data_transfer.cc 24.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/framework/new_executor/data_transfer.h"
16

17
#include "paddle/fluid/framework/convert_utils.h"
18 19 20 21 22 23 24 25 26 27

namespace paddle {
namespace framework {
namespace interpreter {

bool DataTranferHelper::apply(const OpKernelType& kernel_type_for_var,
                              const OpKernelType& expected_kernel_key,
                              const std::string& var_name,
                              std::string* new_var_name,
                              std::vector<OpFuncNode>* op_func_nodes,
28 29
                              bool use_local_scope,
                              bool is_fetch_v2) {
30 31 32 33 34
  bool is_transferred = false;
  auto* src_var_name = &var_name;

  // 1. layout transform
  if (need_layout_transform(kernel_type_for_var, expected_kernel_key)) {
35 36 37 38 39
    auto op = TransferLayout(*src_var_name,
                             new_var_name,
                             kernel_type_for_var.data_layout_,
                             expected_kernel_key.data_layout_,
                             var_scope_,
40
                             scope_,
41
                             is_fetch_v2);
L
Leo Chen 已提交
42
    if (op) {
43 44
      RunAndConstructOpFuncNode(
          op, *src_var_name, *new_var_name, op_func_nodes);
L
Leo Chen 已提交
45
    }
46 47 48 49 50 51
    // update src_var_name
    src_var_name = new_var_name;
    is_transferred = true;
  }
  // 2. dype transform
  if (need_dtype_transform(kernel_type_for_var, expected_kernel_key)) {
52 53 54 55 56
    auto op = TransferDtype(*src_var_name,
                            new_var_name,
                            kernel_type_for_var.data_type_,
                            expected_kernel_key.data_type_,
                            var_scope_,
57
                            scope_);
L
Leo Chen 已提交
58
    if (op) {
59 60
      RunAndConstructOpFuncNode(
          op, *src_var_name, *new_var_name, op_func_nodes);
L
Leo Chen 已提交
61
    }
62 63 64 65 66 67 68 69
    // update src_var_name
    src_var_name = new_var_name;
    is_transferred = true;
  }
  // 3. device transform
  if (need_device_transform(kernel_type_for_var, expected_kernel_key)) {
    auto src_place = kernel_type_for_var.place_;
    auto dst_place = expected_kernel_key.place_;
L
Leo Chen 已提交
70

71 72
    auto op = TransferDevice(
        *src_var_name, new_var_name, src_place, dst_place, var_scope_, scope_);
L
Leo Chen 已提交
73
    if (op) {
74 75
      RunAndConstructOpFuncNode(
          op, *src_var_name, *new_var_name, op_func_nodes);
L
Leo Chen 已提交
76
    }
77 78 79 80 81
    is_transferred = true;
  }
  return is_transferred;
}

82
void DataTranferHelper::RunAndConstructShareNode(
83 84
    const std::string& src_var_name,
    const std::string& dst_var_name,
85 86 87 88 89 90 91 92 93 94
    std::vector<OpFuncNode>* op_func_nodes) {
  VariableNameMap in_name_map = {{"X", {src_var_name}}};
  VariableNameMap out_name_map = {{"Out", {dst_var_name}}};
  AttributeMap attr_map;

  std::string op_type("share_data");
  auto& op_info = OpInfoMap::Instance().Get(op_type);
  auto op = std::shared_ptr<OperatorBase>(
      op_info.Creator()(op_type, in_name_map, out_name_map, attr_map));

95 96
  VLOG(3) << string::Sprintf(
      "Insert %s with %s -> %s.", op_type, src_var_name, dst_var_name);
97 98 99 100

  RunAndConstructOpFuncNode(op, src_var_name, dst_var_name, op_func_nodes);
}

101
void DataTranferHelper::RunAndConstructOpFuncNode(
102 103
    const std::shared_ptr<OperatorBase>& op,
    const std::string& var_name,
104 105 106 107 108 109
    const std::string& new_var_name,
    std::vector<OpFuncNode>* new_op_func_nodes) {
  auto& op_type = op->Type();

