test_conv3d_transpose_op.py 22.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

C
chengduoZH 已提交
17 18
import unittest
import numpy as np
19

20
import paddle.fluid.core as core
21
import paddle.fluid as fluid
22
from op_test import OpTest
C
chengduoZH 已提交
23 24


C
chengduoZH 已提交
25
def conv3dtranspose_forward_naive(input_, filter_, attrs):
26 27 28 29 30 31 32 33
    padding_algorithm = attrs['padding_algorithm']
    if padding_algorithm not in ["SAME", "VALID", "EXPLICIT"]:
        raise ValueError("Unknown Attr(padding_algorithm): '%s'. "
                         "It can only be 'SAME' or 'VALID'." %
                         str(padding_algorithm))

    if attrs['data_format'] == 'NHWC':
        input_ = np.transpose(input_, [0, 4, 1, 2, 3])
C
chengduoZH 已提交
34
    in_n, in_c, in_d, in_h, in_w = input_.shape
35 36
    f_c, f_out_c, f_d, f_h, f_w = filter_.shape
    groups = attrs['groups']
C
chengduoZH 已提交
37
    assert in_c == f_c
38
    out_c = f_out_c * groups
M
minqiyang 已提交
39
    sub_in_c = in_c // groups
C
chengduoZH 已提交
40

C
chengduoZH 已提交
41 42 43
    stride, pad, dilations = attrs['strides'], attrs['paddings'], attrs[
        'dilations']

44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
    def _get_padding_with_SAME(input_shape, kernel_size, kernel_stride):
        padding = []
        for input_size, filter_size, stride_size in zip(
                input_shape, kernel_size, kernel_stride):
            out_size = int((input_size + stride_size - 1) / stride_size)
            pad_sum = np.max((
                (out_size - 1) * stride_size + filter_size - input_size, 0))
            pad_0 = int(pad_sum / 2)
            pad_1 = int(pad_sum - pad_0)
            padding.append(pad_0)
            padding.append(pad_1)
        return padding

    ksize = filter_.shape[2:5]
    if padding_algorithm == "VALID":
        pad = [0, 0, 0, 0, 0, 0]
    elif padding_algorithm == "SAME":
61 62
        dilations = [1, 1, 1]
        input_data_shape = input_.shape[2:5]
63 64 65 66 67 68 69 70 71 72
        pad = _get_padding_with_SAME(input_data_shape, ksize, stride)

    pad_d_0, pad_d_1 = pad[0], pad[0]
    pad_h_0, pad_h_1 = pad[1], pad[1]
    pad_w_0, pad_w_1 = pad[2], pad[2]
    if len(pad) == 6:
        pad_d_0, pad_d_1 = pad[0], pad[1]
        pad_h_0, pad_h_1 = pad[2], pad[3]
        pad_w_0, pad_w_1 = pad[4], pad[5]

C
chengduoZH 已提交
73 74 75 76 77 78
    d_bolck_d = dilations[0] * (f_d - 1) + 1
    d_bolck_h = dilations[1] * (f_h - 1) + 1
    d_bolck_w = dilations[2] * (f_w - 1) + 1
    out_d = (in_d - 1) * stride[0] + d_bolck_d
    out_h = (in_h - 1) * stride[1] + d_bolck_h
    out_w = (in_w - 1) * stride[2] + d_bolck_w
C
chengduoZH 已提交
79 80 81 82 83 84
    out = np.zeros((in_n, out_c, out_d, out_h, out_w))

    for n in range(in_n):
        for d in range(in_d):
            for i in range(in_h):
                for j in range(in_w):
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
                    for g in range(groups):
                        input_masked = input_[n, g * sub_in_c:(g + 1
                                                               ) * sub_in_c, d,
                                              i, j]  # (c)
                        input_masked = np.reshape(input_masked,
                                                  (sub_in_c, 1, 1, 1))
                        input_masked = np.tile(input_masked, (1, f_d, f_h, f_w))

