ProcessGroupNCCL.cc 47.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/distributed/collective/ProcessGroupNCCL.h"
16

L
lilong12 已提交
17
#include "paddle/fluid/distributed/collective/Common.h"
18
#include "paddle/fluid/distributed/collective/utils.h"
19
#include "paddle/fluid/platform/device/gpu/nccl_helper.h"
20
#include "paddle/fluid/platform/place.h"
L
LiYuRio 已提交
21
#include "paddle/phi/api/lib/utils/allocator.h"
22 23 24 25 26 27 28 29 30

DECLARE_bool(nccl_blocking_wait);
DECLARE_bool(use_stream_safe_cuda_allocator);

constexpr int64_t kWaitBlockTImeout = 10;

namespace paddle {
namespace distributed {

31 32 33 34 35 36 37
ProcessGroupNCCL::NCCLTask::NCCLTask(const Place& place,
                                     int rank,
                                     CommType comm_type,
                                     bool sync_op,
                                     bool use_calc_stream)
    : TaskStream(rank, comm_type, sync_op, use_calc_stream),
      comm_event_(place),
W
Wen Sun 已提交
38
      task_place_(place) {}
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57

ProcessGroupNCCL::NCCLTask::~NCCLTask() {}

bool ProcessGroupNCCL::NCCLTask::IsCompleted() { return comm_event_.Query(); }

void ProcessGroupNCCL::NCCLTask::UpdateWaitChain(
    const phi::DeviceContext& ctx) {
  comm_event_.Record(&ctx);
}

// TODO(sheniang03): Add timeout for wait, now timeout unused
bool ProcessGroupNCCL::NCCLTask::Wait(std::chrono::milliseconds timeout) {
  // Warning here when use calc stream but also invoke waiting explicitly.
  if (UseCalcStream()) {
    VLOG(3) << "Warning: The communication is on calc stream, wait here is "
               "useless.";
    return true;
  }

W
Wen Sun 已提交
58 59 60
  const auto* calc_ctx =
      platform::DeviceContextPool::Instance().Get(task_place_);
  comm_event_.Wait(platform::Place2DeviceType(task_place_), calc_ctx);
61 62 63 64 65 66

  if (FLAGS_nccl_blocking_wait) {
    // NOTE(shenliang03): It will block host for sync
    while (!IsCompleted()) {
      std::this_thread::sleep_for(std::chrono::milliseconds(kWaitBlockTImeout));
    }
67
  }
68

W
Wen Sun 已提交
69
  if (IsBlockCPUInWait()) {
70 71 72 73 74 75 76 77
    // If we use the work to do barrier, we should block cpu
#ifdef PADDLE_WITH_CUDA
    PADDLE_ENFORCE_GPU_SUCCESS(cudaDeviceSynchronize());
#else
    PADDLE_ENFORCE_GPU_SUCCESS(hipDeviceSynchronize());
#endif
  }
  return true;
78 79
}

80 81 82 83 84 85 86
// Same as Wait
void ProcessGroupNCCL::NCCLTask::Synchronize() { Wait(kWaitTimeout); }

ProcessGroupNCCL::ProcessGroupNCCL(const std::shared_ptr<Store>& store,
                                   int rank,
                                   int size,
                                   int gid)
87
    : ProcessGroupStream(rank, size, gid), store_(store) {}
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132

void ProcessGroupNCCL::GroupStart() {
  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupStart());
}

void ProcessGroupNCCL::GroupEnd() {
  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupEnd());
}

const phi::DeviceContext& ProcessGroupNCCL::GetDeviceContext(
    const Place& place) const {
  return GetDeviceContext(place, /*use_calc_stream*/ false);
}

const phi::DeviceContext& ProcessGroupNCCL::GetDeviceContext(
    const Place& place, bool use_calc_stream) const {
  const std::string& key = GetKeyFromPlace(place);
  if (use_calc_stream) {
    const auto& iter = place_to_calc_ctx_.find(key);
    return *iter->second;
  } else {
    const auto& iter = place_to_comm_ctx_.find(key);
    PADDLE_ENFORCE_NE(
        iter,
        place_to_comm_ctx_.end(),
        platform::errors::NotFound(
            "Cannot find the device context in this process group."));
    return *iter->second;
  }
}

