                    ->MoveMemoryHolder());
S
sneaxiy 已提交
117 118 119
        } else if (var->IsType<LoDTensorArray>()) {
          auto* lod_tensor_arr = var->GetMutable<LoDTensorArray>();
          for (auto& t : *lod_tensor_arr) {
S
sneaxiy 已提交
120
            garbages.emplace_back(t.MoveMemoryHolder());
S
sneaxiy 已提交
121
          }
S
sneaxiy 已提交
122 123
        } else {
          PADDLE_THROW("Type %s of %s is not supported eager deletion",
S
sneaxiy 已提交
124
                       framework::ToTypeName(var->Type()), name);
S
sneaxiy 已提交
125 126 127 128 129 130 131 132
        }
      }
    }
  };

  handler(op->Inputs());
  handler(op->Outputs());

S
sneaxiy 已提交
133 134
  if (!garbages.empty()) {
    gc->Add(std::move(garbages));
S
sneaxiy 已提交
135 136 137
  }
}

D
dzhwinter 已提交
138
Executor::Executor(const platform::Place& place) : place_(place) {}
Q
qijun 已提交
139

Y
Yancey1989 已提交
140
void Executor::Close() {
W
Wu Yi 已提交
141
#ifdef PADDLE_WITH_DISTRIBUTE
W
Wu Yi 已提交
142 143
  // TODO(typhoonzero): complete message will need to use real trainer_id,
  // except 0.
144 145 146
  auto client =
      paddle::operators::distributed::RPCClient::GetInstance<RPCCLIENT_T>(0);
  client->SendComplete();
W
Wu Yi 已提交
147
#endif
Y
Yancey1989 已提交
148
}
W
Wu Yi 已提交
149

L
Liu Yiqun 已提交
150 151 152
void Executor::CreateVariables(const ProgramDesc& pdesc, Scope* scope,
                               int block_id) {
  auto& global_block = pdesc.Block(block_id);
153 154 155 156 157 158 159 160 161 162 163 164 165 166

  const Scope* ancestor_scope = scope;
  while (ancestor_scope->parent()) {
    ancestor_scope = ancestor_scope->parent();
  }

  if (ancestor_scope != scope) {
    for (auto& var : global_block.AllVars()) {
      if (var->Name() == framework::kEmptyVarName) {
        continue;
      }

      if (var->Persistable()) {
        auto* ptr = const_cast<Scope*>(ancestor_scope)->Var(var->Name());
167
        InitializeVariable(ptr, var->GetType());
M
minqiyang 已提交
168 169
        VLOG(3) << "Create Variable " << var->Name()
                << " global, which pointer is " << ptr;
170 171
      } else {
        auto* ptr = scope->Var(var->Name());
172
        InitializeVariable(ptr, var->GetType());
M
minqiyang 已提交
173 174
        VLOG(3) << "Create Variable " << var->Name()
                << " locally, which pointer is " << ptr;
175 176 177 178 179
      }
    }
  } else {
    for (auto& var : global_block.AllVars()) {
      auto* ptr = scope->Var(var->Name());
180
      InitializeVariable(ptr, var->GetType());
M
minqiyang 已提交
181 182
      VLOG(3) << "Create variable " << var->Name() << ", which pointer is "
              << ptr;
183 184 185 186
    }
  }
}

Y
Yu Yang 已提交
187
void Executor::Run(const ProgramDesc& pdesc, Scope* scope, int block_id,
T
typhoonzero 已提交
188
                   bool create_local_scope, bool create_vars) {
X
Xin Pan 已提交
189
  platform::RecordBlock b(block_id);
190
  if (FLAGS_use_mkldnn) EnableMKLDNN(pdesc);
B
baojun 已提交
191 192 193
#ifdef PADDLE_WITH_NGRAPH
  if (FLAGS_use_ngraph) operators::NgraphEngine::EnableNgraph(pdesc);
#endif
Q
Qiao Longfei 已提交
194 195
  auto ctx = Prepare(pdesc, block_id);
  RunPreparedContext(ctx.get(), scope, create_local_scope, create_vars);
Q
qijun 已提交
196 197
}

