test_conv3d_transpose_op.py 22.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

C
chengduoZH 已提交
17 18
import unittest
import numpy as np
19

20
import paddle.fluid.core as core
21
import paddle.fluid as fluid
22
from op_test import OpTest
C
chengduoZH 已提交
23 24


C
chengduoZH 已提交
25
def conv3dtranspose_forward_naive(input_, filter_, attrs):
26 27 28 29 30 31 32 33
    padding_algorithm = attrs['padding_algorithm']
    if padding_algorithm not in ["SAME", "VALID", "EXPLICIT"]:
        raise ValueError("Unknown Attr(padding_algorithm): '%s'. "
                         "It can only be 'SAME' or 'VALID'." %
                         str(padding_algorithm))

    if attrs['data_format'] == 'NHWC':
        input_ = np.transpose(input_, [0, 4, 1, 2, 3])
C
chengduoZH 已提交
34
    in_n, in_c, in_d, in_h, in_w = input_.shape
35 36
    f_c, f_out_c, f_d, f_h, f_w = filter_.shape
    groups = attrs['groups']
C
chengduoZH 已提交
37
    assert in_c == f_c
38
    out_c = f_out_c * groups
M
minqiyang 已提交
39
    sub_in_c = in_c // groups
C
chengduoZH 已提交
40

C
chengduoZH 已提交
41 42 43
    stride, pad, dilations = attrs['strides'], attrs['paddings'], attrs[
        'dilations']

44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
    def _get_padding_with_SAME(input_shape, kernel_size, kernel_stride):
        padding = []
        for input_size, filter_size, stride_size in zip(
                input_shape, kernel_size, kernel_stride):
            out_size = int((input_size + stride_size - 1) / stride_size)
            pad_sum = np.max((
                (out_size - 1) * stride_size + filter_size - input_size, 0))
            pad_0 = int(pad_sum / 2)
            pad_1 = int(pad_sum - pad_0)
            padding.append(pad_0)
            padding.append(pad_1)
        return padding

    ksize = filter_.shape[2:5]
    if padding_algorithm == "VALID":
        pad = [0, 0, 0, 0, 0, 0]
    elif padding_algorithm == "SAME":
        dilation = [1, 1, 1]
        input_data_shape = []
        if attrs['data_format'] == "NCHW":
            input_data_shape = input_.shape[2:5]
        elif attrs['data_format'] == "NHWC":
            input_data_shape = input_.shape[1:4]
        pad = _get_padding_with_SAME(input_data_shape, ksize, stride)

    pad_d_0, pad_d_1 = pad[0], pad[0]
    pad_h_0, pad_h_1 = pad[1], pad[1]
    pad_w_0, pad_w_1 = pad[2], pad[2]
    if len(pad) == 6:
        pad_d_0, pad_d_1 = pad[0], pad[1]
        pad_h_0, pad_h_1 = pad[2], pad[3]
        pad_w_0, pad_w_1 = pad[4], pad[5]

C
chengduoZH 已提交
77 78 79 80 81 82
    d_bolck_d = dilations[0] * (f_d - 1) + 1
    d_bolck_h = dilations[1] * (f_h - 1) + 1
    d_bolck_w = dilations[2] * (f_w - 1) + 1
    out_d = (in_d - 1) * stride[0] + d_bolck_d
    out_h = (in_h - 1) * stride[1] + d_bolck_h
    out_w = (in_w - 1) * stride[2] + d_bolck_w
C
chengduoZH 已提交
83 84 85 86 87 88
    out = np.zeros((in_n, out_c, out_d, out_h, out_w))

    for n in range(in_n):
        for d in range(in_d):
            for i in range(in_h):
                for j in range(in_w):
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
                    for g in range(groups):
                        input_masked = input_[n, g * sub_in_c:(g + 1
                                                               ) * sub_in_c, d,
                                              i, j]  # (c)
                        input_masked = np.reshape(input_masked,
                                                  (sub_in_c, 1, 1, 1))
                        input_masked = np.tile(input_masked, (1, f_d, f_h, f_w))