                        for k in range(f_out_c):
                            tmp_out = np.sum(input_masked * filter_[
                                g * sub_in_c:(g + 1) * sub_in_c, k, :, :, :],
                                             axis=0)
                            d1, d2 = d * stride[0], d * stride[0] + d_bolck_d
                            i1, i2 = i * stride[1], i * stride[1] + d_bolck_h
                            j1, j2 = j * stride[2], j * stride[2] + d_bolck_w
                            out[n, g * f_out_c + k, d1:d2:dilations[0], i1:i2:
                                dilations[1], j1:j2:dilations[2]] += tmp_out
C
chengduoZH 已提交
102

103 104 105 106
    out = out[:, :, pad_d_0:out_d - pad_d_1, pad_h_0:out_h - pad_h_1, pad_w_0:
              out_w - pad_w_1]
    if attrs['data_format'] == 'NHWC':
        out = np.transpose(out, [0, 2, 3, 4, 1])
C
chengduoZH 已提交
107 108 109 110 111 112
    return out


class TestConv3dTransposeOp(OpTest):
    def setUp(self):
        # init as conv transpose
113
        self.use_cudnn = False
114 115 116
        self.data_format = 'NCHW'
        self.pad = [0, 0, 0]
        self.padding_algorithm = "EXPLICIT"
C
chengduoZH 已提交
117 118 119 120 121 122 123 124 125 126
        self.init_op_type()
        self.init_test_case()

        input_ = np.random.random(self.input_size).astype("float32")
        filter_ = np.random.random(self.filter_size).astype("float32")

        self.inputs = {'Input': input_, 'Filter': filter_}
        self.attrs = {
            'strides': self.stride,
            'paddings': self.pad,
127
            'padding_algorithm': self.padding_algorithm,
128
            'dilations': self.dilations,
129
            'groups': self.groups,
130
            'use_cudnn': self.use_cudnn,
131
            'data_format': self.data_format
C
chengduoZH 已提交
132
        }
C
chengduoZH 已提交
133 134 135 136

        output = conv3dtranspose_forward_naive(input_, filter_,
                                               self.attrs).astype("float32")

C
chengduoZH 已提交
137 138 139
        self.outputs = {'Output': output}

    def test_check_output(self):
140 141 142 143 144
        if self.use_cudnn:
            place = core.CUDAPlace(0)
            self.check_output_with_place(place, atol=1e-5)
        else:
            self.check_output()
C
chengduoZH 已提交
145 146

    def test_check_grad(self):
147 148 149 150 151 152 153 154 155 156
        if self.use_cudnn:
            place = core.CUDAPlace(0)
            self.check_grad_with_place(
                place,
                set(['Input', 'Filter']),
                'Output',
                max_relative_error=0.03)
        else:
            self.check_grad(
                set(['Input', 'Filter']), 'Output', max_relative_error=0.03)
C
chengduoZH 已提交
157 158

    def test_check_grad_no_filter(self):
159 160 161 162 163 164 165 166 167 168 169 170 171
        if self.use_cudnn:
            place = core.CUDAPlace(0)
            self.check_grad_with_place(
                place, ['Input'],
                'Output',
                max_relative_error=0.03,
                no_grad_set=set(['Filter']))
        else:
            self.check_grad(
                ['Input'],
                'Output',
                max_relative_error=0.03,
                no_grad_set=set(['Filter']))
C
chengduoZH 已提交
172 173

    def test_check_grad_no_input(self):
174 175 176 177 178 179 180 181 182 183 184 185 186
        if self.use_cudnn:
            place = core.CUDAPlace(0)
            self.check_grad_with_place(
                place, ['Filter'],
                'Output',
                max_relative_error=0.03,
                no_grad_set=set(['Input']))
        else:
            self.check_grad(
                ['Filter'],
                'Output',
                max_relative_error=0.03,
                no_grad_set=set(['Input']))
C
chengduoZH 已提交
187 188 189 190 191

    def init_test_case(self):
        self.pad = [0, 0, 0]
        self.stride = [1, 1, 1]
        self.dilations = [1, 1, 1]
192
        self.groups = 1
C
chengduoZH 已提交
193
        self.input_size = [2, 3, 5, 5, 5]  # NCDHW
C
chengduoZH 已提交
194 195 196 197
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3, 3]

    def init_op_type(self):
C
chengduoZH 已提交
198
        self.op_type = "conv3d_transpose"
C
chengduoZH 已提交
199 200


