data_transfer.cc 26.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/framework/new_executor/data_transfer.h"
16

17
#include "paddle/fluid/framework/convert_utils.h"
18 19
#include "paddle/phi/core/kernel_context.h"
#include "paddle/phi/core/kernel_factory.h"
20

21 22 23 24
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/phi/backends/onednn/onednn_context.h"
#endif

25 26 27 28 29 30 31 32 33
namespace paddle {
namespace framework {
namespace interpreter {

bool DataTranferHelper::apply(const OpKernelType& kernel_type_for_var,
                              const OpKernelType& expected_kernel_key,
                              const std::string& var_name,
                              std::string* new_var_name,
                              std::vector<OpFuncNode>* op_func_nodes,
34 35
                              bool use_local_scope,
                              bool is_fetch_v2) {
36 37 38 39 40
  bool is_transferred = false;
  auto* src_var_name = &var_name;

  // 1. layout transform
  if (need_layout_transform(kernel_type_for_var, expected_kernel_key)) {
41 42 43 44 45
    auto op = TransferLayout(*src_var_name,
                             new_var_name,
                             kernel_type_for_var.data_layout_,
                             expected_kernel_key.data_layout_,
                             var_scope_,
46
                             scope_,
47
                             is_fetch_v2);
L
Leo Chen 已提交
48
    if (op) {
49 50
      RunAndConstructOpFuncNode(
          op, *src_var_name, *new_var_name, op_func_nodes);
L
Leo Chen 已提交
51
    }
52 53 54 55 56 57
    // update src_var_name
    src_var_name = new_var_name;
    is_transferred = true;
  }
  // 2. dype transform
  if (need_dtype_transform(kernel_type_for_var, expected_kernel_key)) {
58 59 60 61 62
    auto op = TransferDtype(*src_var_name,
                            new_var_name,
                            kernel_type_for_var.data_type_,
                            expected_kernel_key.data_type_,
                            var_scope_,
63
                            scope_);
L
Leo Chen 已提交
64
    if (op) {
65 66
      RunAndConstructOpFuncNode(
          op, *src_var_name, *new_var_name, op_func_nodes);
L
Leo Chen 已提交
67
    }
68 69 70 71 72 73 74 75
    // update src_var_name
    src_var_name = new_var_name;
    is_transferred = true;
  }
  // 3. device transform
  if (need_device_transform(kernel_type_for_var, expected_kernel_key)) {
    auto src_place = kernel_type_for_var.place_;
    auto dst_place = expected_kernel_key.place_;
L
Leo Chen 已提交
76

77 78
    auto op = TransferDevice(
        *src_var_name, new_var_name, src_place, dst_place, var_scope_, scope_);
L
Leo Chen 已提交
79
    if (op) {
80 81
      RunAndConstructOpFuncNode(
          op, *src_var_name, *new_var_name, op_func_nodes);
L
Leo Chen 已提交
82
    }
83 84 85 86 87
    is_transferred = true;
  }
  return is_transferred;
}

88
void DataTranferHelper::RunAndConstructShareNode(
89 90
    const std::string& src_var_name,
    const std::string& dst_var_name,
91 92 93 94 95 96 97 98 99 100
    std::vector<OpFuncNode>* op_func_nodes) {
  VariableNameMap in_name_map = {{"X", {src_var_name}}};
  VariableNameMap out_name_map = {{"Out", {dst_var_name}}};
  AttributeMap attr_map;

  std::string op_type("share_data");
  auto& op_info = OpInfoMap::Instance().Get(op_type);
  auto op = std::shared_ptr<OperatorBase>(
      op_info.Creator()(op_type, in_name_map, out_name_map, attr_map));

101 102
  VLOG(3) << string::Sprintf(
      "Insert %s with %s -> %s.", op_type, src_var_name, dst_var_name);
103 104 105 106

  RunAndConstructOpFuncNode(op, src_var_name, dst_var_name, op_func_nodes);
}

107
void DataTranferHelper::RunAndConstructOpFuncNode(
108 109
    const std::shared_ptr<OperatorBase>& op,
    const std::string& var_name,
110 111 112 113 114 115
    const std::string& new_var_name,
    std::vector<OpFuncNode>* new_op_func_nodes) {
  auto& op_type = op->Type();