ncclComm_t ProcessGroupNCCL::NCCLComm(const Place& place) const {
  const std::string& key = GetKeyFromPlace(place);
  const auto& iter = place_to_comm_ctx_.find(key);
  PADDLE_ENFORCE_NE(
      iter,
      place_to_comm_ctx_.end(),
      platform::errors::NotFound(
          "Cannot find the NCCL commmunicator in this process group."));
  return iter->second->nccl_comm();
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllGather(
    phi::DenseTensor* out_tensor,
    const phi::DenseTensor& in_tensor,
133 134
    int64_t offset,
    int64_t numel,
135 136
    bool sync_op,
    bool use_calc_stream) {
137 138 139
  // numel > 0 indicates the tensor need to be sliced
  const phi::DenseTensor& in_tensor_maybe_partial =
      numel > 0 ? GetPartialTensor(in_tensor, offset, numel) : in_tensor;
140 141
  return Collective(
      out_tensor,
142 143 144 145 146
      in_tensor_maybe_partial,
      [](phi::DenseTensor* output,
         const phi::DenseTensor& input,
         ncclComm_t comm,
         gpuStream_t stream) {
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
        return platform::dynload::ncclAllGather(
            input.data(),
            output->data(),
            input.numel(),
            platform::ToNCCLDataType(input.dtype()),
            comm,
            stream);
      },
      CommType::ALLGATHER,
      sync_op,
      use_calc_stream);
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllReduce(
    phi::DenseTensor* out_tensor,
    const phi::DenseTensor& in_tensor,
    const AllreduceOptions& opts,
    bool sync_op,
    bool use_calc_stream) {
  return Collective(
      out_tensor,
      in_tensor,
      [&](phi::DenseTensor* output,
          const phi::DenseTensor& input,
          ncclComm_t comm,
172
          gpuStream_t stream) {
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
        return platform::dynload::ncclAllReduce(
            input.data(),
            output->data(),
            input.numel(),
            platform::ToNCCLDataType(input.type()),
            ToNCCLRedType(opts.reduce_op),
            comm,
            stream);
      },
      CommType::ALLREDUCE,
      sync_op,
      use_calc_stream);
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Barrier(
    const BarrierOptions& opts) {
189 190 191 192 193
  PADDLE_ENFORCE_GE(opts.device_id,
                    0,
                    platform::errors::PreconditionNotMet(
                        "The barrier device id must greater or equal than 0."));
  platform::CUDAPlace place(opts.device_id);
194
  auto allocator = std::unique_ptr<phi::Allocator>(
195
      new paddle::experimental::DefaultAllocator(place));
196 197 198 199 200 201 202 203 204
  phi::DenseTensorMeta meta(phi::DataType::FLOAT32, phi::DDim{1});
  phi::DenseTensor barrier_tensor{allocator.get(), meta};

  auto task = AllReduce(&barrier_tensor,
                        barrier_tensor,
                        {},
                        /*sync_op*/ true,
                        /*use_calc_stream*/ false);
  auto nccl_task = dynamic_cast<NCCLTask*>(task.get());
W
Wen Sun 已提交
205
  nccl_task->SetBlockCPUInWait();
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
  return task;
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Broadcast(
    phi::DenseTensor* out_tensor,
    const phi::DenseTensor& in_tensor,
    const BroadcastOptions& opts,
    bool sync_op,
    bool use_calc_stream) {
  return Collective(
      out_tensor,
      in_tensor,
      [&](phi::DenseTensor* output,
          const phi::DenseTensor& input,
          ncclComm_t comm,
221
          gpuStream_t stream) {
222 223 224 225 226 227 228 229 230 231 232 233 234
        int root = opts.source_rank + opts.source_root;
        return platform::dynload::ncclBroadcast(
            input.data(),
            output->data(),
            input.numel(),
            platform::ToNCCLDataType(input.type()),
            root,
            comm,
            stream);
      },
      CommType::BROADCAST,
      sync_op,
      use_calc_stream);
235 236
}

