initializer.py 34.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
from . import framework
18
from . import core
19
from .framework import in_dygraph_mode, default_main_program
20
import numpy as np
21
from .core import VarDesc
W
Wu Yi 已提交
22
from . import unique_name
23
from .data_feeder import check_variable_and_dtype, check_type, check_dtype
24

25
__all__ = [
26
    'Constant', 'Uniform', 'Normal', 'TruncatedNormal', 'Xavier', 'Bilinear',
27 28
    'MSRA', 'ConstantInitializer', 'UniformInitializer', 'NormalInitializer',
    'TruncatedNormalInitializer', 'XavierInitializer', 'BilinearInitializer',
29
    'MSRAInitializer', 'NumpyArrayInitializer', 'set_global_initializer'
30
]
31

32 33 34
_global_weight_initializer_ = None
_global_bias_initializer_ = None

35 36 37 38 39 40 41 42 43 44

class Initializer(object):
    """Base class for variable initializers

    Defines the common interface of variable initializers.
    They add operations to the init program that are used
    to initialize variables. Users should not use this class
    directly, but need to use one of its implementations.
    """

W
whs 已提交
45
    def __init__(self):
46 47
        pass

48
    def __call__(self, param, block=None):
49 50 51 52
        """Add corresponding initialization operations to the network
        """
        raise NotImplementedError()

53 54 55 56 57 58 59 60 61 62
    def _check_block(self, block):
        if block is None:
            if in_dygraph_mode():
                block = default_main_program().global_block()
            else:
                raise ValueError(
                    "The parameter 'block' is needed in static graph mode.")

        return block

63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
    def _compute_fans(self, var):
        """Compute the fan_in and the fan_out for layers

        This method computes the fan_in and the fan_out
        for neural network layers, if not specified. It is
        not possible to perfectly estimate fan_in and fan_out.
        This method will estimate it correctly for matrix multiply and
        convolutions.

        Args:
            var: variable for which fan_in and fan_out have to be computed

        Returns:
            tuple of two integers (fan_in, fan_out)
        """
        shape = var.shape
        if not shape or len(shape) == 0:
            fan_in = fan_out = 1
        elif len(shape) == 1:
            fan_in = fan_out = shape[0]
        elif len(shape) == 2:
            # This is the case for simple matrix multiply
            fan_in = shape[0]
            fan_out = shape[1]
        else:
            # Assume this to be a convolutional kernel
            # In PaddlePaddle, the shape of the kernel is like:
            # [num_filters, num_filter_channels, ...] where the remaining
            # dimensions are the filter_size
            receptive_field_size = np.prod(shape[2:])
            fan_in = shape[1] * receptive_field_size
            fan_out = shape[0] * receptive_field_size

        return (fan_in, fan_out)

98 99 100

class ConstantInitializer(Initializer):
    """Implements the constant initializer
101 102

    Args:
D
Double_V 已提交
103
        value (float32): constant value to initialize the variable 
104 105 106 107

    Examples:
        .. code-block:: python

108
    	    import paddle.fluid as fluid
D
Double_V 已提交
109
            x = fluid.data(name="data", shape=[8, 32, 32], dtype="float32")
110 111 112
	    fc = fluid.layers.fc(input=x, size=10,
    		param_attr=fluid.initializer.Constant(value=2.0))

113 114
    """

115
    def __init__(self, value=0.0, force_cpu=False):
116 117 118
        assert value is not None
        super(ConstantInitializer, self).__init__()
        self._value = value
119
        self._force_cpu = force_cpu
120

121 122
    def __call__(self, var, block=None):
        """Initialize the input tensor with constant.
123 124

        Args:
125 126 127
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
128 129

        Returns:
130
            The initialization op
131
        """
132 133
        block = self._check_block(block)

134 135
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150

        # to be compatible of fp16 initializers
        if var.dtype == VarDesc.VarType.FP16:
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
                name=unique_name.generate(".".join(
                    ['constant_init', var.name, 'tmp'])),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