                        for k in range(f_out_c):
                            tmp_out = np.sum(input_masked * filter_[
                                g * sub_in_c:(g + 1) * sub_in_c, k, :, :, :],
                                             axis=0)
                            d1, d2 = d * stride[0], d * stride[0] + d_bolck_d
                            i1, i2 = i * stride[1], i * stride[1] + d_bolck_h
                            j1, j2 = j * stride[2], j * stride[2] + d_bolck_w
                            out[n, g * f_out_c + k, d1:d2:dilations[0], i1:i2:
                                dilations[1], j1:j2:dilations[2]] += tmp_out
C
chengduoZH 已提交
106

107 108 109 110
    out = out[:, :, pad_d_0:out_d - pad_d_1, pad_h_0:out_h - pad_h_1, pad_w_0:
              out_w - pad_w_1]
    if attrs['data_format'] == 'NHWC':
        out = np.transpose(out, [0, 2, 3, 4, 1])
C
chengduoZH 已提交
111 112 113 114 115 116
    return out


class TestConv3dTransposeOp(OpTest):
    def setUp(self):
        # init as conv transpose
117
        self.use_cudnn = False
118 119 120
        self.data_format = 'NCHW'
        self.pad = [0, 0, 0]
        self.padding_algorithm = "EXPLICIT"
C
chengduoZH 已提交
121 122 123 124 125 126 127 128 129 130
        self.init_op_type()
        self.init_test_case()

        input_ = np.random.random(self.input_size).astype("float32")
        filter_ = np.random.random(self.filter_size).astype("float32")

        self.inputs = {'Input': input_, 'Filter': filter_}
        self.attrs = {
            'strides': self.stride,
            'paddings': self.pad,
131
            'padding_algorithm': self.padding_algorithm,
132
            'dilations': self.dilations,
133
            'groups': self.groups,
134
            'use_cudnn': self.use_cudnn,
135
            'data_format': self.data_format
C
chengduoZH 已提交
136
        }
C
chengduoZH 已提交
137 138 139 140

        output = conv3dtranspose_forward_naive(input_, filter_,
                                               self.attrs).astype("float32")

C
chengduoZH 已提交
141 142 143
        self.outputs = {'Output': output}

    def test_check_output(self):
144 145 146 147 148
        if self.use_cudnn:
            place = core.CUDAPlace(0)
            self.check_output_with_place(place, atol=1e-5)
        else:
            self.check_output()
C
chengduoZH 已提交
149 150

    def test_check_grad(self):
151 152 153 154 155 156 157 158 159 160
        if self.use_cudnn:
            place = core.CUDAPlace(0)
            self.check_grad_with_place(
                place,
                set(['Input', 'Filter']),
                'Output',
                max_relative_error=0.03)
        else:
            self.check_grad(
                set(['Input', 'Filter']), 'Output', max_relative_error=0.03)
C
chengduoZH 已提交
161 162

    def test_check_grad_no_filter(self):
163 164 165 166 167 168 169 170 171 172 173 174 175
        if self.use_cudnn:
            place = core.CUDAPlace(0)
            self.check_grad_with_place(
                place, ['Input'],
                'Output',
                max_relative_error=0.03,
                no_grad_set=set(['Filter']))
        else:
            self.check_grad(
                ['Input'],
                'Output',
                max_relative_error=0.03,
                no_grad_set=set(['Filter']))
C
chengduoZH 已提交
176 177

    def test_check_grad_no_input(self):
178 179 180 181 182 183 184 185 186 187 188 189 190
        if self.use_cudnn:
            place = core.CUDAPlace(0)
            self.check_grad_with_place(
                place, ['Filter'],
                'Output',
                max_relative_error=0.03,
                no_grad_set=set(['Input']))
        else:
            self.check_grad(
                ['Filter'],
                'Output',
                max_relative_error=0.03,
                no_grad_set=set(['Input']))
C
chengduoZH 已提交
191 192 193 194 195

    def init_test_case(self):
        self.pad = [0, 0, 0]
        self.stride = [1, 1, 1]
        self.dilations = [1, 1, 1]
196
        self.groups = 1
C
chengduoZH 已提交
197
        self.input_size = [2, 3, 5, 5, 5]  # NCDHW
C
chengduoZH 已提交
198 199 200 201
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3, 3]

    def init_op_type(self):
C
chengduoZH 已提交
202
        self.op_type = "conv3d_transpose"
C
chengduoZH 已提交
203 204