201
class TestWithSymmetricPad(TestConv3dTransposeOp):
C
chengduoZH 已提交
202 203 204 205
    def init_test_case(self):
        self.pad = [1, 1, 1]
        self.stride = [1, 1, 1]
        self.dilations = [1, 1, 1]
206
        self.groups = 1
C
chengduoZH 已提交
207 208 209 210 211
        self.input_size = [2, 3, 5, 5, 5]  # NCDHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3, 3]


212 213 214 215 216 217 218 219 220 221 222 223 224
class TestWithAsymmetricPad(TestConv3dTransposeOp):
    def init_test_case(self):
        self.pad = [1, 0, 1, 0, 1, 2]
        self.stride = [1, 1, 1]
        self.dilations = [1, 1, 1]
        self.groups = 1
        self.input_size = [2, 3, 5, 5, 5]  # NCDHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3, 3]


class TestWithSAMEPad(TestConv3dTransposeOp):
    def init_test_case(self):
225 226
        self.stride = [1, 1, 2]
        self.dilations = [1, 2, 1]
227
        self.groups = 1
228
        self.input_size = [2, 3, 5, 5, 6]  # NCDHW
229
        f_c = self.input_size[1]
230
        self.filter_size = [f_c, 6, 3, 3, 4]
231 232 233 234 235
        self.padding_algorithm = 'SAME'


class TestWithVALIDPad(TestConv3dTransposeOp):
    def init_test_case(self):
236
        self.stride = [2, 1, 1]
237 238 239 240
        self.dilations = [1, 1, 1]
        self.groups = 1
        self.input_size = [2, 3, 5, 5, 5]  # NCDHW
        f_c = self.input_size[1]
241
        self.filter_size = [f_c, 6, 3, 4, 3]
242 243 244
        self.padding_algorithm = 'VALID'


245 246 247 248 249 250 251 252 253 254 255
class TestWithGroups(TestConv3dTransposeOp):
    def init_test_case(self):
        self.pad = [1, 1, 1]
        self.stride = [1, 1, 1]
        self.dilations = [1, 1, 1]
        self.groups = 2
        self.input_size = [2, 4, 5, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 3, 3, 3, 3]


C
chengduoZH 已提交
256 257 258 259 260
class TestWithStride(TestConv3dTransposeOp):
    def init_test_case(self):
        self.pad = [1, 1, 1]
        self.stride = [2, 2, 2]
        self.dilations = [1, 1, 1]
261
        self.groups = 1
C
chengduoZH 已提交
262 263 264 265 266
        self.input_size = [2, 3, 5, 5, 5]  # NCDHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3, 3]


C
chengduoZH 已提交
267 268 269 270 271
class TestWithDilation(TestConv3dTransposeOp):
    def init_test_case(self):
        self.pad = [1, 1, 1]
        self.stride = [1, 1, 1]
        self.dilations = [2, 2, 2]
272
        self.groups = 1
C
chengduoZH 已提交
273 274 275 276 277
        self.input_size = [2, 3, 5, 5, 5]  # NCDHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3, 3]


278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
class Test_NHWC(TestConv3dTransposeOp):
    def init_test_case(self):
        self.pad = [0, 0, 0]
        self.stride = [1, 1, 1]
        self.dilations = [1, 1, 1]
        self.groups = 1
        self.input_size = [2, 5, 5, 5, 3]  # NDHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 3, 3, 3]
        self.data_format = 'NHWC'


class TestWithSymmetricPad_NHWC(TestConv3dTransposeOp):
    def init_test_case(self):
        self.pad = [1, 1, 1]
        self.stride = [1, 1, 1]
        self.dilations = [1, 1, 1]
        self.groups = 1
        self.input_size = [2, 5, 5, 5, 3]  # NDHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 3, 3, 3]
        self.data_format = 'NHWC'