  // 1. Construct RuntimeContext
  RuntimeContext runtime_context({}, {});
110 111
  runtime_context.inputs["X"] = {scope_->FindVar(var_name)};
  runtime_context.outputs["Out"] = {scope_->Var(new_var_name)};
112 113 114 115
  InterpretercoreInferShapeContext infer_shape_ctx(*op, runtime_context);

  // 2. Execute infer shape and choose kernel
  auto& all_op_kernels = OperatorWithKernel::AllOpKernels();
116
  op.get()->Info().infer_shape_(&infer_shape_ctx);
117
  auto kernels_iter = all_op_kernels.find(op_type);
118 119
  PADDLE_ENFORCE_NE(kernels_iter,
                    all_op_kernels.end(),
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
                    platform::errors::Unavailable(
                        "There are no kernels which are registered in "
                        "the %s operator.",
                        op_type));
  OpKernelMap& kernels = kernels_iter->second;
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
  auto* dev_ctx = pool.Get(place_);
  Scope scope;
  auto exec_ctx = ExecutionContext(*op, scope, *dev_ctx, runtime_context);
  auto expected_kernel_key =
      dynamic_cast<const framework::OperatorWithKernel*>(op.get())
          ->GetExpectedKernelType(exec_ctx);
  auto kernel_iter = kernels.find(expected_kernel_key);

  // 3. Execute transfer op and construct OpFuncNode
  OpFuncNode new_op_func_node;
  new_op_func_node.input_index["X"] = {var_scope_->VarId(var_name)};
  new_op_func_node.output_index["Out"] = {var_scope_->VarId(new_var_name)};
  new_op_func_node.kernel_func_ = OpKernelComputeFunc(kernel_iter->second);
  new_op_func_node.kernel_func_(exec_ctx);
140 141 142 143 144 145 146
  // NOTE(winter-wang): in npu device, D2H kernel is asynchronous. need to
  // explicit synchronization.
#ifdef PADDLE_WITH_ASCEND_CL
  if (op_type == kMemcpyD2H) {
    dev_ctx->Wait();
  }
#endif
147 148 149 150 151 152 153 154 155 156
  // NOTE(Aurelius84): data_transform_op is expensive operation, so we tag them
  // as kQueueSync and execute them in thread pool.
  new_op_func_node.type_ = OpFuncType::kQueueSync;
  new_op_func_node.dev_ctx_ = dev_ctx;
  new_op_func_node.operator_base_ = op;
  VLOG(3) << "Run " << op_type << " done.";

  new_op_func_nodes->emplace_back(std::move(new_op_func_node));
}

L
Leo Chen 已提交
157 158 159 160 161 162 163 164 165 166 167 168 169
// Var is initialized && var contains tensor && tensor is initialized
bool IsTensorOfVarInitialized(Variable* var) {
  if (var->IsInitialized()) {
    if (var->IsType<LoDTensor>() || var->IsType<phi::SelectedRows>()) {
      return GetLoDTensorOrSelectedRowsValueFromVar(*var)->IsInitialized();
    } else if (var->IsType<LoDTensorArray>()) {
      return static_cast<const Tensor*>(&(var->Get<LoDTensorArray>()[0]))
          ->IsInitialized();
    }
  }
  return false;
}

170 171 172 173 174 175 176
std::shared_ptr<OperatorBase> TransferLayout(const std::string& var_name,
                                             std::string* new_var_name,
                                             DataLayout in_layout,
                                             DataLayout out_layout,
                                             VariableScope* var_scope,
                                             framework::Scope* local_scope,
                                             bool is_fetch_v2) {
L
Leo Chen 已提交
177 178 179 180 181 182 183 184
#ifdef PADDLE_WITH_MKLDNN
  // NOTE(zhiqiu): hot fix, follow the same logic in DataCopy() in fetch_op.cc
  if (in_layout == framework::DataLayout::kMKLDNN &&
      var_name == framework::GradVarName("Filter") && is_fetch_v2) {
    out_layout = framework::DataLayout::kNCHW;
  }
#endif