205
class TestWithSymmetricPad(TestConv3dTransposeOp):
C
chengduoZH 已提交
206 207 208 209
    def init_test_case(self):
        self.pad = [1, 1, 1]
        self.stride = [1, 1, 1]
        self.dilations = [1, 1, 1]
210
        self.groups = 1
C
chengduoZH 已提交
211 212 213 214 215
        self.input_size = [2, 3, 5, 5, 5]  # NCDHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3, 3]


216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
class TestWithAsymmetricPad(TestConv3dTransposeOp):
    def init_test_case(self):
        self.pad = [1, 0, 1, 0, 1, 2]
        self.stride = [1, 1, 1]
        self.dilations = [1, 1, 1]
        self.groups = 1
        self.input_size = [2, 3, 5, 5, 5]  # NCDHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3, 3]


class TestWithSAMEPad(TestConv3dTransposeOp):
    def init_test_case(self):
        self.stride = [1, 1, 1]
        self.dilations = [1, 1, 1]
        self.groups = 1
        self.input_size = [2, 3, 5, 5, 5]  # NCDHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3, 3]
        self.padding_algorithm = 'SAME'


class TestWithVALIDPad(TestConv3dTransposeOp):
    def init_test_case(self):
        self.stride = [1, 1, 1]
        self.dilations = [1, 1, 1]
        self.groups = 1
        self.input_size = [2, 3, 5, 5, 5]  # NCDHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3, 3]
        self.padding_algorithm = 'VALID'


249 250 251 252 253 254 255 256 257 258 259
class TestWithGroups(TestConv3dTransposeOp):
    def init_test_case(self):
        self.pad = [1, 1, 1]
        self.stride = [1, 1, 1]
        self.dilations = [1, 1, 1]
        self.groups = 2
        self.input_size = [2, 4, 5, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 3, 3, 3, 3]


C
chengduoZH 已提交
260 261 262 263 264
class TestWithStride(TestConv3dTransposeOp):
    def init_test_case(self):
        self.pad = [1, 1, 1]
        self.stride = [2, 2, 2]
        self.dilations = [1, 1, 1]
265
        self.groups = 1
C
chengduoZH 已提交
266 267 268 269 270
        self.input_size = [2, 3, 5, 5, 5]  # NCDHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3, 3]


C
chengduoZH 已提交
271 272 273 274 275
class TestWithDilation(TestConv3dTransposeOp):
    def init_test_case(self):
        self.pad = [1, 1, 1]
        self.stride = [1, 1, 1]
        self.dilations = [2, 2, 2]
276
        self.groups = 1
C
chengduoZH 已提交
277 278 279 280 281
        self.input_size = [2, 3, 5, 5, 5]  # NCDHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3, 3]


282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
class Test_NHWC(TestConv3dTransposeOp):
    def init_test_case(self):
        self.pad = [0, 0, 0]
        self.stride = [1, 1, 1]
        self.dilations = [1, 1, 1]
        self.groups = 1
        self.input_size = [2, 5, 5, 5, 3]  # NDHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 3, 3, 3]
        self.data_format = 'NHWC'


class TestWithSymmetricPad_NHWC(TestConv3dTransposeOp):
    def init_test_case(self):
        self.pad = [1, 1, 1]
        self.stride = [1, 1, 1]
        self.dilations = [1, 1, 1]
        self.groups = 1
        self.input_size = [2, 5, 5, 5, 3]  # NDHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 3, 3, 3]
        self.data_format = 'NHWC'