  // 1. Construct RuntimeContext
  RuntimeContext runtime_context({}, {});
116 117
  runtime_context.inputs["X"] = {scope_->FindVar(var_name)};
  runtime_context.outputs["Out"] = {scope_->Var(new_var_name)};
118
  InterpretercoreInferShapeContext infer_shape_ctx(*op, runtime_context);
119
  op.get()->Info().infer_shape_(&infer_shape_ctx);
120 121 122 123 124 125 126 127 128 129 130

  // 2. choose kernel

  // prepare a ptr to OperatorWithKernel
  OperatorBase* op_ptr = op.get();
  if (dynamic_cast<framework::OperatorWithKernel*>(op_ptr) == nullptr) {
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "%s should be OperatorWithKernel type.", op_ptr->Type()));
  }
  auto op_with_kernel = static_cast<framework::OperatorWithKernel*>(op_ptr);

131 132
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
  auto* dev_ctx = pool.Get(place_);
133 134 135 136 137 138 139 140 141
  auto exec_ctx = ExecutionContext(*op, Scope(), *dev_ctx, runtime_context);
  auto expected_kernel_key = op_with_kernel->GetExpectedKernelType(exec_ctx);

  VLOG(6) << "expected_kernel_key " << expected_kernel_key << "\n";
  VLOG(6) << "op_with_kernel Type() " << op_with_kernel->Type() << "\n";

  bool run_phi_kernel = false;

  // check if phi kernel exists
142 143
  if (phi::KernelFactory::Instance().HasCompatiblePhiKernel(
          op_with_kernel->Type())) {
144 145 146
    auto phi_kernel_key = op_with_kernel->ChoosePhiKernel(exec_ctx);
    VLOG(6) << "phi_kernel_key " << phi_kernel_key << "\n";

147 148 149
    if (op_with_kernel->PhiKernel()->IsValid()) {
      run_phi_kernel = true;
    }
150
  }
151 152 153 154 155

  // 3. Execute transfer op and construct OpFuncNode
  OpFuncNode new_op_func_node;
  new_op_func_node.input_index["X"] = {var_scope_->VarId(var_name)};
  new_op_func_node.output_index["Out"] = {var_scope_->VarId(new_var_name)};
156 157 158 159 160 161 162 163 164 165 166 167 168

  if (!run_phi_kernel) {
    op_with_kernel->ChooseKernel(exec_ctx);
    new_op_func_node.kernel_func_ = *op_with_kernel->kernel_func();
    new_op_func_node.kernel_func_(exec_ctx);
  } else {
    new_op_func_node.phi_kernel_ = op_with_kernel->PhiKernel();
    phi::KernelContext phi_kernel_context;
    op_with_kernel->BuildPhiKernelContext(
        runtime_context, dev_ctx, &phi_kernel_context);
    (*new_op_func_node.phi_kernel_)(&phi_kernel_context);
  }

169 170 171
  // NOTE(winter-wang): in npu device, D2H kernel is asynchronous. need to
  // explicit synchronization.
#ifdef PADDLE_WITH_ASCEND_CL
172 173 174 175 176 177
  if (op_type == kMemcpyD2H && platform::is_npu_place(dev_ctx->GetPlace())) {
    dev_ctx->Wait();
  }
#endif
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  if (op_type == kMemcpyD2H && platform::is_custom_place(dev_ctx->GetPlace())) {
178 179 180
    dev_ctx->Wait();
  }
#endif
181 182 183 184 185 186 187 188 189 190
  // NOTE(Aurelius84): data_transform_op is expensive operation, so we tag them
  // as kQueueSync and execute them in thread pool.
  new_op_func_node.type_ = OpFuncType::kQueueSync;
  new_op_func_node.dev_ctx_ = dev_ctx;
  new_op_func_node.operator_base_ = op;
  VLOG(3) << "Run " << op_type << " done.";

  new_op_func_nodes->emplace_back(std::move(new_op_func_node));
}

L
Leo Chen 已提交
191 192 193 194 195 196 197 198 199 200 201 202 203
// Var is initialized && var contains tensor && tensor is initialized
bool IsTensorOfVarInitialized(Variable* var) {
  if (var->IsInitialized()) {
    if (var->IsType<LoDTensor>() || var->IsType<phi::SelectedRows>()) {
      return GetLoDTensorOrSelectedRowsValueFromVar(*var)->IsInitialized();
    } else if (var->IsType<LoDTensorArray>()) {
      return static_cast<const Tensor*>(&(var->Get<LoDTensorArray>()[0]))
          ->IsInitialized();
    }
  }
  return false;
}

