data_transfer.cc 18.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/framework/new_executor/data_transfer.h"

namespace paddle {
namespace framework {
namespace interpreter {

bool DataTranferHelper::apply(const OpKernelType& kernel_type_for_var,
                              const OpKernelType& expected_kernel_key,
                              const std::string& var_name,
                              std::string* new_var_name,
                              std::vector<OpFuncNode>* op_func_nodes,
                              bool use_local_scope) {
  bool is_transferred = false;
  auto* src_var_name = &var_name;

  Scope* local_scope = use_local_scope ? var_scope_->GetMutableLocalScope()
                                       : var_scope_->GetMutableScope();

  // 1. layout transform
  if (need_layout_transform(kernel_type_for_var, expected_kernel_key)) {
    auto op = TransferLayout(
        *src_var_name, new_var_name, kernel_type_for_var.data_layout_,
        expected_kernel_key.data_layout_, var_scope_, local_scope);
    RunAndConstructOpFuncNode(op, *src_var_name, *new_var_name, op_func_nodes);
    // update src_var_name
    src_var_name = new_var_name;
    is_transferred = true;
  }
  // 2. dype transform
  if (need_dtype_transform(kernel_type_for_var, expected_kernel_key)) {
    auto op = TransferDtype(
        *src_var_name, new_var_name, kernel_type_for_var.data_type_,
        expected_kernel_key.data_type_, var_scope_, local_scope);
    RunAndConstructOpFuncNode(op, *src_var_name, *new_var_name, op_func_nodes);
    // update src_var_name
    src_var_name = new_var_name;
    is_transferred = true;
  }
  // 3. device transform
  if (need_device_transform(kernel_type_for_var, expected_kernel_key)) {
    auto src_place = kernel_type_for_var.place_;
    auto dst_place = expected_kernel_key.place_;
    auto op = TransferDevice(*src_var_name, new_var_name, src_place, dst_place,
                             var_scope_, local_scope);
    RunAndConstructOpFuncNode(op, *src_var_name, *new_var_name, op_func_nodes);
    is_transferred = true;
  }
  return is_transferred;
}

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
void DataTranferHelper::RunAndConstructShareNode(
    const std::string& src_var_name, const std::string& dst_var_name,
    std::vector<OpFuncNode>* op_func_nodes) {
  VariableNameMap in_name_map = {{"X", {src_var_name}}};
  VariableNameMap out_name_map = {{"Out", {dst_var_name}}};
  AttributeMap attr_map;

  std::string op_type("share_data");
  auto& op_info = OpInfoMap::Instance().Get(op_type);
  auto op = std::shared_ptr<OperatorBase>(
      op_info.Creator()(op_type, in_name_map, out_name_map, attr_map));

  VLOG(3) << string::Sprintf("Insert %s with %s -> %s.", op_type, src_var_name,
                             dst_var_name);

  RunAndConstructOpFuncNode(op, src_var_name, dst_var_name, op_func_nodes);
}

83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
void DataTranferHelper::RunAndConstructOpFuncNode(
    const std::shared_ptr<OperatorBase>& op, const std::string& var_name,
    const std::string& new_var_name,
    std::vector<OpFuncNode>* new_op_func_nodes) {
  auto& op_type = op->Type();

  // 1. Construct RuntimeContext
  RuntimeContext runtime_context({}, {});
  runtime_context.inputs["X"] = {var_scope_->Var(var_name)};
  runtime_context.outputs["Out"] = {var_scope_->Var(new_var_name)};
  InterpretercoreInferShapeContext infer_shape_ctx(*op, runtime_context);

  // 2. Execute infer shape and choose kernel
  auto& all_op_kernels = OperatorWithKernel::AllOpKernels();
  static_cast<const framework::OperatorWithKernel*>(op.get())->InferShape(
      &infer_shape_ctx);
  auto kernels_iter = all_op_kernels.find(op_type);
  PADDLE_ENFORCE_NE(kernels_iter, all_op_kernels.end(),
                    platform::errors::Unavailable(
                        "There are no kernels which are registered in "
                        "the %s operator.",
                        op_type));
  OpKernelMap& kernels = kernels_iter->second;
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
  auto* dev_ctx = pool.Get(place_);
  Scope scope;
  auto exec_ctx = ExecutionContext(*op, scope, *dev_ctx, runtime_context);
  auto expected_kernel_key =
      dynamic_cast<const framework::OperatorWithKernel*>(op.get())
          ->GetExpectedKernelType(exec_ctx);
  auto kernel_iter = kernels.find(expected_kernel_key);