198 199 200 201 202 203 204
// Check whether the block already has feed operators and feed_holder.
// Return false if the block does not have any feed operators.
// If some feed operators have been prepended to the block, check that
// the info contained in these feed operators matches the feed_targets
// and feed_holder_name. Raise exception when any mismatch is found.
// Return true if the block has feed operators and holder of matching info.
static bool has_feed_operators(
205
    const BlockDesc& block,
L
Liu Yiqun 已提交
206
    const std::map<std::string, const LoDTensor*>& feed_targets,
207 208
    const std::string& feed_holder_name) {
  size_t feed_count = 0;
209
  for (auto* op : block.AllOps()) {
210 211
    if (op->Type() == kFeedOpType) {
      feed_count++;
L
Liu Yiqun 已提交
212
      // The input variable's name of feed_op should be feed_holder_name.
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
      PADDLE_ENFORCE_EQ(op->Input("X")[0], feed_holder_name,
                        "Input to feed op should be '%s'", feed_holder_name);
      std::string feed_target_name = op->Output("Out")[0];
      PADDLE_ENFORCE(
          feed_targets.find(feed_target_name) != feed_targets.end(),
          "Feed operator output name '%s' cannot be found in 'feed_targets'",
          feed_target_name);
    }
  }

  if (feed_count > 0) {
    PADDLE_ENFORCE_EQ(
        feed_count, feed_targets.size(),
        "The number of feed operators should match 'feed_targets'");

228
    if (!feed_holder_name.empty()) {
L
Liu Yiqun 已提交
229
      // When feed operator are present, so should be feed_holder.
230 231 232 233 234 235 236
      auto var = block.FindVar(feed_holder_name);
      PADDLE_ENFORCE_NOT_NULL(var, "Block should already have a '%s' variable",
                              feed_holder_name);
      PADDLE_ENFORCE_EQ(var->GetType(), proto::VarType::FEED_MINIBATCH,
                        "'%s' variable should be 'FEED_MINIBATCH' type",
                        feed_holder_name);
    }
237 238 239 240 241 242 243 244 245 246 247 248
  }

  return feed_count > 0;
}

// Check whether the block already has fetch operators and fetch_holder.
// Return false if the block does not have any fetch operators.
// If some fetch operators have been appended to the block, check that
// the info contained in these fetch operators matches the fetch_targets
// and fetch_holder_name. Raise exception when any mismatch is found.
// Return true if the block has fetch operators and holder of matching info.
static bool has_fetch_operators(
L
Liu Yiqun 已提交
249 250
    const BlockDesc& block,
    const std::map<std::string, LoDTensor*>& fetch_targets,
251 252
    const std::string& fetch_holder_name) {
  size_t fetch_count = 0;
253
  for (auto* op : block.AllOps()) {
254 255
    if (op->Type() == kFetchOpType) {
      fetch_count++;
L
Liu Yiqun 已提交
256
      // The output variable's name of fetch_op should be fetch_holder_name.
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
      PADDLE_ENFORCE_EQ(op->Output("Out")[0], fetch_holder_name,
                        "Output of fetch op should be '%s'", fetch_holder_name);
      std::string fetch_target_name = op->Input("X")[0];
      PADDLE_ENFORCE(
          fetch_targets.find(fetch_target_name) != fetch_targets.end(),
          "Fetch operator input name '%s' cannot be found in 'fetch_targets'",
          fetch_target_name);
    }
  }

  if (fetch_count > 0) {
    PADDLE_ENFORCE_EQ(
        fetch_count, fetch_targets.size(),
        "The number of fetch operators should match 'fetch_targets'");

272
    if (!fetch_holder_name.empty()) {
L
Liu Yiqun 已提交
273
      // When fetch operator are present, so should be fetch_holder.
274 275 276 277 278 279 280
      auto var = block.FindVar(fetch_holder_name);
      PADDLE_ENFORCE_NOT_NULL(var, "Block should already have a '%s' variable",
                              fetch_holder_name);
      PADDLE_ENFORCE_EQ(var->GetType(), proto::VarType::FETCH_LIST,
                        "'%s' variable should be 'FETCH_LIST' type",
                        fetch_holder_name);
    }
281 282 283 284 285 286
  }

  return fetch_count > 0;
}

void Executor::Run(const ProgramDesc& program, Scope* scope,
287 288
                   std::map<std::string, const LoDTensor*>* feed_targets,
                   std::map<std::string, LoDTensor*>* fetch_targets,
W
Wu Yi 已提交
289 290
                   bool create_local_scope, bool create_vars,
                   const std::string& feed_holder_name,
291
                   const std::string& fetch_holder_name) {
X
Xin Pan 已提交
292
  platform::RecordBlock b(kProgramId);
293
  if (FLAGS_use_mkldnn) EnableMKLDNN(program);
294
  bool has_feed_ops =
295
      has_feed_operators(program.Block(0), *feed_targets, feed_holder_name);
296
  bool has_fetch_ops =
297
      has_fetch_operators(program.Block(0), *fetch_targets, fetch_holder_name);
298 299