class TestWithAsymmetricPad_NHWC(TestConv3dTransposeOp):
    def init_test_case(self):
        self.pad = [1, 0, 1, 0, 1, 2]
        self.stride = [1, 1, 1]
        self.dilations = [1, 1, 1]
        self.groups = 1
        self.input_size = [2, 5, 5, 5, 3]  # NDHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 3, 3, 3]
        self.data_format = 'NHWC'


class TestWithGroups_NHWC(TestConv3dTransposeOp):
    def init_test_case(self):
        self.pad = [1, 1, 1]
        self.stride = [1, 1, 1]
        self.dilations = [1, 1, 1]
        self.groups = 2
        self.input_size = [2, 5, 5, 5, 4]  # NDHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 3, 3, 3, 3]
        self.data_format = 'NHWC'


class TestWithStride_NHWC(TestConv3dTransposeOp):
    def init_test_case(self):
        self.pad = [1, 1, 1]
        self.stride = [2, 2, 2]
        self.dilations = [1, 1, 1]
        self.groups = 1
        self.input_size = [2, 5, 5, 5, 3]  # NCDHW
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 3, 3, 3]
        self.data_format = 'NHWC'


class TestWithDilation_NHWC(TestConv3dTransposeOp):
    def init_test_case(self):
        self.pad = [1, 1, 1]
        self.stride = [1, 1, 1]
        self.dilations = [2, 2, 2]
        self.groups = 1
        self.input_size = [2, 5, 5, 5, 3]  # NCDHW
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 3, 3, 3]
        self.data_format = 'NHWC'


C
chengduoZH 已提交
354
# ------------ test_cudnn ------------
355 356
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
357
class TestCUDNN(TestConv3dTransposeOp):
C
chengduoZH 已提交
358
    def init_op_type(self):
359 360
        self.use_cudnn = True
        self.op_type = "conv3d_transpose"
C
chengduoZH 已提交
361 362


363 364
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
365
class TestCUDNNWithSymmetricPad(TestWithSymmetricPad):
C
chengduoZH 已提交
366 367 368 369
    def init_test_case(self):
        self.pad = [1, 1, 1]
        self.stride = [1, 1, 1]
        self.dilations = [1, 1, 1]
370
        self.groups = 1
C
chengduoZH 已提交
371 372 373 374 375
        self.input_size = [2, 3, 5, 5, 5]  # NCDHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3, 3]

    def init_op_type(self):
376 377
        self.use_cudnn = True
        self.op_type = "conv3d_transpose"
C
chengduoZH 已提交
378 379


380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestCUDNNWithAsymmetricPad(TestWithAsymmetricPad):
    def init_test_case(self):
        self.pad = [1, 1, 1, 0, 0, 2]
        self.stride = [1, 1, 1]
        self.dilations = [1, 1, 1]
        self.groups = 1
        self.input_size = [2, 3, 4, 4, 4]  # NCDHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3, 3]

    def init_op_type(self):
        self.use_cudnn = True
        self.op_type = "conv3d_transpose"


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestCUDNNWithSAMEPad(TestWithSAMEPad):
    def init_test_case(self):
        self.stride = [1, 1, 1]
        self.dilations = [1, 1, 1]
        self.groups = 1
        self.input_size = [2, 3, 5, 5, 5]  # NCDHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3, 3]
        self.padding_algorithm = 'SAME'

    def init_op_type(self):
        self.use_cudnn = True
        self.op_type = "conv3d_transpose"


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestCUDNNWithVALIDPad(TestWithVALIDPad):
    def init_test_case(self):
        self.stride = [1, 1, 1]
        self.dilations = [1, 1, 1]
        self.groups = 1
        self.input_size = [2, 3, 5, 5, 5]  # NCDHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3, 3]
        self.padding_algorithm = 'VALID'

    def init_op_type(self):
        self.use_cudnn = True
        self.op_type = "conv3d_transpose"