151
        # Initialization Ops should be prepended and not appended
W
Wu Yi 已提交
152
        op = block._prepend_op(
153
            type="fill_constant",
154
            outputs={"Out": out_var},
155 156
            attrs={
                "shape": var.shape,
157
                "dtype": int(out_dtype),
158
                "value": float(self._value),
159
                'force_cpu': self._force_cpu
M
minqiyang 已提交
160 161
            },
            stop_gradient=True)
162 163 164 165 166 167 168 169 170

        if var.dtype == VarDesc.VarType.FP16:
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})

L
lujun 已提交
171
        if not framework.in_dygraph_mode():
172
            var.op = op
173 174 175 176
        return op


class UniformInitializer(Initializer):
177
    """Implements the random uniform distribution initializer
178 179 180 181 182

    Args:
        low (float): lower boundary of the uniform distribution
        high (float): upper boundary of the uniform distribution
        seed (int): random seed
183 184 185 186 187 188
        diag_num (int): the number of diagonal elements to initialize.
            If set to 0, diagonal initialization will be not performed.
        diag_step (int): Step size between two diagonal elements,
            which is generally the width of the square matrix.
        diag_val (float): the value of the diagonal element to be initialized,
            default 1.0. It takes effect only if the diag_num is greater than 0.
189 190 191 192

    Examples:
        .. code-block:: python

X
xiaoting 已提交
193
            import paddle.fluid as fluid
194
            x = fluid.data(name='x', shape=[None, 1], dtype='float32')
195
            fc = fluid.layers.fc(input=x, size=10,
196
    		param_attr=fluid.initializer.Uniform(low=-0.5, high=0.5))
197 198
    """

199 200 201 202 203 204 205
    def __init__(self,
                 low=-1.0,
                 high=1.0,
                 seed=0,
                 diag_num=0,
                 diag_step=0,
                 diag_val=1.0):
206 207
        assert low is not None
        assert high is not None
208
        assert high >= low
209
        assert seed is not None
210 211 212 213 214
        assert diag_num is not None
        assert diag_step is not None
        assert diag_val is not None
        if diag_num > 0 or diag_step > 0:
            assert (diag_num > 0 and diag_step > 0)
215 216 217 218
        super(UniformInitializer, self).__init__()
        self._low = low
        self._high = high
        self._seed = seed
219 220 221
        self._diag_num = diag_num
        self._diag_step = diag_step
        self._diag_val = diag_val
222

223 224
    def __call__(self, var, block=None):
        """Initialize the input tensor with Uniform distribution.
225 226

        Args:
227 228 229
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
230 231

        Returns:
232
            The initialization op
233
        """
234 235
        block = self._check_block(block)

236
        assert isinstance(block, framework.Block)
237 238 239
        check_variable_and_dtype(var, "Out", ["float16", "float32", "float64"],
                                 "uniform_random")

240
        # Initialization Ops should be prepended and not appended
D
dzhwinter 已提交
241 242
        if self._seed == 0:
            self._seed = block.program.random_seed
W
Wu Yi 已提交
243

X
polish  
Xin Pan 已提交
244
        # to be compatible of fp16 initializers
W
Wu Yi 已提交
245 246 247
        if var.dtype == VarDesc.VarType.FP16:
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
248 249
                name=unique_name.generate(".".join(
                    ['uniform_random', var.name, 'tmp'])),
W
Wu Yi 已提交
250 251 252 253 254 255 256 257
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

W
Wu Yi 已提交
258
        op = block._prepend_op(
259
            type="uniform_random",
260
            inputs={},
W
Wu Yi 已提交
261
            outputs={"Out": out_var},
262 263
            attrs={
                "shape": var.shape,
W
Wu Yi 已提交
264
                "dtype": out_dtype,
265 266
                "min": self._low,
                "max": self._high,
267 268 269 270
                "seed": self._seed,
                "diag_num": self._diag_num,
                "diag_step": self._diag_step,
                "diag_val": self._diag_val
M
minqiyang 已提交
271 272
            },
            stop_gradient=True)
W
Wu Yi 已提交
273 274 275 276 277 278 279 280 281

        if var.dtype == VarDesc.VarType.FP16:
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})