  ProgramDesc* copy_program = const_cast<ProgramDesc*>(&program);
S
sneaxiy 已提交
300
  std::unique_ptr<ProgramDesc> unique_ptr_of_copy_program;
301
  if (!has_feed_ops || !has_fetch_ops) {
S
sneaxiy 已提交
302 303
    unique_ptr_of_copy_program.reset(new ProgramDesc(program));
    copy_program = unique_ptr_of_copy_program.get();
304
  }
305 306
  auto* global_block = copy_program->MutableBlock(0);

307
  if (!has_feed_ops) {
308 309
    // create feed_holder variable
    auto* feed_holder = global_block->Var(feed_holder_name);
310
    feed_holder->SetType(proto::VarType::FEED_MINIBATCH);
311 312 313
    feed_holder->SetPersistable(true);

    int i = 0;
314
    for (auto& feed_target : (*feed_targets)) {
315
      std::string var_name = feed_target.first;
M
minqiyang 已提交
316
      VLOG(3) << "feed target's name: " << var_name;
317 318 319 320 321 322 323 324 325 326 327 328 329

      // prepend feed op
      auto* op = global_block->PrependOp();
      op->SetType(kFeedOpType);
      op->SetInput("X", {feed_holder_name});
      op->SetOutput("Out", {var_name});
      op->SetAttr("col", {static_cast<int>(i)});
      op->CheckAttrs();

      i++;
    }
  }

330
  if (!has_fetch_ops) {
331 332
    // create fetch_holder variable
    auto* fetch_holder = global_block->Var(fetch_holder_name);
333
    fetch_holder->SetType(proto::VarType::FETCH_LIST);
334 335 336
    fetch_holder->SetPersistable(true);

    int i = 0;
337
    for (auto& fetch_target : (*fetch_targets)) {
338
      std::string var_name = fetch_target.first;
M
minqiyang 已提交
339
      VLOG(3) << "fetch target's name: " << var_name;
340 341 342 343 344 345 346 347 348 349 350 351 352

      // append fetch op
      auto* op = global_block->AppendOp();
      op->SetType(kFetchOpType);
      op->SetInput("X", {var_name});
      op->SetOutput("Out", {fetch_holder_name});
      op->SetAttr("col", {static_cast<int>(i)});
      op->CheckAttrs();

      i++;
    }
  }

353
  auto ctx = Prepare(*copy_program, 0);
W
Wu Yi 已提交
354 355 356
  RunPreparedContext(ctx.get(), scope, feed_targets, fetch_targets,
                     create_local_scope, create_vars, feed_holder_name,
                     fetch_holder_name);
357 358
}

Q
Qiao Longfei 已提交
359
std::unique_ptr<ExecutorPrepareContext> Executor::Prepare(
S
fix bug  
sneaxiy 已提交
360 361
    const ProgramDesc& program, int block_id,
    const std::vector<std::string>& skip_ref_cnt_vars) {
Q
Qiyang Min 已提交
362
  std::unique_ptr<ExecutorPrepareContext> ctx(
S
fix bug  
sneaxiy 已提交
363
      new ExecutorPrepareContext(program, block_id, skip_ref_cnt_vars));
Y
Yu Yang 已提交
364 365 366 367 368
  PADDLE_ENFORCE_LT(static_cast<size_t>(block_id), program.Size());
  auto& block = program.Block(block_id);
  for (auto& op_desc : block.AllOps()) {
    ctx->ops_.push_back(OpRegistry::CreateOp(*op_desc));
  }
Q
Qiyang Min 已提交
369
  return ctx;
Y
Yu Yang 已提交
370 371
}