class TestWithAsymmetricPad_NHWC(TestConv3dTransposeOp):
    def init_test_case(self):
        self.pad = [1, 0, 1, 0, 1, 2]
        self.stride = [1, 1, 1]
        self.dilations = [1, 1, 1]
        self.groups = 1
        self.input_size = [2, 5, 5, 5, 3]  # NDHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 3, 3, 3]
        self.data_format = 'NHWC'


class TestWithGroups_NHWC(TestConv3dTransposeOp):
    def init_test_case(self):
        self.pad = [1, 1, 1]
        self.stride = [1, 1, 1]
        self.dilations = [1, 1, 1]
        self.groups = 2
        self.input_size = [2, 5, 5, 5, 4]  # NDHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 3, 3, 3, 3]
        self.data_format = 'NHWC'


class TestWithStride_NHWC(TestConv3dTransposeOp):
    def init_test_case(self):
        self.pad = [1, 1, 1]
        self.stride = [2, 2, 2]
        self.dilations = [1, 1, 1]
        self.groups = 1
        self.input_size = [2, 5, 5, 5, 3]  # NCDHW
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 3, 3, 3]
        self.data_format = 'NHWC'


class TestWithDilation_NHWC(TestConv3dTransposeOp):
    def init_test_case(self):
        self.pad = [1, 1, 1]
        self.stride = [1, 1, 1]
        self.dilations = [2, 2, 2]
        self.groups = 1
        self.input_size = [2, 5, 5, 5, 3]  # NCDHW
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 3, 3, 3]
        self.data_format = 'NHWC'


C
chengduoZH 已提交
350
# ------------ test_cudnn ------------
351 352
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
353
class TestCUDNN(TestConv3dTransposeOp):
C
chengduoZH 已提交
354
    def init_op_type(self):
355 356
        self.use_cudnn = True
        self.op_type = "conv3d_transpose"
C
chengduoZH 已提交
357 358


359 360
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
361
class TestCUDNNWithSymmetricPad(TestWithSymmetricPad):
C
chengduoZH 已提交
362 363 364 365
    def init_test_case(self):
        self.pad = [1, 1, 1]
        self.stride = [1, 1, 1]
        self.dilations = [1, 1, 1]
366
        self.groups = 1
C
chengduoZH 已提交
367 368 369 370 371
        self.input_size = [2, 3, 5, 5, 5]  # NCDHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3, 3]

    def init_op_type(self):
372 373
        self.use_cudnn = True
        self.op_type = "conv3d_transpose"
C
chengduoZH 已提交
374 375


376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestCUDNNWithAsymmetricPad(TestWithAsymmetricPad):
    def init_test_case(self):
        self.pad = [1, 1, 1, 0, 0, 2]
        self.stride = [1, 1, 1]
        self.dilations = [1, 1, 1]
        self.groups = 1
        self.input_size = [2, 3, 4, 4, 4]  # NCDHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3, 3]

    def init_op_type(self):
        self.use_cudnn = True
        self.op_type = "conv3d_transpose"


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestCUDNNWithSAMEPad(TestWithSAMEPad):
    def init_test_case(self):
397 398
        self.stride = [1, 1, 2]
        self.dilations = [1, 2, 1]
399 400 401
        self.groups = 1
        self.input_size = [2, 3, 5, 5, 5]  # NCDHW
        f_c = self.input_size[1]
402
        self.filter_size = [f_c, 6, 3, 4, 3]
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
        self.padding_algorithm = 'SAME'

    def init_op_type(self):
        self.use_cudnn = True
        self.op_type = "conv3d_transpose"


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestCUDNNWithVALIDPad(TestWithVALIDPad):
    def init_test_case(self):
        self.stride = [1, 1, 1]
        self.dilations = [1, 1, 1]
        self.groups = 1
        self.input_size = [2, 3, 5, 5, 5]  # NCDHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3, 3]
        self.padding_algorithm = 'VALID'

    def init_op_type(self):
        self.use_cudnn = True
        self.op_type = "conv3d_transpose"