L
lujun 已提交
282
        if not framework.in_dygraph_mode():
283
            var.op = op
284
        return op
285 286 287


class NormalInitializer(Initializer):
288 289 290 291 292 293 294 295 296 297
    """Implements the Random Normal(Gaussian) distribution initializer

    Args:
        loc (float): mean of the normal distribution
        scale (float): standard deviation of the normal distribution
        seed (int): random seed

    Examples:
        .. code-block:: python

X
xsrobin 已提交
298
            import paddle.fluid as fluid
299
            x = fluid.data(name="data", shape=[None, 32, 32], dtype="float32")
X
xsrobin 已提交
300 301
            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.Normal(loc=0.0, scale=2.0))
302

303 304 305 306 307 308 309 310 311 312 313
    """

    def __init__(self, loc=0.0, scale=1.0, seed=0):
        assert loc is not None
        assert scale is not None
        assert seed is not None
        super(NormalInitializer, self).__init__()
        self._mean = loc
        self._std_dev = scale
        self._seed = seed

314 315
    def __call__(self, var, block=None):
        """Initialize the input tensor with Normal distribution.
316 317

        Args:
318 319 320
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
321 322

        Returns:
323
            The initialization op
324
        """
325 326
        block = self._check_block(block)

327
        assert isinstance(block, framework.Block)
328 329 330

        check_variable_and_dtype(var, "Out", ["float16", "float32", "float64"],
                                 "guassian_random")
331
        # Initialization Ops should be prepended and not appended
D
dzhwinter 已提交
332 333
        if self._seed == 0:
            self._seed = block.program.random_seed
W
Wu Yi 已提交
334 335 336 337 338

        # to be compatible of fp16 initalizers
        if var.dtype == VarDesc.VarType.FP16:
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
339 340
                name=unique_name.generate(".".join(
                    ['gaussian_random', var.name, 'tmp'])),
W
Wu Yi 已提交
341 342 343 344 345 346 347 348
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

W
Wu Yi 已提交
349
        op = block._prepend_op(
350
            type="gaussian_random",
W
Wu Yi 已提交
351
            outputs={"Out": out_var},
352 353
            attrs={
                "shape": var.shape,
W
Wu Yi 已提交
354
                "dtype": out_dtype,
355 356
                "mean": self._mean,
                "std": self._std_dev,
G
gongweibao 已提交
357 358
                "seed": self._seed,
                "use_mkldnn": False
M
minqiyang 已提交
359 360
            },
            stop_gradient=True)
W
Wu Yi 已提交
361 362 363 364 365 366 367 368

        if var.dtype == VarDesc.VarType.FP16:
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})
L
lujun 已提交
369
        if not framework.in_dygraph_mode():
370
            var.op = op
371
        return op
372 373


374 375 376 377 378 379 380 381 382 383 384
class TruncatedNormalInitializer(Initializer):
    """Implements the Random TruncatedNormal(Gaussian) distribution initializer

    Args:
        loc (float): mean of the normal distribution
        scale (float): standard deviation of the normal distribution
        seed (int): random seed

    Examples:
        .. code-block:: python

X
xiaoting 已提交
385
            import paddle.fluid as fluid
386
            x = fluid.data(name='x', shape=[None, 1], dtype='float32')
387 388 389 390 391 392 393 394
            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.TruncatedNormal(loc=0.0, scale=2.0))
    """

    def __init__(self, loc=0.0, scale=1.0, seed=0):
        assert loc is not None
        assert scale is not None
        assert seed is not None
W
whs 已提交
395
        super(TruncatedNormalInitializer, self).__init__()
396 397 398 399
        self._mean = loc
        self._std_dev = scale
        self._seed = seed