237 238 239 240
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Recv(
    phi::DenseTensor* tensor,
    int src_rank,
    int64_t offset,
241
    int64_t numel,
242 243
    bool sync_op,
    bool use_calc_stream) {
244 245 246 247 248 249
  // numel > 0 indicates the tensor need to be sliced
  phi::DenseTensor partial_tensor;
  if (numel > 0) {
    partial_tensor = GetPartialTensor(*tensor, offset, numel);
    tensor = &partial_tensor;
  }
250
  return PointToPoint(
251
      tensor,
252
      src_rank,
253 254 255 256
      [](phi::DenseTensor* output,
         int src,
         ncclComm_t comm,
         gpuStream_t stream) {
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
        return platform::dynload::ncclRecv(
            output->data(),
            output->numel(),
            platform::ToNCCLDataType(output->dtype()),
            src,
            comm,
            stream);
      },
      CommType::RECV,
      sync_op,
      use_calc_stream);
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Send(
    phi::DenseTensor* tensor,
    int dst_rank,
    int64_t offset,
274
    int64_t numel,
275 276
    bool sync_op,
    bool use_calc_stream) {
277 278 279 280 281 282
  // numel > 0 indicates the tensor need to be sliced
  phi::DenseTensor partial_tensor;
  if (numel > 0) {
    partial_tensor = GetPartialTensor(*tensor, offset, numel);
    tensor = &partial_tensor;
  }
283
  return PointToPoint(
284
      tensor,
285
      dst_rank,
286 287 288 289
      [](phi::DenseTensor* input,
         int dst,
         ncclComm_t comm,
         gpuStream_t stream) {
290 291 292 293 294 295 296 297 298 299 300 301 302
        return platform::dynload::ncclSend(
            input->data(),
            input->numel(),
            platform::ToNCCLDataType(input->dtype()),
            dst,
            comm,
            stream);
      },
      CommType::SEND,
      sync_op,
      use_calc_stream);
}

303
std::shared_ptr<ProcessGroupNCCL::NCCLTask> ProcessGroupNCCL::CreateTask(
304
    const Place& place,
305 306 307 308 309
    int rank,
    CommType comm_type,
    bool is_sync,
    bool use_calc_stream) {
  return std::make_shared<ProcessGroupNCCL::NCCLTask>(
310
      place, rank, comm_type, is_sync, use_calc_stream);
311 312
}

313 314 315 316 317 318 319 320 321 322 323 324
void ProcessGroupNCCL::BroadcastUniqueNCCLID(ncclUniqueId* nccl_id) {
  const std::string key =
      "ProcessGroupNCCL/nccl_ids/" + std::to_string(gid_) + "/0";
  if (rank_ == 0) {
    std::vector<uint8_t> nccl_id_wrapper(
        reinterpret_cast<uint8_t*>(nccl_id),
        reinterpret_cast<uint8_t*>(nccl_id) + NCCL_UNIQUE_ID_BYTES);
    store_->set(key, nccl_id_wrapper);
  } else {
    const auto& nccl_id_wrapper = store_->get(key);
    std::memcpy(nccl_id, nccl_id_wrapper.data(), nccl_id_wrapper.size());
  }
325 326
}

327 328
void ProcessGroupNCCL::CreateNCCLEnvCache(const Place& place,
                                          const std::string& place_key) {
W
Wen Sun 已提交
329 330 331 332
  if (place_to_comm_ctx_.size() > 0) {
    VLOG(3) << "Warning: Tensors from multiple devices are not supported yet.";
  }

333 334 335 336 337
  ncclUniqueId nccl_id;
  if (rank_ == 0) {
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGetUniqueId(&nccl_id));
  }
  BroadcastUniqueNCCLID(&nccl_id);
338

339 340 341
  VLOG(3) << "init nccl rank: " << rank_ << ", nranks: " << size_
          << ", place: " << place_key
          << ", nccl uniqueid: " << SerializeNCCLUniqueId(nccl_id);
342

343 344 345 346 347 348 349 350
  auto* calc_ctx = static_cast<phi::GPUContext*>(
      platform::DeviceContextPool::Instance().Get(place));
  auto comm_ctx = std::make_unique<phi::GPUContext>(place);
  ncclComm_t nccl_comm;
  NCCLCHECK(platform::dynload::ncclCommInitRank(
      &nccl_comm, GetSize(), nccl_id, GetRank()));
  comm_ctx->set_nccl_comm(nccl_comm);

W
Wen Sun 已提交
351 352 353
  place_to_calc_event_.emplace(place_key, place);
  place_to_calc_ctx_.emplace(place_key, calc_ctx);
  place_to_comm_ctx_.emplace(place_key, std::move(comm_ctx));
354 355

  // TODO(sunyilun): for compatibility, will be removed later
W
Wen Sun 已提交
356 357 358
  std::vector<phi::GPUContext*> comm_ctx_wrapper{
      place_to_comm_ctx_[place_key].get()};
  places_to_ctx_.emplace(place_key, comm_ctx_wrapper);
359 360
}