T
refine  
typhoonzero 已提交
372
std::vector<std::shared_ptr<ExecutorPrepareContext>> Executor::Prepare(
S
fix bug  
sneaxiy 已提交
373 374 375 376 377 378
    const ProgramDesc& program, const std::vector<int>& block_ids,
    const std::vector<std::vector<std::string>>& skip_ref_cnt_vars) {
  PADDLE_ENFORCE(
      skip_ref_cnt_vars.empty() || skip_ref_cnt_vars.size() == block_ids.size(),
      "skip_ref_cnt_vars should be either empty or equals to block number %d",
      block_ids.size());
T
typhoonzero 已提交
379
  std::vector<std::shared_ptr<ExecutorPrepareContext>> result;
S
fix bug  
sneaxiy 已提交
380
  size_t idx = 0;
T
typhoonzero 已提交
381
  for (auto& bid : block_ids) {
S
fix bug  
sneaxiy 已提交
382 383 384 385 386 387
    ExecutorPrepareContext* ctx;
    if (skip_ref_cnt_vars.empty()) {
      ctx = new ExecutorPrepareContext(program, bid);
    } else {
      ctx = new ExecutorPrepareContext(program, bid, skip_ref_cnt_vars[idx]);
    }
T
typhoonzero 已提交
388 389 390 391 392 393
    PADDLE_ENFORCE_LT(static_cast<size_t>(bid), program.Size());
    auto& block = program.Block(bid);
    for (auto& op_desc : block.AllOps()) {
      ctx->ops_.push_back(OpRegistry::CreateOp(*op_desc));
    }
    result.push_back(std::shared_ptr<ExecutorPrepareContext>(ctx));
S
fix bug  
sneaxiy 已提交
394
    ++idx;
T
typhoonzero 已提交
395 396 397 398
  }
  return result;
}

Y
Yu Yang 已提交
399
void Executor::RunPreparedContext(ExecutorPrepareContext* ctx, Scope* scope,
Q
qiaolongfei 已提交
400 401
                                  bool create_local_scope, bool create_vars,
                                  bool keep_kids) {
402
  PADDLE_ENFORCE_NOT_NULL(scope);
Y
Yu Yang 已提交
403 404 405 406
  Scope* local_scope = scope;
  if (create_vars) {
    if (create_local_scope) {
      local_scope = &scope->NewScope();
407 408
    }
    CreateVariables(ctx->prog_, local_scope, ctx->block_id_);
L
Liu Yiqun 已提交
409
  }
Y
Yu Yang 已提交
410

S
sneaxiy 已提交
411
  int64_t max_memory_size = GetEagerDeletionThreshold();
S
sneaxiy 已提交
412
  std::unique_ptr<GarbageCollector> gc;
S
sneaxiy 已提交
413
  if (max_memory_size >= 0) {
S
sneaxiy 已提交
414
    ctx->ResetReferenceCount();
S
sneaxiy 已提交
415 416
#ifdef PADDLE_WITH_CUDA
    if (platform::is_gpu_place(place_)) {
S
fix bug  
sneaxiy 已提交
417
      if (IsFastEagerDeletionModeEnabled()) {
S
sneaxiy 已提交
418
        gc.reset(new UnsafeFastGPUGarbageCollector(
S
fix bug  
sneaxiy 已提交
419 420
            boost::get<platform::CUDAPlace>(place_), max_memory_size));
      } else {
S
sneaxiy 已提交
421
        gc.reset(new DefaultStreamGarbageCollector(
S
fix bug  
sneaxiy 已提交
422 423 424
            boost::get<platform::CUDAPlace>(place_), max_memory_size));
      }
    } else if (platform::is_cpu_place(place_)) {
S
sneaxiy 已提交
425
#endif
S
sneaxiy 已提交
426 427
      gc.reset(new CPUGarbageCollector(boost::get<platform::CPUPlace>(place_),
                                       max_memory_size));
S
sneaxiy 已提交
428 429 430
#ifdef PADDLE_WITH_CUDA
    }
#endif
S
sneaxiy 已提交
431 432 433 434
    if (gc) {
      operators::PrepareSafeEagerDeletionOnWhileOpAndWhileGradOp(ctx->block_id_,
                                                                 ctx->ops_);
    }
S
sneaxiy 已提交
435 436
  }