400 401
    def __call__(self, var, block=None):
        """Initialize the input tensor with TruncatedNormal distribution.
402 403

        Args:
404 405 406
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
407 408

        Returns:
409
            The initialization op
410
        """
411 412
        block = self._check_block(block)

413 414 415 416 417
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
        # Initialization Ops should be prepended and not appended
        if self._seed == 0:
            self._seed = block.program.random_seed
418 419 420 421 422 423

        # to be compatible of fp16 initalizers
        if var.dtype == VarDesc.VarType.FP16:
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
                name=unique_name.generate(".".join(
424
                    ['truncated_gaussian_random', var.name, 'tmp'])),
425 426 427 428 429 430 431 432
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

433 434
        op = block._prepend_op(
            type="truncated_gaussian_random",
435
            outputs={"Out": out_var},
436 437
            attrs={
                "shape": var.shape,
438
                "dtype": out_dtype,
439 440 441
                "mean": self._mean,
                "std": self._std_dev,
                "seed": self._seed
M
minqiyang 已提交
442 443
            },
            stop_gradient=True)
444 445 446 447 448 449 450 451

        if var.dtype == VarDesc.VarType.FP16:
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})
L
lujun 已提交
452
        if not framework.in_dygraph_mode():
453
            var.op = op
454 455 456
        return op


457
class XavierInitializer(Initializer):
Q
qiaolongfei 已提交
458
    """
459
    This class implements the Xavier weight initializer from the paper
Q
qiaolongfei 已提交
460 461 462
    `Understanding the difficulty of training deep feedforward neural
    networks <http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf>`_
    by Xavier Glorot and Yoshua Bengio.
463 464 465

    This initializer is designed to keep the scale of the gradients
    approximately same in all the layers. In case of Uniform distribution,
Q
qiaolongfei 已提交
466 467 468 469 470 471
    the range is [-x, x], where

    .. math::

        x = \sqrt{\\frac{6.0}{fan\_in + fan\_out}}

472
    In case of Normal distribution, the mean is 0 and the standard deviation
Q
qiaolongfei 已提交
473
    is
474

Q
qiaolongfei 已提交
475
    .. math::
476

Q
qiaolongfei 已提交
477
        \sqrt{\\frac{2.0}{fan\_in + fan\_out}}
478 479


Q
qiaolongfei 已提交
480
    Args:
X
xiaoting 已提交
481 482
        uniform (bool,default True): whether to use uniform ,if False use normal distribution
        fan_in (float,default None): fan_in for Xavier initialization. If None, it is
Q
qiaolongfei 已提交
483
                inferred from the variable.
X
xiaoting 已提交
484
        fan_out (float,default None): fan_out for Xavier initialization. If None, it is
Q
qiaolongfei 已提交
485 486 487 488 489 490 491 492 493
                 inferred from the variable.
        seed (int): random seed

    Note:
        It is recommended to set fan_in and fan_out to None for most cases.

    Examples:
        .. code-block:: python

X
xiaoting 已提交
494
            import paddle.fluid as fluid
X
xiaoting 已提交
495
            queries = fluid.data(name='x', shape=[None,1], dtype='float32')
Q
qiaolongfei 已提交
496 497 498 499 500 501 502
            fc = fluid.layers.fc(
                input=queries, size=10,
                param_attr=fluid.initializer.Xavier(uniform=False))

    """

    def __init__(self, uniform=True, fan_in=None, fan_out=None, seed=0):
503 504 505 506 507 508 509 510
        assert uniform is not None
        assert seed is not None
        super(XavierInitializer, self).__init__()
        self._uniform = uniform
        self._fan_in = fan_in
        self._fan_out = fan_out
        self._seed = seed

511 512
    def __call__(self, var, block=None):
        """Initialize the input tensor with Xavier initialization.
513 514

        Args:
515 516 517
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
518 519

        Returns:
520
            The initialization op
521
        """
522 523
        block = self._check_block(block)