185
  // 1. Generate new_var_name and Initialize it
L
Leo Chen 已提交
186 187 188 189 190
  *new_var_name = var_name + "_layout_" +
                  std::to_string(static_cast<int>(in_layout)) + "_" +
                  std::to_string(static_cast<int>(out_layout));

  if (var_scope->HasVar(*new_var_name) &&
191
      IsTensorOfVarInitialized(local_scope->FindVar(*new_var_name))) {
L
Leo Chen 已提交
192 193 194 195
    // already has same var
    VLOG(4) << "Use cached variable: " << *new_var_name;
    return nullptr;
  }
196

L
Leo Chen 已提交
197
  auto* ptr = local_scope->Var(*new_var_name);
198
  auto var_type = local_scope->FindVar(var_name)->Type();
199
  InitializeVariable(ptr, static_cast<proto::VarType::Type>(var_type));
200 201 202
  VLOG(3) << "Create Variable " << *new_var_name
          << " locally, which pointer is " << ptr << "Variable Type "
          << var_type;
203
  var_scope->AddVar(*new_var_name, nullptr);
204 205 206 207

  // 2. Construct VariableNameMap
  VariableNameMap in_name_map = {{"X", {var_name}}};
  VariableNameMap out_name_map = {{"Out", {*new_var_name}}};
208 209
  AttributeMap attr_map = {{"src_layout", static_cast<int>(in_layout)},
                           {"dst_layout", static_cast<int>(out_layout)}};
210

211
  // 3. Create transfer_layout_op
212 213 214 215 216
  std::string op_type("transfer_layout");
  auto& op_info = OpInfoMap::Instance().Get(op_type);
  auto op = std::shared_ptr<OperatorBase>(
      op_info.Creator()(op_type, in_name_map, out_name_map, attr_map));

217
  VLOG(3) << string::Sprintf("Insert %s for variable %s(%s) -> %s(%s).",
218 219 220 221
                             op_type,
                             var_name,
                             in_layout,
                             *new_var_name,
222
                             out_layout);
223 224 225 226 227 228 229
  return op;
}

std::shared_ptr<OperatorBase> TransferDtype(const std::string& var_name,
                                            std::string* new_var_name,
                                            proto::VarType::Type in_dtype,
                                            proto::VarType::Type out_dtype,
230
                                            framework::VariableScope* var_scope,
231 232
                                            framework::Scope* local_scope) {
  // 1. Generate new_var_name and Initialize it
L
Leo Chen 已提交
233 234 235 236
  *new_var_name = var_name + "_dtype_" +
                  std::to_string(static_cast<int>(in_dtype)) + "_" +
                  std::to_string(static_cast<int>(out_dtype));
  if (var_scope->HasVar(*new_var_name) &&
237
      IsTensorOfVarInitialized(local_scope->FindVar(*new_var_name))) {
L
Leo Chen 已提交
238 239 240 241
    // already has same var
    VLOG(4) << "Use cached variable: " << *new_var_name;
    return nullptr;
  }
242

L
Leo Chen 已提交
243
  auto* ptr = local_scope->Var(*new_var_name);
244
  auto var_type = local_scope->FindVar(var_name)->Type();
245
  InitializeVariable(ptr, static_cast<proto::VarType::Type>(var_type));
246

247 248 249
  VLOG(3) << "Create Variable " << *new_var_name
          << " locally, which pointer is " << ptr << "Variable Type "
          << var_type;
250
  var_scope->AddVar(*new_var_name, nullptr);
251 252 253 254 255 256 257 258 259 260