427 428
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
429
class TestCUDNNWithStride(TestWithStride):
C
chengduoZH 已提交
430 431 432 433
    def init_test_case(self):
        self.pad = [1, 1, 1]
        self.stride = [2, 2, 2]
        self.dilations = [1, 1, 1]
434
        self.groups = 1
C
chengduoZH 已提交
435 436 437 438 439
        self.input_size = [2, 3, 5, 5, 5]  # NCDHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3, 3]

    def init_op_type(self):
440 441
        self.use_cudnn = True
        self.op_type = "conv3d_transpose"
C
chengduoZH 已提交
442 443


444 445
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
class TestCUDNNWithGroups(TestWithGroups):
    def init_test_case(self):
        self.pad = [1, 1, 1]
        self.stride = [1, 1, 1]
        self.dilations = [1, 1, 1]
        self.groups = 2
        self.input_size = [2, 4, 5, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 3, 3, 3, 3]

    def init_op_type(self):
        self.use_cudnn = True
        self.op_type = "conv3d_transpose"


461 462
# Please Don't remove the following code.
# Currently, CI use cudnn V5.0 which not support dilation conv.
463
# class TestCUDNNWithDilation(TestWithDilation):
C
chengduoZH 已提交
464 465 466 467 468 469 470 471 472
#     def init_test_case(self):
#         self.pad = [1, 1, 1]
#         self.stride = [2, 2, 2]
#         self.dilations = [2, 2, 2]
#         self.input_size = [2, 3, 5, 5, 5]  # NCDHW
#         f_c = self.input_size[1]
#         self.filter_size = [f_c, 6, 3, 3, 3]
#
#     def init_op_type(self):
473
#         self.op_type = "conv3d_transpose"
C
chengduoZH 已提交
474

475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691

@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestCUDNN_NHWC(TestConv3dTransposeOp):
    def init_test_case(self):
        self.pad = [0, 0, 0]
        self.stride = [1, 1, 1]
        self.dilations = [1, 1, 1]
        self.groups = 1
        self.input_size = [2, 5, 5, 5, 3]  # NDHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 3, 3, 3]
        self.data_format = 'NHWC'

    def init_op_type(self):
        self.use_cudnn = True
        self.op_type = "conv3d_transpose"


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestCUDNNWithSymmetricPad_NHWC(TestWithSymmetricPad):
    def init_test_case(self):
        self.pad = [1, 1, 1]
        self.stride = [1, 1, 1]
        self.dilations = [1, 1, 1]
        self.groups = 1
        self.input_size = [2, 5, 5, 5, 3]  # NDHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 3, 3, 3]
        self.data_format = 'NHWC'

    def init_op_type(self):
        self.use_cudnn = True
        self.op_type = "conv3d_transpose"


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestCUDNNWithAsymmetricPad_NHWC(TestWithAsymmetricPad):
    def init_test_case(self):
        self.pad = [1, 0, 1, 0, 0, 2]
        self.stride = [1, 1, 1]
        self.dilations = [1, 1, 1]
        self.groups = 1
        self.input_size = [2, 5, 5, 5, 3]  # NDHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 3, 3, 3]
        self.data_format = 'NHWC'

    def init_op_type(self):
        self.use_cudnn = True
        self.op_type = "conv3d_transpose"


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestCUDNNWithStride_NHWC(TestWithStride):
    def init_test_case(self):
        self.pad = [1, 1, 1]
        self.stride = [2, 2, 2]
        self.dilations = [1, 1, 1]
        self.groups = 1
        self.input_size = [2, 5, 5, 5, 3]  # NCDHW
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 3, 3, 3]
        self.data_format = 'NHWC'

    def init_op_type(self):
        self.use_cudnn = True
        self.op_type = "conv3d_transpose"