Y
Yu Yang 已提交
437
  for (auto& op : ctx->ops_) {
438
    op->Run(*local_scope, place_);
S
sneaxiy 已提交
439

S
fix bug  
sneaxiy 已提交
440
    if (gc) {
S
sneaxiy 已提交
441
      DeleteUnusedTensors(*local_scope, op.get(), gc.get(),
S
sneaxiy 已提交
442
                          &(ctx->runtime_ref_cnts_));
S
sneaxiy 已提交
443
    }
Y
Yu Yang 已提交
444
  }
S
sneaxiy 已提交
445

S
fix bug  
sneaxiy 已提交
446
  platform::DeviceContextPool::Instance().Get(place_)->Wait();
S
sneaxiy 已提交
447

Q
qiaolongfei 已提交
448
  if (local_scope != scope) {
Y
Yu Yang 已提交
449
    scope->DeleteScope(local_scope);
450
  } else {
Q
qiaolongfei 已提交
451 452 453 454 455
    if (!keep_kids) {
      // By default, we should delete all kid scopes after run executor because
      // some operators may create local scope when running, such as while_op.
      // But when while_op also create a local executor to run it's sub block,
      // the sub scopes it created should not be dropped immediately, because
Q
qiaolongfei 已提交
456 457
      // while_grad_op will use some variables created during while_op run, so
      // we need to keep the kids and wait for the outer executor to drop them.
Q
qiaolongfei 已提交
458 459
      scope->DropKids();
    }
Y
Yu Yang 已提交
460 461 462
  }
}

463 464
void Executor::RunPreparedContext(
    ExecutorPrepareContext* ctx, Scope* scope,
465
    std::map<std::string, const LoDTensor*>* feed_targets,
W
Wu Yi 已提交
466 467 468
    std::map<std::string, LoDTensor*>* fetch_targets, bool create_local_scope,
    bool create_vars, const std::string& feed_holder_name,
    const std::string& fetch_holder_name) {
469 470
  auto& global_block = ctx->prog_.Block(ctx->block_id_);

471
  PADDLE_ENFORCE(
472
      has_feed_operators(global_block, *feed_targets, feed_holder_name),
473 474
      "Program in ExecutorPrepareContext should has feed_ops.");
  PADDLE_ENFORCE(
475
      has_fetch_operators(global_block, *fetch_targets, fetch_holder_name),
476 477
      "Program in the prepared context should has fetch_ops.");

478 479 480 481 482
  // map the data of feed_targets to feed_holder
  for (auto* op : global_block.AllOps()) {
    if (op->Type() == kFeedOpType) {
      std::string feed_target_name = op->Output("Out")[0];
      int idx = boost::get<int>(op->GetAttr("col"));
483 484
      SetFeedVariable(scope, *(*feed_targets)[feed_target_name],
                      feed_holder_name, idx);
485 486 487
    }
  }

W
Wu Yi 已提交
488
  RunPreparedContext(ctx, scope, create_local_scope, create_vars);
489 490 491 492 493 494

  // obtain the data of fetch_targets from fetch_holder
  for (auto* op : global_block.AllOps()) {
    if (op->Type() == kFetchOpType) {
      std::string fetch_target_name = op->Input("X")[0];
      int idx = boost::get<int>(op->GetAttr("col"));
495
      *(*fetch_targets)[fetch_target_name] =
496 497 498 499 500
          GetFetchVariable(*scope, fetch_holder_name, idx);
    }
  }
}

501 502
void Executor::EnableMKLDNN(const ProgramDesc& program) {
#ifdef PADDLE_WITH_MKLDNN
M
minqiyang 已提交
503
  VLOG(3) << "use_mkldnn=True";
504 505 506 507 508 509 510 511
  for (size_t bid = 0; bid < program.Size(); ++bid) {
    auto* block = const_cast<ProgramDesc&>(program).MutableBlock(bid);
    for (auto* op : block->AllOps()) {
      if (op->HasAttr("use_mkldnn")) {
        op->SetAttr("use_mkldnn", true);
      }
    }
  }
512 513 514
#else
  LOG(WARNING)
      << "'MKLDNN' is not supported, Please re-compile with WITH_MKLDNN option";
515 516
#endif
}
Q
qijun 已提交
517 518
}  // namespace framework
}  // namespace paddle