  // 2. Construct VariableNameMap
  VariableNameMap in_name_map = {{"X", {var_name}}};
  VariableNameMap out_name_map = {{"Out", {*new_var_name}}};
  AttributeMap attr_map;
  attr_map["in_dtype"] = static_cast<int>(in_dtype);
  attr_map["out_dtype"] = static_cast<int>(out_dtype);
  // NOTE(Aurelius84): In whice case use_mkldnn = true?
  attr_map["use_mkldnn"] = false;

261
  // 3. Create transfer_dtype_op
262 263 264 265 266
  std::string op_type("transfer_dtype");
  auto& op_info = OpInfoMap::Instance().Get(op_type);
  auto op = std::shared_ptr<OperatorBase>(
      op_info.Creator()(op_type, in_name_map, out_name_map, attr_map));

267 268 269 270 271 272
  VLOG(3) << string::Sprintf("Insert %s with %s(%s) -> %s(%s).",
                             op_type,
                             var_name,
                             DataTypeToString(in_dtype),
                             *new_var_name,
                             DataTypeToString(out_dtype));
273 274 275 276 277 278 279 280 281 282
  return op;
}

std::shared_ptr<OperatorBase> TransferDevice(const std::string& var_name,
                                             std::string* new_var_name,
                                             const platform::Place& src_place,
                                             const platform::Place& dst_place,
                                             VariableScope* var_scope,
                                             framework::Scope* local_scope) {
  // 1. Generate new_var_name and Initialize it
L
Leo Chen 已提交
283 284 285
  *new_var_name = var_name + "_device_" + src_place.DebugString() + "_" +
                  dst_place.DebugString();

286 287
  if (local_scope->FindVar(*new_var_name) &&
      IsTensorOfVarInitialized(local_scope->FindVar(*new_var_name))) {
L
Leo Chen 已提交
288 289 290 291
    // already has same var
    VLOG(4) << "Use cached variable: " << *new_var_name;
    return nullptr;
  }
292

L
Leo Chen 已提交
293
  auto* ptr = local_scope->Var(*new_var_name);
294
  auto var_type = local_scope->FindVar(var_name)->Type();
295
  InitializeVariable(ptr, static_cast<proto::VarType::Type>(var_type));
296 297 298
  VLOG(3) << "Create Variable " << *new_var_name
          << " locally, which pointer is " << ptr << "Variable Type "
          << var_type;
299
  var_scope->AddVar(*new_var_name, nullptr);
300 301 302 303 304

  // 2. Construct VariableNameMap
  VariableNameMap in_name_map = {{"X", {var_name}}};
  VariableNameMap out_name_map = {{"Out", {*new_var_name}}};

305
  // 3. Create memcpy_d2h_op or memcpy_h2d_op
306 307
  std::string op_type;
  AttributeMap attr_map;
308 309
  PADDLE_ENFORCE_EQ(platform::is_same_place(src_place, dst_place),
                    false,
310 311 312 313 314 315 316 317
                    platform::errors::PreconditionNotMet(
                        "Required src_place shall be different with dst_place, "
                        "but received same place: %s",
                        src_place));
  if (IsSupportedHetePlace(dst_place)) {
    op_type = kMemcpyH2D;
    int dst_place_type = platform::is_gpu_place(dst_place)   ? 0
                         : platform::is_npu_place(dst_place) ? 1
318
                         : platform::is_ipu_place(dst_place) ? 3
319 320 321 322 323 324 325 326 327 328 329 330 331 332
                         : platform::is_xpu_place(dst_place) ? 2
                                                             : -1;
    attr_map = {{"dst_place_type", dst_place_type}};
  } else if (IsSupportedHetePlace(src_place)) {
    op_type = kMemcpyD2H;
    int dst_place_type = platform::is_cpu_place(dst_place)           ? 0
                         : platform::is_cuda_pinned_place(dst_place) ? 1
                                                                     : -1;
    attr_map = {{"dst_place_type", dst_place_type}};
  } else {
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "Not support Memcpy typ : %s -> %s", src_place, dst_place));
  }