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestCUDNNWithGroups_NHWC(TestWithGroups):
    def init_test_case(self):
        self.pad = [1, 1, 1]
        self.stride = [1, 1, 1]
        self.dilations = [1, 1, 1]
        self.groups = 2
        self.input_size = [2, 5, 5, 5, 4]  # NCHW
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 3, 3, 3, 3]
        self.data_format = 'NHWC'

    def init_op_type(self):
        self.use_cudnn = True
        self.op_type = "conv3d_transpose"


class TestConv3dTransposeAPI(OpTest):
    def test_case1(self):
        data1 = fluid.layers.data(
            name='data1', shape=[3, 5, 5, 5], dtype='float32')
        data2 = fluid.layers.data(
            name='data2', shape=[5, 5, 5, 3], dtype='float32')

        out1 = fluid.layers.conv3d_transpose(
            input=data1,
            groups=1,
            num_filters=6,
            filter_size=3,
            data_format='NCDHW')
        out2 = fluid.layers.conv3d_transpose(
            input=data2,
            groups=1,
            num_filters=6,
            filter_size=3,
            data_format='NDHWC')
        out3 = fluid.layers.conv3d_transpose(
            input=data1,
            groups=1,
            num_filters=6,
            filter_size=3,
            padding=[[0, 0], [0, 0], [1, 1], [0, 0], [1, 1]],
            data_format='NCDHW')
        out4 = fluid.layers.conv3d_transpose(
            input=data2,
            groups=3,
            num_filters=6,
            filter_size=3,
            padding=[[0, 0], [0, 0], [1, 1], [1, 2], [0, 0]],
            data_format='NDHWC')
        out5 = fluid.layers.conv3d_transpose(
            input=data2,
            groups=1,
            num_filters=6,
            filter_size=3,
            padding='SAME',
            data_format='NCDHW')
        out6 = fluid.layers.conv3d_transpose(
            input=data2,
            groups=1,
            num_filters=6,
            filter_size=3,
            padding='VALID',
            data_format='NDHWC')
        out7 = fluid.layers.conv3d_transpose(
            input=data2,
            groups=1,
            num_filters=6,
            output_size=[7, 7, 7],
            padding=[0, 0, 0],
            data_format='NDHWC')

        data1_np = np.random.random((2, 3, 5, 5, 5)).astype("float32")
        data2_np = np.random.random((2, 5, 5, 5, 3)).astype("float32")

        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        results = exe.run(
            fluid.default_main_program(),
            feed={"data1": data1_np,
                  "data2": data2_np},
            fetch_list=[out1, out2, out3, out4, out5, out6, out7],
            return_numpy=True)
        self.assertIsNotNone(results[0])
        self.assertIsNotNone(results[1])
        self.assertIsNotNone(results[2])
        self.assertIsNotNone(results[3])
        self.assertIsNotNone(results[4])
        self.assertIsNotNone(results[5])
        self.assertIsNotNone(results[6])


class TestConv3dTransposeOpException(OpTest):
    def test_exception(self):
        data = fluid.layers.data(
            name='data', shape=[3, 5, 5, 5], dtype="float32")

        def attr_data_format():
            out = fluid.layers.conv2d_transpose(
                input=data,
                groups=1,
                num_filters=6,
                filter_size=3,
                data_format="NCDW")

        self.assertRaises(ValueError, attr_data_format)

        def attr_padding_str():
            out = fluid.layers.conv2d_transpose(
                input=data,
                groups=1,
                num_filters=6,
                filter_size=3,
                padding='Vald')

        self.assertRaises(ValueError, attr_padding_str)

        def attr_padding_list():
            out = fluid.layers.conv2d_transpose(
                input=data,
                groups=1,
                num_filters=6,
                filter_size=3,
                padding=[[1, 1], [1, 1], [0, 0], [0, 0], [1, 1]])

        self.assertRaises(ValueError, attr_padding_list)

        def attr_padding_with_data_format():
            out = fluid.layers.conv2d_transpose(
                input=data,
                groups=1,
                num_filters=6,
                filter_size=3,
                padding=[[1, 1], [0, 0], [0, 0], [1, 0], [1, 1]],
                data_format='NDHWC')

        self.assertRaises(ValueError, attr_padding_with_data_format)


C
chengduoZH 已提交
692 693
if __name__ == '__main__':
    unittest.main()