524
        assert isinstance(block, framework.Block)
525 526 527
        check_variable_and_dtype(var, "Out", ["float16", "float32", "float64"],
                                 "xavier_init")

528 529 530 531 532 533
        f_in, f_out = self._compute_fans(var)

        # If fan_in and fan_out are passed, use them
        fan_in = f_in if self._fan_in is None else self._fan_in
        fan_out = f_out if self._fan_out is None else self._fan_out

D
dzhwinter 已提交
534 535 536
        if self._seed == 0:
            self._seed = block.program.random_seed

537 538 539 540 541 542 543 544 545 546 547 548 549 550
        # to be compatible of fp16 initalizers
        if var.dtype == VarDesc.VarType.FP16:
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
                name=unique_name.generate(".".join(
                    ['xavier_init', var.name, 'tmp'])),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

551 552
        if self._uniform:
            limit = np.sqrt(6.0 / float(fan_in + fan_out))
W
Wu Yi 已提交
553
            op = block._prepend_op(
554
                type="uniform_random",
555
                inputs={},
556
                outputs={"Out": out_var},
557
                attrs={
558 559
                    "shape": out_var.shape,
                    "dtype": out_dtype,
560 561 562
                    "min": -limit,
                    "max": limit,
                    "seed": self._seed
M
minqiyang 已提交
563 564
                },
                stop_gradient=True)
565 566 567

        else:
            std = np.sqrt(2.0 / float(fan_in + fan_out))
W
Wu Yi 已提交
568
            op = block._prepend_op(
569
                type="gaussian_random",
570
                outputs={"Out": out_var},
571
                attrs={
572 573
                    "shape": out_var.shape,
                    "dtype": out_dtype,
574 575 576
                    "mean": 0.0,
                    "std": std,
                    "seed": self._seed
M
minqiyang 已提交
577 578
                },
                stop_gradient=True)
579 580 581 582 583 584 585 586 587

        if var.dtype == VarDesc.VarType.FP16:
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})

L
lujun 已提交
588
        if not framework.in_dygraph_mode():
589
            var.op = op
590
        return op
591 592 593 594 595 596


class MSRAInitializer(Initializer):
    """Implements the MSRA initializer a.k.a. Kaiming Initializer

    This class implements the weight initialization from the paper
597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
    `Delving Deep into Rectifiers: Surpassing Human-Level Performance on
    ImageNet Classification <https://arxiv.org/abs/1502.01852>`_
    by Kaiming He, Xiangyu Zhang, Shaoqing Ren and Jian Sun. This is a
    robust initialization method that particularly considers the rectifier
    nonlinearities. In case of Uniform distribution, the range is [-x, x], where

    .. math::

        x = \sqrt{\\frac{6.0}{fan\_in}}

    In case of Normal distribution, the mean is 0 and the standard deviation
    is

    .. math::

        \sqrt{\\frac{2.0}{fan\_in}}

    Args:
        uniform (bool): whether to use uniform or normal distribution
D
Double_V 已提交
616 617 618
        fan_in (float32|None): fan_in for MSRAInitializer. If None, it is\
        inferred from the variable. default is None.
        seed (int32): random seed
619 620 621 622 623 624

    Note:
        It is recommended to set fan_in to None for most cases.

    Examples:
        .. code-block:: python
X
xsrobin 已提交
625 626

            import paddle.fluid as fluid
D
Double_V 已提交
627
            x = fluid.data(name="data", shape=[8, 32, 32], dtype="float32")
X
xsrobin 已提交
628 629
            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.MSRA(uniform=False))
630

631 632 633 634 635 636 637 638 639 640 641 642
    """

    def __init__(self, uniform=True, fan_in=None, seed=0):
        """Constructor for MSRAInitializer
        """
        assert uniform is not None
        assert seed is not None
        super(MSRAInitializer, self).__init__()
        self._uniform = uniform
        self._fan_in = fan_in
        self._seed = seed

643 644
    def __call__(self, var, block=None):
        """Initialize the input tensor with MSRA initialization.
645 646