333 334 335 336
  auto& op_info = OpInfoMap::Instance().Get(op_type);
  auto op = std::shared_ptr<OperatorBase>(
      op_info.Creator()(op_type, in_name_map, out_name_map, attr_map));

337 338 339 340 341 342
  VLOG(3) << string::Sprintf("Insert %s with %s(%s) -> %s(%s).",
                             op_type,
                             var_name,
                             src_place,
                             *new_var_name,
                             dst_place);
343 344 345 346 347 348
  return op;
}

void ApplyDataTransform(const OpKernelType& expected_kernel_key,
                        const platform::Place& place,
                        VariableValueMap* ins_map_temp,
349
                        VariableValueMap* outs_map_temp,
350 351
                        VariableScope* var_scope,
                        OpFuncNode* op_func_node,
352 353
                        std::vector<OpFuncNode>* new_op_func_nodes,
                        bool use_local_scope) {
354 355 356
  Scope* local_scope = use_local_scope ? var_scope->GetMutableLocalScope()
                                       : var_scope->GetMutableScope();

357
  auto op_base = op_func_node->operator_base_.get();
358 359 360 361
  PADDLE_ENFORCE_NOT_NULL(op_base,
                          platform::errors::PreconditionNotMet(
                              "op_base is null, please pass a valid "
                              "op_base in apply_data_transform."));
362 363

  VariableNameMap new_ins(op_base->Inputs());
364
  VariableNameMap new_outs(op_base->Outputs());
365 366 367
  // record the no need transform variable index.
  std::unordered_set<int> no_data_transform_index;

L
Leo Chen 已提交
368 369 370
  const std::unordered_set<std::string>* no_buffer_ins = nullptr;
  auto& no_buffer_inferer = op_base->Info().NoNeedBufferVarsInferer();
  if (no_buffer_inferer) {
371 372
    no_buffer_ins = &(no_buffer_inferer(
        op_base->Inputs(), op_base->Outputs(), op_base->Attrs()));
L
Leo Chen 已提交
373 374 375 376 377
    if (no_buffer_ins->empty()) {
      no_buffer_ins = nullptr;
    }
  }

378
  bool transfered = false;
379
  DataTranferHelper data_transfer_helper(place, var_scope, local_scope);
380
  for (auto& var_name_item : *ins_map_temp) {
L
Leo Chen 已提交
381 382 383
    bool should_skip_input =
        no_buffer_ins && no_buffer_ins->count(var_name_item.first) > 0;

384 385
    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      auto var = var_name_item.second[i];
386
      auto var_name = new_ins[var_name_item.first].at(i);
387
      const Tensor* tensor_in;
L
Leo Chen 已提交
388 389 390
      std::string new_var_name;
      bool is_transferred = false;