204 205 206 207 208 209 210
std::shared_ptr<OperatorBase> TransferLayout(const std::string& var_name,
                                             std::string* new_var_name,
                                             DataLayout in_layout,
                                             DataLayout out_layout,
                                             VariableScope* var_scope,
                                             framework::Scope* local_scope,
                                             bool is_fetch_v2) {
L
Leo Chen 已提交
211
#ifdef PADDLE_WITH_MKLDNN
212

L
Leo Chen 已提交
213 214 215
  // NOTE(zhiqiu): hot fix, follow the same logic in DataCopy() in fetch_op.cc
  if (in_layout == framework::DataLayout::kMKLDNN &&
      var_name == framework::GradVarName("Filter") && is_fetch_v2) {
216
    VLOG(4) << "Match special case(Filter && fetch_v2) " << var_name;
L
Leo Chen 已提交
217 218
    out_layout = framework::DataLayout::kNCHW;
  }
219

220 221
  if (in_layout == framework::DataLayout::ONEDNN &&
      out_layout != framework::DataLayout::ONEDNN) {
222
    auto target_layout = phi::OneDNNContext::tls().get_cur_paddle_data_layout();
223
    VLOG(4) << "TransDataLayoutFromOneDNN: " << in_layout << "->"
224 225 226 227 228 229 230 231 232
            << target_layout;

    if (out_layout == DataLayout::kNCHW &&
        var_name == framework::GradVarName("Filter")) {
      VLOG(4) << "Match special case(Filter) " << var_name;
      target_layout = out_layout;
    }
    out_layout = target_layout;
  }
L
Leo Chen 已提交
233 234
#endif

235
  // 1. Generate new_var_name and Initialize it
L
Leo Chen 已提交
236 237 238 239 240
  *new_var_name = var_name + "_layout_" +
                  std::to_string(static_cast<int>(in_layout)) + "_" +
                  std::to_string(static_cast<int>(out_layout));

  if (var_scope->HasVar(*new_var_name) &&
241
      IsTensorOfVarInitialized(local_scope->FindVar(*new_var_name))) {
L
Leo Chen 已提交
242 243 244 245
    // already has same var
    VLOG(4) << "Use cached variable: " << *new_var_name;
    return nullptr;
  }
246

L
Leo Chen 已提交
247
  auto* ptr = local_scope->Var(*new_var_name);
248
  auto var_type = local_scope->FindVar(var_name)->Type();
249
  InitializeVariable(ptr, static_cast<proto::VarType::Type>(var_type));
250 251 252
  VLOG(3) << "Create Variable " << *new_var_name
          << " locally, which pointer is " << ptr << "Variable Type "
          << var_type;
253 254
  var_scope->MutableDataTransferAddedVars().push_back(
      std::make_pair(*new_var_name, var_type));
255
  var_scope->AddVar(*new_var_name, nullptr);
256 257 258 259

  // 2. Construct VariableNameMap
  VariableNameMap in_name_map = {{"X", {var_name}}};
  VariableNameMap out_name_map = {{"Out", {*new_var_name}}};
260 261
  AttributeMap attr_map = {{"src_layout", static_cast<int>(in_layout)},
                           {"dst_layout", static_cast<int>(out_layout)}};
262

263
  // 3. Create transfer_layout_op
264 265 266 267 268
  std::string op_type("transfer_layout");
  auto& op_info = OpInfoMap::Instance().Get(op_type);
  auto op = std::shared_ptr<OperatorBase>(
      op_info.Creator()(op_type, in_name_map, out_name_map, attr_map));