        Args:
647 648 649
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
650 651

        Returns:
652
            The initialization op
653
        """
654 655
        block = self._check_block(block)

656 657 658 659 660 661 662
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
        f_in, f_out = self._compute_fans(var)

        # If fan_in is passed, use it
        fan_in = f_in if self._fan_in is None else self._fan_in

D
dzhwinter 已提交
663 664 665
        if self._seed == 0:
            self._seed = block.program.random_seed

666 667 668 669 670 671 672 673 674 675 676 677 678 679
        # to be compatible of fp16 initalizers
        if var.dtype == VarDesc.VarType.FP16:
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
                name=unique_name.generate(".".join(
                    ['masra_init', var.name, 'tmp'])),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

680 681
        if self._uniform:
            limit = np.sqrt(6.0 / float(fan_in))
W
Wu Yi 已提交
682
            op = block._prepend_op(
683
                type="uniform_random",
684
                inputs={},
685
                outputs={"Out": out_var},
686
                attrs={
687 688
                    "shape": out_var.shape,
                    "dtype": int(out_dtype),
689 690 691
                    "min": -limit,
                    "max": limit,
                    "seed": self._seed
M
minqiyang 已提交
692 693
                },
                stop_gradient=True)
694 695 696

        else:
            std = np.sqrt(2.0 / float(fan_in))
W
Wu Yi 已提交
697
            op = block._prepend_op(
698
                type="gaussian_random",
699
                outputs={"Out": out_var},
700
                attrs={
701 702
                    "shape": out_var.shape,
                    "dtype": int(out_dtype),
703 704 705
                    "mean": 0.0,
                    "std": std,
                    "seed": self._seed
M
minqiyang 已提交
706 707
                },
                stop_gradient=True)
708 709 710 711 712 713 714 715 716

        if var.dtype == VarDesc.VarType.FP16:
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})

L
lujun 已提交
717
        if not framework.in_dygraph_mode():
718
            var.op = op
719
        return op
720 721


722
class BilinearInitializer(Initializer):
723
    """
724 725 726
    This initializer can be used in transposed convolution operator to
    act as upsampling. Users can upsample a feature map with shape of
    (B, C, H, W) by any integer factor. The usage is:
727 728 729 730 731

    Examples:

        .. code-block:: python

X
xsrobin 已提交
732
            import paddle.fluid as fluid
733
            import math
X
xsrobin 已提交
734 735
            factor = 2
            C = 2
D
Double_V 已提交
736 737
            B = 8
            H = W = 32
X
xsrobin 已提交
738 739 740
            w_attr = fluid.param_attr.ParamAttr(
                learning_rate=0., 
                regularizer=fluid.regularizer.L2Decay(0.),
741
                initializer=fluid.initializer.Bilinear())
D
Double_V 已提交
742
            x = fluid.data(name="data", shape=[B, 3, H, W], 
X
xsrobin 已提交
743 744 745 746 747 748 749 750 751 752 753
                                  dtype="float32")
            conv_up = fluid.layers.conv2d_transpose(
                input=x,
                num_filters=C,
                output_size=None,
                filter_size=2 * factor - factor % 2,
                padding=int(math.ceil((factor - 1) / 2.)),
                stride=factor,
                groups=C,
                param_attr=w_attr,
                bias_attr=False)
754 755

    Where, `num_filters=C` and `groups=C` means this is channel-wise transposed
756 757 758 759 760
    convolution. The filter shape will be (C, 1, K, K) where K is `filer_size`,
    This initializer will set a (K, K) interpolation kernel for every channel
    of the filter identically. The resulting shape of the output feature map
    will be (B, C, factor * H, factor * W). Note that the learning rate and the
    weight decay are set to 0 in order to keep coefficient values of bilinear
761 762
    interpolation unchanged during training.