  // 3. Execute transfer op and construct OpFuncNode
  OpFuncNode new_op_func_node;
  new_op_func_node.input_index["X"] = {var_scope_->VarId(var_name)};
  new_op_func_node.output_index["Out"] = {var_scope_->VarId(new_var_name)};
  new_op_func_node.kernel_func_ = OpKernelComputeFunc(kernel_iter->second);
  new_op_func_node.kernel_func_(exec_ctx);
  // NOTE(Aurelius84): data_transform_op is expensive operation, so we tag them
  // as kQueueSync and execute them in thread pool.
  new_op_func_node.type_ = OpFuncType::kQueueSync;
  new_op_func_node.dev_ctx_ = dev_ctx;
  new_op_func_node.operator_base_ = op;
  VLOG(3) << "Run " << op_type << " done.";

  new_op_func_nodes->emplace_back(std::move(new_op_func_node));
}

std::shared_ptr<OperatorBase> TransferLayout(const std::string& var_name,
                                             std::string* new_var_name,
                                             DataLayout in_layout,
                                             DataLayout out_layout,
                                             VariableScope* var_scope,
                                             framework::Scope* local_scope) {
  // 1. Generate new_var_name and Initialize it
  *new_var_name =
      var_name + "_layout_" + std::to_string(var_scope->VarSize() + 1);
  auto* ptr = local_scope->Var(new_var_name);

  auto var_type = var_scope->Var(var_name)->Type();
  InitializeVariable(ptr, static_cast<proto::VarType::Type>(var_type));
144 145 146 147
  VLOG(3) << "Create Variable " << *new_var_name
          << " locally, which pointer is " << ptr << "Variable Type "
          << var_type;
  var_scope->SetVarDesc(*new_var_name, nullptr);
148 149 150 151 152 153

  // 2. Construct VariableNameMap
  VariableNameMap in_name_map = {{"X", {var_name}}};
  VariableNameMap out_name_map = {{"Out", {*new_var_name}}};
  AttributeMap attr_map = {{"dst_layout", static_cast<int>(out_layout)}};

154
  // 3. Create transfer_layout_op
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
  std::string op_type("transfer_layout");
  auto& op_info = OpInfoMap::Instance().Get(op_type);
  auto op = std::shared_ptr<OperatorBase>(
      op_info.Creator()(op_type, in_name_map, out_name_map, attr_map));

  VLOG(3) << string::Sprintf("Insert %s(%s) with %s -> %s(%s).", op_type,
                             var_name, in_layout, *new_var_name, out_layout);
  return op;
}

std::shared_ptr<OperatorBase> TransferDtype(const std::string& var_name,
                                            std::string* new_var_name,
                                            proto::VarType::Type in_dtype,
                                            proto::VarType::Type out_dtype,
                                            VariableScope* var_scope,
                                            framework::Scope* local_scope) {
  // 1. Generate new_var_name and Initialize it
  *new_var_name =
      var_name + "_dtype_" + std::to_string(var_scope->VarSize() + 1);
  auto* ptr = local_scope->Var(new_var_name);
175
  var_scope->SetVarDesc(var_name, nullptr);
176 177
  auto var_type = var_scope->Var(var_name)->Type();
  InitializeVariable(ptr, static_cast<proto::VarType::Type>(var_type));
178

179 180 181 182
  VLOG(3) << "Create Variable " << *new_var_name
          << " locally, which pointer is " << ptr << "Variable Type "
          << var_type;
  var_scope->SetVarDesc(*new_var_name, nullptr);
183 184 185 186 187 188 189 190 191 192

  // 2. Construct VariableNameMap
  VariableNameMap in_name_map = {{"X", {var_name}}};
  VariableNameMap out_name_map = {{"Out", {*new_var_name}}};
  AttributeMap attr_map;
  attr_map["in_dtype"] = static_cast<int>(in_dtype);
  attr_map["out_dtype"] = static_cast<int>(out_dtype);
  // NOTE(Aurelius84): In whice case use_mkldnn = true?
  attr_map["use_mkldnn"] = false;

193
  // 3. Create transfer_dtype_op
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
  std::string op_type("transfer_dtype");
  auto& op_info = OpInfoMap::Instance().Get(op_type);
  auto op = std::shared_ptr<OperatorBase>(
      op_info.Creator()(op_type, in_name_map, out_name_map, attr_map));