269
  VLOG(3) << string::Sprintf("Insert %s for variable %s(%s) -> %s(%s).",
270 271 272 273
                             op_type,
                             var_name,
                             in_layout,
                             *new_var_name,
274
                             out_layout);
275 276 277 278 279 280 281
  return op;
}

std::shared_ptr<OperatorBase> TransferDtype(const std::string& var_name,
                                            std::string* new_var_name,
                                            proto::VarType::Type in_dtype,
                                            proto::VarType::Type out_dtype,
282
                                            framework::VariableScope* var_scope,
283 284
                                            framework::Scope* local_scope) {
  // 1. Generate new_var_name and Initialize it
L
Leo Chen 已提交
285 286 287 288
  *new_var_name = var_name + "_dtype_" +
                  std::to_string(static_cast<int>(in_dtype)) + "_" +
                  std::to_string(static_cast<int>(out_dtype));
  if (var_scope->HasVar(*new_var_name) &&
289
      IsTensorOfVarInitialized(local_scope->FindVar(*new_var_name))) {
L
Leo Chen 已提交
290 291 292 293
    // already has same var
    VLOG(4) << "Use cached variable: " << *new_var_name;
    return nullptr;
  }
294

L
Leo Chen 已提交
295
  auto* ptr = local_scope->Var(*new_var_name);
296
  auto var_type = local_scope->FindVar(var_name)->Type();
297
  InitializeVariable(ptr, static_cast<proto::VarType::Type>(var_type));
298 299 300
  VLOG(3) << "Create Variable " << *new_var_name
          << " locally, which pointer is " << ptr << "Variable Type "
          << var_type;
301 302
  var_scope->MutableDataTransferAddedVars().push_back(
      std::make_pair(*new_var_name, var_type));
303
  var_scope->AddVar(*new_var_name, nullptr);
304 305 306 307 308 309 310 311 312 313

  // 2. Construct VariableNameMap
  VariableNameMap in_name_map = {{"X", {var_name}}};
  VariableNameMap out_name_map = {{"Out", {*new_var_name}}};
  AttributeMap attr_map;
  attr_map["in_dtype"] = static_cast<int>(in_dtype);
  attr_map["out_dtype"] = static_cast<int>(out_dtype);
  // NOTE(Aurelius84): In whice case use_mkldnn = true?
  attr_map["use_mkldnn"] = false;

314
  // 3. Create transfer_dtype_op
315 316 317 318 319
  std::string op_type("transfer_dtype");
  auto& op_info = OpInfoMap::Instance().Get(op_type);
  auto op = std::shared_ptr<OperatorBase>(
      op_info.Creator()(op_type, in_name_map, out_name_map, attr_map));

320 321 322 323 324 325
  VLOG(3) << string::Sprintf("Insert %s with %s(%s) -> %s(%s).",
                             op_type,
                             var_name,
                             DataTypeToString(in_dtype),
                             *new_var_name,
                             DataTypeToString(out_dtype));
326 327 328 329 330 331 332 333 334 335
  return op;
}

std::shared_ptr<OperatorBase> TransferDevice(const std::string& var_name,
                                             std::string* new_var_name,
                                             const platform::Place& src_place,
                                             const platform::Place& dst_place,
                                             VariableScope* var_scope,
                                             framework::Scope* local_scope) {
  // 1. Generate new_var_name and Initialize it
L
Leo Chen 已提交
336 337 338
  *new_var_name = var_name + "_device_" + src_place.DebugString() + "_" +
                  dst_place.DebugString();

339
  if (var_scope->HasVar(*new_var_name) &&
340
      IsTensorOfVarInitialized(local_scope->FindVar(*new_var_name))) {
L
Leo Chen 已提交
341 342 343 344
    // already has same var
    VLOG(4) << "Use cached variable: " << *new_var_name;
    return nullptr;
  }
345

L
Leo Chen 已提交
346
  auto* ptr = local_scope->Var(*new_var_name);
347
  auto var_type = local_scope->FindVar(var_name)->Type();
348
  InitializeVariable(ptr, static_cast<proto::VarType::Type>(var_type));
349 350 351
  VLOG(3) << "Create Variable " << *new_var_name
          << " locally, which pointer is " << ptr << "Variable Type "
          << var_type;
352 353
  var_scope->MutableDataTransferAddedVars().push_back(
      std::make_pair(*new_var_name, var_type));
354
  var_scope->AddVar(*new_var_name, nullptr);
355 356 357 358 359

  // 2. Construct VariableNameMap
  VariableNameMap in_name_map = {{"X", {var_name}}};
  VariableNameMap out_name_map = {{"Out", {*new_var_name}}};