431 432
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
433
class TestCUDNNWithStride(TestWithStride):
C
chengduoZH 已提交
434 435 436 437
    def init_test_case(self):
        self.pad = [1, 1, 1]
        self.stride = [2, 2, 2]
        self.dilations = [1, 1, 1]
438
        self.groups = 1
C
chengduoZH 已提交
439 440 441 442 443
        self.input_size = [2, 3, 5, 5, 5]  # NCDHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3, 3]

    def init_op_type(self):
444 445
        self.use_cudnn = True
        self.op_type = "conv3d_transpose"
C
chengduoZH 已提交
446 447


448 449
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
class TestCUDNNWithGroups(TestWithGroups):
    def init_test_case(self):
        self.pad = [1, 1, 1]
        self.stride = [1, 1, 1]
        self.dilations = [1, 1, 1]
        self.groups = 2
        self.input_size = [2, 4, 5, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 3, 3, 3, 3]

    def init_op_type(self):
        self.use_cudnn = True
        self.op_type = "conv3d_transpose"


465 466
# Please Don't remove the following code.
# Currently, CI use cudnn V5.0 which not support dilation conv.
467
# class TestCUDNNWithDilation(TestWithDilation):
C
chengduoZH 已提交
468 469 470 471 472 473 474 475 476
#     def init_test_case(self):
#         self.pad = [1, 1, 1]
#         self.stride = [2, 2, 2]
#         self.dilations = [2, 2, 2]
#         self.input_size = [2, 3, 5, 5, 5]  # NCDHW
#         f_c = self.input_size[1]
#         self.filter_size = [f_c, 6, 3, 3, 3]
#
#     def init_op_type(self):
477
#         self.op_type = "conv3d_transpose"
C
chengduoZH 已提交
478

479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695

@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestCUDNN_NHWC(TestConv3dTransposeOp):
    def init_test_case(self):
        self.pad = [0, 0, 0]
        self.stride = [1, 1, 1]
        self.dilations = [1, 1, 1]
        self.groups = 1
        self.input_size = [2, 5, 5, 5, 3]  # NDHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 3, 3, 3]
        self.data_format = 'NHWC'

    def init_op_type(self):
        self.use_cudnn = True
        self.op_type = "conv3d_transpose"


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestCUDNNWithSymmetricPad_NHWC(TestWithSymmetricPad):
    def init_test_case(self):
        self.pad = [1, 1, 1]
        self.stride = [1, 1, 1]
        self.dilations = [1, 1, 1]
        self.groups = 1
        self.input_size = [2, 5, 5, 5, 3]  # NDHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 3, 3, 3]
        self.data_format = 'NHWC'

    def init_op_type(self):
        self.use_cudnn = True
        self.op_type = "conv3d_transpose"


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestCUDNNWithAsymmetricPad_NHWC(TestWithAsymmetricPad):
    def init_test_case(self):
        self.pad = [1, 0, 1, 0, 0, 2]
        self.stride = [1, 1, 1]
        self.dilations = [1, 1, 1]
        self.groups = 1
        self.input_size = [2, 5, 5, 5, 3]  # NDHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 3, 3, 3]
        self.data_format = 'NHWC'

    def init_op_type(self):
        self.use_cudnn = True
        self.op_type = "conv3d_transpose"


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestCUDNNWithStride_NHWC(TestWithStride):
    def init_test_case(self):
        self.pad = [1, 1, 1]
        self.stride = [2, 2, 2]
        self.dilations = [1, 1, 1]
        self.groups = 1
        self.input_size = [2, 5, 5, 5, 3]  # NCDHW
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 3, 3, 3]
        self.data_format = 'NHWC'

    def init_op_type(self):
        self.use_cudnn = True
        self.op_type = "conv3d_transpose"