763 764 765 766 767 768 769
    """

    def __init__(self):
        """Constructor for BilinearInitializer.
        """
        super(BilinearInitializer, self).__init__()

770 771
    def __call__(self, var, block=None):
        """Initialize the input tensor with Bilinear initialization.
772 773

        Args:
774 775 776
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
777 778

        Returns:
779
            The initialization op
780
        """
781 782
        block = self._check_block(block)

783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
        if not isinstance(var, framework.Variable):
            raise ValueError("var must be framework.Variable.")

        if not isinstance(block, framework.Block):
            raise ValueError("block must be framework.Block.")

        shape = var.shape
        if len(shape) != 4:
            raise ValueError("the length of shape must be 4.")
        if shape[2] != shape[3]:
            raise ValueError("shape[2] must be equal to shape[3].")

        weight = np.zeros(np.prod(var.shape), dtype='float32')
        size = shape[3]
        # factor
        f = np.ceil(size / 2.)
        # center
        c = (2 * f - 1 - f % 2) / (2. * f)
        for i in range(np.prod(shape)):
            x = i % size
            y = (i / size) % size
            weight[i] = (1 - abs(x / f - c)) * (1 - abs(y / f - c))
        weight = np.reshape(weight, shape)

807
        # to be compatible of fp16 initalizers
808
        if var.dtype == VarDesc.VarType.FP16 or var.dtype == VarDesc.VarType.FP64:
809 810 811 812 813 814 815 816 817 818 819 820 821
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
                name=unique_name.generate(".".join(
                    ['bilinear_init', var.name, 'tmp'])),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

        if out_dtype == VarDesc.VarType.FP32:
822 823 824
            value_name = "fp32_values"
            values = [float(v) for v in weight.flat]
        else:
825 826
            raise TypeError("Unsupported dtype %s", var.dtype)

827 828 829 830
        if np.prod(shape) > 1024 * 1024:
            raise ValueError("The size of input is too big. ")
        op = block.append_op(
            type='assign_value',
831
            outputs={'Out': [out_var]},
832
            attrs={
833
                'dtype': out_dtype,
834 835 836
                'shape': list(shape),
                value_name: values
            })
837

838
        if var.dtype == VarDesc.VarType.FP16 or var.dtype == VarDesc.VarType.FP64:
839 840 841 842 843 844 845
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})

L
lujun 已提交
846
        if not framework.in_dygraph_mode():
847
            var.op = op
848 849 850
        return op


851 852
class NumpyArrayInitializer(Initializer):
    """Init an parameter with an numpy array
853
    This op initialize the variable by numpy array.
854 855 856 857

    Args:
        value (numpy): numpy array to initialize the variable

858 859 860
    Returns:
        A Tensor variable initialized by numpy.

861 862 863
    Examples:
        .. code-block:: python

864
            import paddle.fluid as fluid
865 866
            import numpy
            x = fluid.data(name="x", shape=[2, 1], dtype='float32')
867 868 869 870 871 872 873 874 875 876
            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.NumpyArrayInitializer(numpy.array([1,2])))
    """

    def __init__(self, value):
        import numpy
        assert isinstance(value, numpy.ndarray)
        super(NumpyArrayInitializer, self).__init__()
        self._value = value

877 878
    def __call__(self, var, block=None):
        """Initialize the input tensor with Numpy array.
879 880

        Args:
881 882 883
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
884 885

        Returns:
886
            The initialization op
887
        """
888 889
        block = self._check_block(block)

890 891
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908

        # to be compatible of fp16 initalizers
        if var.dtype == VarDesc.VarType.FP16:
            out_dtype = VarDesc.VarType.FP32
            np_value = self._value.astype("float32")
            out_var = block.create_var(
                name=unique_name.generate(".".join(
                    ['numpy_array_init', var.name, 'tmp'])),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_var = var
            out_dtype = var.dtype
            np_value = self._value