360
  // 3. Create memcpy_d2h_op or memcpy_h2d_op
361 362
  std::string op_type;
  AttributeMap attr_map;
363 364
  PADDLE_ENFORCE_EQ(platform::is_same_place(src_place, dst_place),
                    false,
365 366 367 368 369 370
                    platform::errors::PreconditionNotMet(
                        "Required src_place shall be different with dst_place, "
                        "but received same place: %s",
                        src_place));
  if (IsSupportedHetePlace(dst_place)) {
    op_type = kMemcpyH2D;
371 372 373 374 375 376
    int dst_place_type = platform::is_gpu_place(dst_place)      ? 0
                         : platform::is_npu_place(dst_place)    ? 1
                         : platform::is_ipu_place(dst_place)    ? 3
                         : platform::is_xpu_place(dst_place)    ? 2
                         : platform::is_custom_place(dst_place) ? 6
                                                                : -1;
377 378 379 380 381 382 383 384 385 386 387 388
    attr_map = {{"dst_place_type", dst_place_type}};
  } else if (IsSupportedHetePlace(src_place)) {
    op_type = kMemcpyD2H;
    int dst_place_type = platform::is_cpu_place(dst_place)           ? 0
                         : platform::is_cuda_pinned_place(dst_place) ? 1
                                                                     : -1;
    attr_map = {{"dst_place_type", dst_place_type}};
  } else {
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "Not support Memcpy typ : %s -> %s", src_place, dst_place));
  }

389 390 391 392
  auto& op_info = OpInfoMap::Instance().Get(op_type);
  auto op = std::shared_ptr<OperatorBase>(
      op_info.Creator()(op_type, in_name_map, out_name_map, attr_map));

393 394 395 396 397 398
  VLOG(3) << string::Sprintf("Insert %s with %s(%s) -> %s(%s).",
                             op_type,
                             var_name,
                             src_place,
                             *new_var_name,
                             dst_place);
399 400 401 402 403 404
  return op;
}

void ApplyDataTransform(const OpKernelType& expected_kernel_key,
                        const platform::Place& place,
                        VariableValueMap* ins_map_temp,
405
                        VariableValueMap* outs_map_temp,
406 407
                        VariableScope* var_scope,
                        OpFuncNode* op_func_node,
408 409
                        std::vector<OpFuncNode>* new_op_func_nodes,
                        bool use_local_scope) {
410 411 412
  Scope* local_scope = use_local_scope ? var_scope->GetMutableLocalScope()
                                       : var_scope->GetMutableScope();

413
  auto op_base = op_func_node->operator_base_.get();
414 415 416 417
  PADDLE_ENFORCE_NOT_NULL(op_base,
                          platform::errors::PreconditionNotMet(
                              "op_base is null, please pass a valid "
                              "op_base in apply_data_transform."));
418 419

  VariableNameMap new_ins(op_base->Inputs());
420
  VariableNameMap new_outs(op_base->Outputs());
421 422 423
  // record the no need transform variable index.
  std::unordered_set<int> no_data_transform_index;

L
Leo Chen 已提交
424 425 426
  const std::unordered_set<std::string>* no_buffer_ins = nullptr;
  auto& no_buffer_inferer = op_base->Info().NoNeedBufferVarsInferer();
  if (no_buffer_inferer) {
427 428
    no_buffer_ins = &(no_buffer_inferer(
        op_base->Inputs(), op_base->Outputs(), op_base->Attrs()));
L
Leo Chen 已提交
429 430 431 432 433
    if (no_buffer_ins->empty()) {
      no_buffer_ins = nullptr;
    }
  }

434
  bool transfered = false;
435
  DataTranferHelper data_transfer_helper(place, var_scope, local_scope);
436
  for (auto& var_name_item : *ins_map_temp) {
L
Leo Chen 已提交
437 438 439
    bool should_skip_input =
        no_buffer_ins && no_buffer_ins->count(var_name_item.first) > 0;

440 441
    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      auto var = var_name_item.second[i];
442
      auto var_name = new_ins[var_name_item.first].at(i);
443
      const Tensor* tensor_in;
L
Leo Chen 已提交
444 445 446
      std::string new_var_name;
      bool is_transferred = false;