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestCUDNNWithGroups_NHWC(TestWithGroups):
    def init_test_case(self):
        self.pad = [1, 1, 1]
        self.stride = [1, 1, 1]
        self.dilations = [1, 1, 1]
        self.groups = 2
        self.input_size = [2, 5, 5, 5, 4]  # NCHW
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 3, 3, 3, 3]
        self.data_format = 'NHWC'

    def init_op_type(self):
        self.use_cudnn = True
        self.op_type = "conv3d_transpose"


class TestConv3dTransposeAPI(OpTest):
    def test_case1(self):
        data1 = fluid.layers.data(
            name='data1', shape=[3, 5, 5, 5], dtype='float32')
        data2 = fluid.layers.data(
            name='data2', shape=[5, 5, 5, 3], dtype='float32')

        out1 = fluid.layers.conv3d_transpose(
            input=data1,
            groups=1,
            num_filters=6,
            filter_size=3,
            data_format='NCDHW')
        out2 = fluid.layers.conv3d_transpose(
            input=data2,
            groups=1,
            num_filters=6,
            filter_size=3,
            data_format='NDHWC')
        out3 = fluid.layers.conv3d_transpose(
            input=data1,
            groups=1,
            num_filters=6,
            filter_size=3,
            padding=[[0, 0], [0, 0], [1, 1], [0, 0], [1, 1]],
            data_format='NCDHW')
        out4 = fluid.layers.conv3d_transpose(
            input=data2,
            groups=3,
            num_filters=6,
            filter_size=3,
            padding=[[0, 0], [0, 0], [1, 1], [1, 2], [0, 0]],
            data_format='NDHWC')
        out5 = fluid.layers.conv3d_transpose(
            input=data2,
            groups=1,
            num_filters=6,
            filter_size=3,
            padding='SAME',
            data_format='NCDHW')
        out6 = fluid.layers.conv3d_transpose(
            input=data2,
            groups=1,
            num_filters=6,
            filter_size=3,
            padding='VALID',
            data_format='NDHWC')
        out7 = fluid.layers.conv3d_transpose(
            input=data2,
            groups=1,
            num_filters=6,
            output_size=[7, 7, 7],
            padding=[0, 0, 0],
            data_format='NDHWC')

        data1_np = np.random.random((2, 3, 5, 5, 5)).astype("float32")
        data2_np = np.random.random((2, 5, 5, 5, 3)).astype("float32")

        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        results = exe.run(
            fluid.default_main_program(),
            feed={"data1": data1_np,
                  "data2": data2_np},
            fetch_list=[out1, out2, out3, out4, out5, out6, out7],
            return_numpy=True)
        self.assertIsNotNone(results[0])
        self.assertIsNotNone(results[1])
        self.assertIsNotNone(results[2])
        self.assertIsNotNone(results[3])
        self.assertIsNotNone(results[4])
        self.assertIsNotNone(results[5])
        self.assertIsNotNone(results[6])


class TestConv3dTransposeOpException(OpTest):
    def test_exception(self):
        data = fluid.layers.data(
            name='data', shape=[3, 5, 5, 5], dtype="float32")

        def attr_data_format():
            out = fluid.layers.conv2d_transpose(
                input=data,
                groups=1,
                num_filters=6,
                filter_size=3,
                data_format="NCDW")

        self.assertRaises(ValueError, attr_data_format)

        def attr_padding_str():
            out = fluid.layers.conv2d_transpose(
                input=data,
                groups=1,
                num_filters=6,
                filter_size=3,
                padding='Vald')

        self.assertRaises(ValueError, attr_padding_str)

        def attr_padding_list():
            out = fluid.layers.conv2d_transpose(
                input=data,
                groups=1,
                num_filters=6,
                filter_size=3,
                padding=[[1, 1], [1, 1], [0, 0], [0, 0], [1, 1]])

        self.assertRaises(ValueError, attr_padding_list)

        def attr_padding_with_data_format():
            out = fluid.layers.conv2d_transpose(
                input=data,
                groups=1,
                num_filters=6,
                filter_size=3,
                padding=[[1, 1], [0, 0], [0, 0], [1, 0], [1, 1]],
                data_format='NDHWC')

        self.assertRaises(ValueError, attr_padding_with_data_format)


C
chengduoZH 已提交
696 697
if __name__ == '__main__':
    unittest.main()