  VLOG(3) << string::Sprintf("Insert %s with %s(%s) -> %s(%s).", op_type,
                             var_name, DataTypeToString(in_dtype),
                             *new_var_name, DataTypeToString(out_dtype));
  return op;
}

std::shared_ptr<OperatorBase> TransferDevice(const std::string& var_name,
                                             std::string* new_var_name,
                                             const platform::Place& src_place,
                                             const platform::Place& dst_place,
                                             VariableScope* var_scope,
                                             framework::Scope* local_scope) {
  // 1. Generate new_var_name and Initialize it
  *new_var_name =
      var_name + "_device_" + std::to_string(var_scope->VarSize() + 1);
  auto* ptr = local_scope->Var(new_var_name);

  auto var_type = var_scope->Var(var_name)->Type();
  InitializeVariable(ptr, static_cast<proto::VarType::Type>(var_type));
218 219 220 221
  VLOG(3) << "Create Variable " << *new_var_name
          << " locally, which pointer is " << ptr << "Variable Type "
          << var_type;
  var_scope->SetVarDesc(*new_var_name, nullptr);
222 223 224 225 226 227 228 229 230

  // 2. Construct VariableNameMap
  VariableNameMap in_name_map = {{"X", {var_name}}};
  VariableNameMap out_name_map = {{"Out", {*new_var_name}}};
  int dst_place_type = platform::is_cpu_place(dst_place)
                           ? 0
                           : platform::is_gpu_place(dst_place) ? 1 : -1;
  AttributeMap attr_map = {{"dst_place_type", dst_place_type}};

231
  // 3. Create memcpy_d2h_op or memcpy_h2d_op
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
  std::string op_type = get_memcpy_type(src_place, dst_place);
  auto& op_info = OpInfoMap::Instance().Get(op_type);
  auto op = std::shared_ptr<OperatorBase>(
      op_info.Creator()(op_type, in_name_map, out_name_map, attr_map));

  VLOG(3) << string::Sprintf("Insert %s with %s(%s) -> %s(%s).", op_type,
                             var_name, src_place, *new_var_name, dst_place);
  return op;
}

void ApplyDataTransform(const OpKernelType& expected_kernel_key,
                        const platform::Place& place,
                        VariableValueMap* ins_map_temp,
                        VariableScope* var_scope, OpFuncNode* op_func_node,
                        std::vector<OpFuncNode>* new_op_func_nodes,
                        bool use_local_scope) {
  auto op_base = op_func_node->operator_base_.get();
  PADDLE_ENFORCE_NOT_NULL(op_base, platform::errors::PreconditionNotMet(
                                       "op_base is null, please pass a valid "
                                       "op_base in apply_data_transform."));

  VariableNameMap new_ins(op_base->Inputs());
  // record the no need transform variable index.
  std::unordered_set<int> no_data_transform_index;

  DataTranferHelper data_transfer_helper(place, var_scope);
  for (auto& var_name_item : *ins_map_temp) {
    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      auto var = var_name_item.second[i];
      auto& var_name = new_ins[var_name_item.first].at(i);
262 263 264 265 266 267 268 269 270 271 272 273
      const Tensor* tensor_in;
      if (var->IsType<LoDTensor>() || var->IsType<SelectedRows>()) {
        tensor_in = GetLoDTensorOrSelectedRowsValueFromVar(*var);
      } else if (var->IsType<LoDTensorArray>()) {
        tensor_in =
            static_cast<const Tensor*>(&(var->Get<LoDTensorArray>()[0]));
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Variable type is %s, expect LoDTensor or SelectedRows or "
            "LoDTensorArray.",
            ToTypeName(var->Type())));
      }
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
      if (!tensor_in->IsInitialized()) {
        continue;
      }
      auto kernel_type_for_var =
          static_cast<const framework::OperatorWithKernel*>(op_base)
              ->GetKernelTypeForVar(var_name_item.first, *tensor_in,
                                    expected_kernel_key);
      // apply data transform
      std::string new_var_name;
      bool is_transferred = data_transfer_helper.apply(
          kernel_type_for_var, expected_kernel_key, var_name, &new_var_name,
          new_op_func_nodes, use_local_scope);

      if (is_transferred) {
        // update RuntimeContext.inputs and original op_func_node inputs
        op_func_node->input_index[var_name_item.first][i] =
            var_scope->VarId(new_var_name);
        var_name_item.second[i] = var_scope->Var(new_var_name);
        new_ins[var_name_item.first][i] = new_var_name;
        // NOTE(Aurelius84): avoid deepcopy twice if we already insert data
        // transfer op.
        if (op_base->Type() == "fetch_v2") {
          op_base->SetAttr("deepcopy", false);
        }
      } else {
        // record no need data transformer input var_id
        VLOG(3) << op_base->Type()
                << " found no data_transform var: " << var_name
                << " with id: " << var_scope->VarId(var_name);
        no_data_transform_index.emplace(var_scope->VarId(var_name));
      }
    }
  }