391
      if (var->IsType<LoDTensor>() || var->IsType<phi::SelectedRows>()) {
392 393
        tensor_in = GetLoDTensorOrSelectedRowsValueFromVar(*var);
      } else if (var->IsType<LoDTensorArray>()) {
394 395 396
        if (var->Get<LoDTensorArray>().size() == 0) {
          continue;
        }
397 398 399
        tensor_in =
            static_cast<const Tensor*>(&(var->Get<LoDTensorArray>()[0]));
      } else {
400
        continue;
401
      }
L
Leo Chen 已提交
402
      // special case
403
      if (!tensor_in->IsInitialized()) {
L
Leo Chen 已提交
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
        if (should_skip_input == true) {
#ifdef PADDLE_WITH_MKLDNN
          // Var without buffer may be needed
          // for some situation like InferShape().
          // In this situation We cannot skip Var analysis, as
          // MKL-DNN shape of Var may differ from kNHWC Var
          // In such situation corressponding resized Var
          // has to be created and registered
          if ((tensor_in->layout() == DataLayout::kMKLDNN) &&
              (var->IsType<LoDTensor>() == true) &&
              (expected_kernel_key.data_layout_ != DataLayout::kMKLDNN) &&
              (paddle::platform::MKLDNNDeviceContext::tls()
                   .get_cur_paddle_data_layout() == DataLayout::kNHWC)) {
            VLOG(7) << "Created reshaped dummy input based on MKL-DNN Tensor , "
                       "but kNHWC layout"
                    << var_name_item.first << " in Operator "
                    << op_base->Type();
421 422 423 424 425 426 427
            auto op = TransferLayout(var_name,
                                     &new_var_name,
                                     tensor_in->layout(),
                                     DataLayout::kNHWC,
                                     var_scope,
                                     local_scope,
                                     op_base->Type() == "fetch_v2");
L
Leo Chen 已提交
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
            if (op) {
              data_transfer_helper.RunAndConstructOpFuncNode(
                  op, var_name, new_var_name, new_op_func_nodes);
            }
            is_transferred = true;
          } else {
            VLOG(7) << "Skip scanning input " << var_name_item.first
                    << " in Operator " << op_base->Type();
          }
#endif
        } else {
          continue;
        }
      } else {
        auto kernel_type_for_var =
            static_cast<const framework::OperatorWithKernel*>(op_base)
444 445
                ->GetKernelTypeForVar(
                    var_name_item.first, *tensor_in, expected_kernel_key);
L
Leo Chen 已提交
446
        // apply data transform
447 448 449 450 451 452 453 454
        is_transferred =
            data_transfer_helper.apply(kernel_type_for_var,
                                       expected_kernel_key,
                                       var_name,
                                       &new_var_name,
                                       new_op_func_nodes,
                                       use_local_scope,
                                       op_base->Type() == "fetch_v2");
455 456 457
      }

      if (is_transferred) {
458
        transfered = true;
459 460 461
        // update RuntimeContext.inputs and original op_func_node inputs
        op_func_node->input_index[var_name_item.first][i] =
            var_scope->VarId(new_var_name);
462
        var_name_item.second[i] = local_scope->FindVar(new_var_name);
463
        new_ins[var_name_item.first][i] = new_var_name;
464 465 466 467 468 469 470
        for (auto& pair : new_outs) {
          for (size_t j = 0; j < pair.second.size(); ++j) {
            VLOG(4) << pair.second[j] << " " << var_name;
            if (pair.second[j] == var_name) {
              VLOG(4) << "Found inplace between input(" << var_name_item.first
                      << ") and output(" << pair.first
                      << "), the variable name is " << var_name;
471 472
              (*outs_map_temp)[pair.first][j] =
                  local_scope->FindVar(new_var_name);
473 474 475 476 477 478 479 480 481
              new_outs[pair.first][j] = new_var_name;
              op_func_node
                  ->inplace_back_map[var_scope->GetIdByName(new_var_name)] =
                  var_scope->GetIdByName(var_name);
              op_func_node->output_index[pair.first][j] =
                  var_scope->VarId(new_var_name);
            }
          }
        }
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
        // NOTE(Aurelius84): avoid deepcopy twice if we already insert data
        // transfer op.
        if (op_base->Type() == "fetch_v2") {
          op_base->SetAttr("deepcopy", false);
        }
      } else {
        // record no need data transformer input var_id
        VLOG(3) << op_base->Type()
                << " found no data_transform var: " << var_name
                << " with id: " << var_scope->VarId(var_name);
        no_data_transform_index.emplace(var_scope->VarId(var_name));
      }
    }
  }

497 498
  if (transfered) {
    // NOTE(zhiqiu): UPDATE the corresponding OeratorBase to make it consistent
499 500 501
    // with instruction.
    op_base->Inputs() = new_ins;
    op_base->Outputs() = new_outs;
502
  }
503 504 505
  op_func_node->no_data_transform_index = std::move(no_data_transform_index);
}