447
      if (var->IsType<LoDTensor>() || var->IsType<phi::SelectedRows>()) {
448 449
        tensor_in = GetLoDTensorOrSelectedRowsValueFromVar(*var);
      } else if (var->IsType<LoDTensorArray>()) {
450 451 452
        if (var->Get<LoDTensorArray>().size() == 0) {
          continue;
        }
453 454 455
        tensor_in =
            static_cast<const Tensor*>(&(var->Get<LoDTensorArray>()[0]));
      } else {
456
        continue;
457
      }
L
Leo Chen 已提交
458
      // special case
459
      if (!tensor_in->IsInitialized()) {
L
Leo Chen 已提交
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
        if (should_skip_input == true) {
#ifdef PADDLE_WITH_MKLDNN
          // Var without buffer may be needed
          // for some situation like InferShape().
          // In this situation We cannot skip Var analysis, as
          // MKL-DNN shape of Var may differ from kNHWC Var
          // In such situation corressponding resized Var
          // has to be created and registered
          if ((tensor_in->layout() == DataLayout::kMKLDNN) &&
              (var->IsType<LoDTensor>() == true) &&
              (expected_kernel_key.data_layout_ != DataLayout::kMKLDNN) &&
              (paddle::platform::MKLDNNDeviceContext::tls()
                   .get_cur_paddle_data_layout() == DataLayout::kNHWC)) {
            VLOG(7) << "Created reshaped dummy input based on MKL-DNN Tensor , "
                       "but kNHWC layout"
                    << var_name_item.first << " in Operator "
                    << op_base->Type();
477 478 479 480 481 482 483
            auto op = TransferLayout(var_name,
                                     &new_var_name,
                                     tensor_in->layout(),
                                     DataLayout::kNHWC,
                                     var_scope,
                                     local_scope,
                                     op_base->Type() == "fetch_v2");
L
Leo Chen 已提交
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
            if (op) {
              data_transfer_helper.RunAndConstructOpFuncNode(
                  op, var_name, new_var_name, new_op_func_nodes);
            }
            is_transferred = true;
          } else {
            VLOG(7) << "Skip scanning input " << var_name_item.first
                    << " in Operator " << op_base->Type();
          }
#endif
        } else {
          continue;
        }
      } else {
        auto kernel_type_for_var =
            static_cast<const framework::OperatorWithKernel*>(op_base)
500 501
                ->GetKernelTypeForVar(
                    var_name_item.first, *tensor_in, expected_kernel_key);
L
Leo Chen 已提交
502
        // apply data transform
503 504 505 506 507 508 509 510
        is_transferred =
            data_transfer_helper.apply(kernel_type_for_var,
                                       expected_kernel_key,
                                       var_name,
                                       &new_var_name,
                                       new_op_func_nodes,
                                       use_local_scope,
                                       op_base->Type() == "fetch_v2");
511 512 513
      }

      if (is_transferred) {
514
        transfered = true;
515 516 517
        // update RuntimeContext.inputs and original op_func_node inputs
        op_func_node->input_index[var_name_item.first][i] =
            var_scope->VarId(new_var_name);
518
        var_name_item.second[i] = local_scope->FindVar(new_var_name);
519
        new_ins[var_name_item.first][i] = new_var_name;
520 521 522 523 524 525 526
        for (auto& pair : new_outs) {
          for (size_t j = 0; j < pair.second.size(); ++j) {
            VLOG(4) << pair.second[j] << " " << var_name;
            if (pair.second[j] == var_name) {
              VLOG(4) << "Found inplace between input(" << var_name_item.first
                      << ") and output(" << pair.first
                      << "), the variable name is " << var_name;
527 528
              (*outs_map_temp)[pair.first][j] =
                  local_scope->FindVar(new_var_name);
529 530 531 532 533 534 535 536 537
              new_outs[pair.first][j] = new_var_name;
              op_func_node
                  ->inplace_back_map[var_scope->GetIdByName(new_var_name)] =
                  var_scope->GetIdByName(var_name);
              op_func_node->output_index[pair.first][j] =
                  var_scope->VarId(new_var_name);
            }
          }
        }
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
        // NOTE(Aurelius84): avoid deepcopy twice if we already insert data
        // transfer op.
        if (op_base->Type() == "fetch_v2") {
          op_base->SetAttr("deepcopy", false);
        }
      } else {
        // record no need data transformer input var_id
        VLOG(3) << op_base->Type()
                << " found no data_transform var: " << var_name
                << " with id: " << var_scope->VarId(var_name);
        no_data_transform_index.emplace(var_scope->VarId(var_name));
      }
    }
  }