  // NOTE(zhiqiu): UPDATE the corresponding OeratorBase to make it consistent
  // with instruction. (hot fix, it is not good design here)
  op_func_node->operator_base_ =
      std::shared_ptr<OperatorBase>(framework::OpRegistry::CreateOp(
          op_base->Type(), new_ins, op_base->Outputs(), op_base->Attrs()));
  op_func_node->no_data_transform_index = std::move(no_data_transform_index);
}

std::string get_memcpy_type(const platform::Place& src_place,
                            const platform::Place& dst_place) {
  PADDLE_ENFORCE_EQ(platform::is_same_place(src_place, dst_place), false,
                    platform::errors::PreconditionNotMet(
                        "Required src_place shall be different with dst_place, "
                        "but received same place: %s",
                        src_place));
  if (platform::is_gpu_place(dst_place)) {
    return kMemcpyH2D;
  } else if (platform::is_gpu_place(src_place)) {
    return kMemcpyD2H;
  } else {
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "Not support Memcpy typ : %s -> %s", src_place, dst_place));
  }
}

333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
void HandleComplexGradToRealGrad(const OpFuncNode& op_func_node,
                                 const platform::Place& place,
                                 const VariableNameMap& out_names,
                                 VariableValueMap* out_vars,
                                 VariableScope* var_scope,
                                 std::vector<OpFuncNode>* op_func_nodes,
                                 framework::Scope* local_scope) {
  DataTranferHelper data_transfer_helper(place, var_scope);
  for (auto& var_name_item : out_names) {
    std::vector<Variable*>& vars = out_vars->at(var_name_item.first);
    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      // 1. find grad_var & check whether is complex tensor
      auto var_name = var_name_item.second[i];
      auto orig_var_name = framework::GradOriginalVarName(var_name);
      // only focus on gradient var
      if (var_name == orig_var_name) {
        VLOG(3) << "skip " << var_name << " with same name as "
                << orig_var_name;
        continue;
      }
      auto* grad_var = vars[i];
      // skip nullptr var
      if (grad_var == nullptr) {
        VLOG(3) << "skip grad_var with nullptr";
        continue;
      }
      // don't process LoDTensorArray temporarily,
      // add support if necessary for complex number calculations in the future
      if (!framework::VarIsTensor(*grad_var)) {
        VLOG(3) << "skip grad_var with LoDTensorArray type";
        continue;
      }
      auto* grad_tensor =
          framework::GetMutableLoDTensorOrSelectedRowsValueFromVar(grad_var);
      // skip nullptr tensor
      if (grad_tensor == nullptr || !grad_tensor->IsInitialized()) {
        VLOG(3) << "skip with grad_tensor not IsInitialized";
        continue;
      }
      // only focus on complex dtype now
      auto src_type = grad_tensor->type();
      if (!framework::IsComplexType(src_type)) {
        VLOG(3) << "skip grad_tensor with not complexType";
        continue;
      }

      // 2. find forward var & check whether need to cast
      auto* var = var_scope->FindVar(orig_var_name);
      // if forward var not exists, do nothing
      if (var == nullptr) {
        VLOG(3) << "skip " << orig_var_name << " with not found in var_scope";
        continue;
      }
      if (!framework::VarIsTensor(*var)) {
        VLOG(3) << "skip " << orig_var_name << " with LoDTensorArray.";
        continue;
      }
      const auto* tensor =
          framework::GetLoDTensorOrSelectedRowsValueFromVar(*var);
      PADDLE_ENFORCE_NOT_NULL(
          tensor,
          platform::errors::Unavailable(
              "Forward tensor is nullptr when handle complex data to real."));
      // only need record type, the allocation may have been released
      auto dst_type = tensor->saved_type();
      // only focus on real dtype and need casting
      if (framework::IsComplexType(dst_type)) {
        continue;
      }

      // 3. cast complex grad to real grad inplacely
      VLOG(3) << "Transform " << framework::DataTypeToString(src_type)
              << " var `" << var_name << "` to "
              << framework::DataTypeToString(dst_type)
              << " real var in static graph.";

      // NOTE(Aurelius84): Consider to define a complex2real op to deal this
      // case.
      std::string new_var_name;
      auto op = TransferDtype(var_name, &new_var_name, src_type, dst_type,
                              var_scope, local_scope);
      data_transfer_helper.RunAndConstructOpFuncNode(op, var_name, new_var_name,
                                                     op_func_nodes);
      data_transfer_helper.RunAndConstructShareNode(new_var_name, var_name,
                                                    op_func_nodes);
    }
  }
}

422 423 424
}  // namespace interpreter
}  // namespace framework
}  // namespace paddle