506 507 508 509 510 511 512
void HandleComplexGradToRealGrad(const OpFuncNode& op_func_node,
                                 const platform::Place& place,
                                 const VariableNameMap& out_names,
                                 VariableValueMap* out_vars,
                                 VariableScope* var_scope,
                                 std::vector<OpFuncNode>* op_func_nodes,
                                 framework::Scope* local_scope) {
513
  DataTranferHelper data_transfer_helper(place, var_scope, local_scope);
514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
  for (auto& var_name_item : out_names) {
    std::vector<Variable*>& vars = out_vars->at(var_name_item.first);
    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      // 1. find grad_var & check whether is complex tensor
      auto var_name = var_name_item.second[i];
      auto orig_var_name = framework::GradOriginalVarName(var_name);
      // only focus on gradient var
      if (var_name == orig_var_name) {
        VLOG(3) << "skip " << var_name << " with same name as "
                << orig_var_name;
        continue;
      }
      auto* grad_var = vars[i];
      // skip nullptr var
      if (grad_var == nullptr) {
        VLOG(3) << "skip grad_var with nullptr";
        continue;
      }
      // don't process LoDTensorArray temporarily,
      // add support if necessary for complex number calculations in the future
      if (!framework::VarIsTensor(*grad_var)) {
        VLOG(3) << "skip grad_var with LoDTensorArray type";
        continue;
      }
      auto* grad_tensor =
          framework::GetMutableLoDTensorOrSelectedRowsValueFromVar(grad_var);
      // skip nullptr tensor
      if (grad_tensor == nullptr || !grad_tensor->IsInitialized()) {
        VLOG(3) << "skip with grad_tensor not IsInitialized";
        continue;
      }
      // only focus on complex dtype now
546
      auto src_type = framework::TransToProtoVarType(grad_tensor->dtype());
547 548 549 550 551 552
      if (!framework::IsComplexType(src_type)) {
        VLOG(3) << "skip grad_tensor with not complexType";
        continue;
      }

      // 2. find forward var & check whether need to cast
553
      auto* var = local_scope->FindVar(orig_var_name);
554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
      // if forward var not exists, do nothing
      if (var == nullptr) {
        VLOG(3) << "skip " << orig_var_name << " with not found in var_scope";
        continue;
      }
      if (!framework::VarIsTensor(*var)) {
        VLOG(3) << "skip " << orig_var_name << " with LoDTensorArray.";
        continue;
      }
      const auto* tensor =
          framework::GetLoDTensorOrSelectedRowsValueFromVar(*var);
      PADDLE_ENFORCE_NOT_NULL(
          tensor,
          platform::errors::Unavailable(
              "Forward tensor is nullptr when handle complex data to real."));
      // only need record type, the allocation may have been released
570
      auto dst_type = framework::TransToProtoVarType(tensor->dtype());
571 572 573 574 575 576 577 578 579 580 581 582 583 584
      // only focus on real dtype and need casting
      if (framework::IsComplexType(dst_type)) {
        continue;
      }

      // 3. cast complex grad to real grad inplacely
      VLOG(3) << "Transform " << framework::DataTypeToString(src_type)
              << " var `" << var_name << "` to "
              << framework::DataTypeToString(dst_type)
              << " real var in static graph.";

      // NOTE(Aurelius84): Consider to define a complex2real op to deal this
      // case.
      std::string new_var_name;
585 586 587 588 589 590
      auto op = TransferDtype(
          var_name, &new_var_name, src_type, dst_type, var_scope, local_scope);
      data_transfer_helper.RunAndConstructOpFuncNode(
          op, var_name, new_var_name, op_func_nodes);
      data_transfer_helper.RunAndConstructShareNode(
          new_var_name, var_name, op_func_nodes);
591 592 593 594
    }
  }
}

595 596 597
}  // namespace interpreter
}  // namespace framework
}  // namespace paddle