909
        # Initialization Ops should be prepended and not appended
910
        if out_dtype == VarDesc.VarType.FP32:
911
            value_name = "fp32_values"
912 913
            values = [float(v) for v in np_value.flat]
        elif out_dtype == VarDesc.VarType.INT32:
914
            value_name = "int32_values"
915
            values = [int(v) for v in np_value.flat]
916 917
        else:
            raise ValueError("Unsupported dtype %s", self._value.dtype)
X
Xin Pan 已提交
918
        if self._value.size > 1024 * 1024 * 1024:
919 920 921 922
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
        op = block._prepend_op(
            type='assign_value',
923
            outputs={'Out': out_var},
924
            attrs={
925
                'dtype': out_dtype,
926
                'shape': list(self._value.shape),
927 928 929
                value_name: values
            },
            stop_gradient=True)
930 931 932 933 934 935 936 937 938

        if var.dtype == VarDesc.VarType.FP16:
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})

L
lujun 已提交
939
        if not framework.in_dygraph_mode():
940
            var.op = op
941 942 943
        return op


944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
def set_global_initializer(weight_init, bias_init=None):
    """
    This API is used to set up global model parameter initializer in framework.

    After this API is invoked, the global initializer will takes effect in subsequent code.

    The model parameters include ``weight`` and ``bias`` . In the framework, they correspond 
    to ``fluid.Parameter`` , which is inherited from ``fluid.Variable`` , and is a persistable Variable.
    This API only takes effect for model parameters, not for variables created through apis such as 
    :ref:`api_fluid_layers_create_global_var` , :ref:`api_fluid_layers_create_tensor`.
    
    If the initializer is also set up by ``param_attr`` or ``bias_attr`` when creating a network layer,
    the global initializer setting here will not take effect because it has a lower priority.

    If you want to cancel the global initializer in framework, please set global initializer to ``None`` .

    Args:
        weight_init (Initializer): set the global initializer for ``weight`` of model parameters.
        bias_init (Initializer, optional): set the global initializer for ``bias`` of model parameters. 
            Default: None.

    Returns:
        None

    Examples:
        .. code-block:: python
            import paddle.fluid as fluid

            fluid.set_global_initializer(fluid.initializer.Uniform(), fluid.initializer.Constant())
            x = fluid.data(name="x", shape=[1, 3, 32, 32])

            # The weight of conv1 is initialized by Uniform
            # The bias of conv1 is initialized by Constant
            conv1 = fluid.layers.conv2d(x, 5, 3)

            # If set param_attr/bias_attr too, global initializer will not take effect
            # The weight of conv2 is initialized by Xavier
            # The bias of conv2 is initialized by Normal
            conv2 = fluid.layers.conv2d(conv1, 5, 3, 
                param_attr=fluid.initializer.Xavier(), 
                bias_attr=fluid.initializer.Normal())

            # Cancel the global initializer in framework, it will takes effect in subsequent code
            fluid.set_global_initializer(None)


    """
    check_type(weight_init, 'weight_init', (Initializer, type(None)),
               'set_global_initializer')
    global _global_weight_initializer_
    _global_weight_initializer_ = weight_init

    check_type(bias_init, 'bias_init', (Initializer, type(None)),
               'set_global_initializer')
    global _global_bias_initializer_
    _global_bias_initializer_ = bias_init


def _global_weight_initializer():
    """
    Return the global weight initializer, The user doesn't need to use it.
    """
    return _global_weight_initializer_


def _global_bias_initializer():
    """
    Return the global weight initializer, The user doesn't need to use it.
    """
    return _global_bias_initializer_


1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
# We short the class name, since users will use the initializer with the package
# name. The sample code:
#
# import paddle.fluid as fluid
#
# hidden = fluid.layers.fc(...,
#                          param_attr=ParamAttr(fluid.initializer.Xavier()))
#
# It is no need to add an `Initializer` as the class suffix
Constant = ConstantInitializer
Uniform = UniformInitializer
Normal = NormalInitializer
1028
TruncatedNormal = TruncatedNormalInitializer
1029 1030
Xavier = XavierInitializer
MSRA = MSRAInitializer
1031
Bilinear = BilinearInitializer