553 554
  if (transfered) {
    // NOTE(zhiqiu): UPDATE the corresponding OeratorBase to make it consistent
555 556 557
    // with instruction.
    op_base->Inputs() = new_ins;
    op_base->Outputs() = new_outs;
558
  }
559 560 561
  op_func_node->no_data_transform_index = std::move(no_data_transform_index);
}

562 563 564 565 566 567 568
void HandleComplexGradToRealGrad(const OpFuncNode& op_func_node,
                                 const platform::Place& place,
                                 const VariableNameMap& out_names,
                                 VariableValueMap* out_vars,
                                 VariableScope* var_scope,
                                 std::vector<OpFuncNode>* op_func_nodes,
                                 framework::Scope* local_scope) {
569
  DataTranferHelper data_transfer_helper(place, var_scope, local_scope);
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
  for (auto& var_name_item : out_names) {
    std::vector<Variable*>& vars = out_vars->at(var_name_item.first);
    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      // 1. find grad_var & check whether is complex tensor
      auto var_name = var_name_item.second[i];
      auto orig_var_name = framework::GradOriginalVarName(var_name);
      // only focus on gradient var
      if (var_name == orig_var_name) {
        VLOG(3) << "skip " << var_name << " with same name as "
                << orig_var_name;
        continue;
      }
      auto* grad_var = vars[i];
      // skip nullptr var
      if (grad_var == nullptr) {
        VLOG(3) << "skip grad_var with nullptr";
        continue;
      }
      // don't process LoDTensorArray temporarily,
      // add support if necessary for complex number calculations in the future
      if (!framework::VarIsTensor(*grad_var)) {
        VLOG(3) << "skip grad_var with LoDTensorArray type";
        continue;
      }
      auto* grad_tensor =
          framework::GetMutableLoDTensorOrSelectedRowsValueFromVar(grad_var);
      // skip nullptr tensor
      if (grad_tensor == nullptr || !grad_tensor->IsInitialized()) {
        VLOG(3) << "skip with grad_tensor not IsInitialized";
        continue;
      }
      // only focus on complex dtype now
602
      auto src_type = framework::TransToProtoVarType(grad_tensor->dtype());
603 604 605 606 607 608
      if (!framework::IsComplexType(src_type)) {
        VLOG(3) << "skip grad_tensor with not complexType";
        continue;
      }

      // 2. find forward var & check whether need to cast
609
      auto* var = local_scope->FindVar(orig_var_name);
610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
      // if forward var not exists, do nothing
      if (var == nullptr) {
        VLOG(3) << "skip " << orig_var_name << " with not found in var_scope";
        continue;
      }
      if (!framework::VarIsTensor(*var)) {
        VLOG(3) << "skip " << orig_var_name << " with LoDTensorArray.";
        continue;
      }
      const auto* tensor =
          framework::GetLoDTensorOrSelectedRowsValueFromVar(*var);
      PADDLE_ENFORCE_NOT_NULL(
          tensor,
          platform::errors::Unavailable(
              "Forward tensor is nullptr when handle complex data to real."));
      // only need record type, the allocation may have been released
626
      auto dst_type = framework::TransToProtoVarType(tensor->dtype());
627 628 629 630 631 632 633 634 635 636 637 638 639 640
      // only focus on real dtype and need casting
      if (framework::IsComplexType(dst_type)) {
        continue;
      }

      // 3. cast complex grad to real grad inplacely
      VLOG(3) << "Transform " << framework::DataTypeToString(src_type)
              << " var `" << var_name << "` to "
              << framework::DataTypeToString(dst_type)
              << " real var in static graph.";

      // NOTE(Aurelius84): Consider to define a complex2real op to deal this
      // case.
      std::string new_var_name;
641 642 643 644 645 646
      auto op = TransferDtype(
          var_name, &new_var_name, src_type, dst_type, var_scope, local_scope);
      data_transfer_helper.RunAndConstructOpFuncNode(
          op, var_name, new_var_name, op_func_nodes);
      data_transfer_helper.RunAndConstructShareNode(
          new_var_name, var_name, op_func_nodes);
647 648 649 650
    }
  }
}

651 652 653
}  // namespace interpreter
}  // namespace framework
}  // namespace paddle