W
Wen Sun 已提交
361
void ProcessGroupNCCL::SyncCalcStream(const Place& place) {
362
  const std::string& key = GetKeyFromPlace(place);
W
Wen Sun 已提交
363 364 365 366 367
  auto& calc_event = place_to_calc_event_.at(key);
  const auto* calc_ctx = place_to_calc_ctx_.at(key);
  const auto* comm_ctx = place_to_comm_ctx_.at(key).get();
  calc_event.Record(calc_ctx);
  calc_event.Wait(platform::Place2DeviceType(place), comm_ctx);
368 369
}

370 371 372 373 374 375 376 377 378 379 380
template <typename Fn>
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Collective(
    phi::DenseTensor* out_tensor,
    const phi::DenseTensor& in_tensor,
    Fn fn,
    CommType comm_type,
    bool sync_op,
    bool use_calc_stream) {
  const auto& place = in_tensor.place();
  const auto& key = GetKeyFromPlace(place);

W
Wen Sun 已提交
381 382 383
  platform::CUDADeviceGuard cuda_guard(place);

  if (place_to_comm_ctx_.find(key) == place_to_comm_ctx_.end()) {
384
    CreateNCCLEnvCache(place, key);
385 386
  }

387
  if (!use_calc_stream) {
W
Wen Sun 已提交
388
    SyncCalcStream(place);
389
  }
390

391 392
  auto task = CreateTask(place, rank_, comm_type, sync_op, use_calc_stream);

W
Wen Sun 已提交
393 394 395
  const auto* calc_ctx = place_to_calc_ctx_.at(key);
  const auto& comm_ctx = place_to_comm_ctx_.at(key);
  auto nccl_comm = comm_ctx->nccl_comm();
396
  auto nccl_stream = use_calc_stream ? calc_ctx->stream() : comm_ctx->stream();
W
Wen Sun 已提交
397
  fn(out_tensor, in_tensor, nccl_comm, nccl_stream);
398 399 400 401 402

  if (!use_calc_stream) {
    if (FLAGS_use_stream_safe_cuda_allocator) {
      memory::RecordStream(in_tensor.Holder(), nccl_stream);
    }
W
Wen Sun 已提交
403
    task->UpdateWaitChain(*comm_ctx);
404 405 406
  }

  return task;
407 408
}

409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
template <typename Fn>
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::PointToPoint(
    phi::DenseTensor* tensor,
    int rank,
    Fn fn,
    CommType comm_type,
    bool sync_op,
    bool use_calc_stream) {
  const auto& place = tensor->place();
  const auto& key = GetKeyFromPlace(place);

  platform::CUDADeviceGuard cuda_guard(place);

  if (place_to_comm_ctx_.find(key) == place_to_comm_ctx_.end()) {
    CreateNCCLEnvCache(place, key);
  }

  if (!use_calc_stream) {
    SyncCalcStream(place);
  }

  auto task = CreateTask(place, rank_, comm_type, sync_op, use_calc_stream);

  const auto* calc_ctx = place_to_calc_ctx_.at(key);
  const auto& comm_ctx = place_to_comm_ctx_.at(key);
  auto nccl_comm = comm_ctx->nccl_comm();
  auto nccl_stream = use_calc_stream ? calc_ctx->stream() : comm_ctx->stream();
  fn(tensor, rank, nccl_comm, nccl_stream);

  if (!use_calc_stream) {
    if (FLAGS_use_stream_safe_cuda_allocator) {
      memory::RecordStream(tensor->Holder(), nccl_stream);
    }
    task->UpdateWaitChain(*comm_ctx);
  }

  return task;
}

448
void ProcessGroupNCCL::CheckSplitSizes(std::vector<int64_t>* split_sizes,
449
                                       std::vector<int64_t> tensor_shape) {
450
  int64_t len_size = (*split_sizes).size();
451 452 453 454 455 456
  if (len_size == 0) {
    PADDLE_ENFORCE_EQ(tensor_shape[0] % size_ == 0,
                      true,
                      platform::errors::InvalidArgument(
                          "Tensor's dim[0] must be divisible by group size "
                          "when split_sizes not given."));
457 458 459 460
    (*split_sizes)
        .insert((*split_sizes).end(),
                size_,
                static_cast<int64_t>(tensor_shape[0] / size_));
461 462 463 464 465 466 467
  } else {
    PADDLE_ENFORCE_EQ(
        len_size == size_,
        true,
        platform::errors::InvalidArgument(
            "The length of split_sizes must be equal to group size."));
    auto sum_size = std::accumulate(
468
        (*split_sizes).begin(), (*split_sizes).end(), static_cast<int64_t>(0));
469 470 471 472 473 474 475 476
    PADDLE_ENFORCE_EQ(
        sum_size == tensor_shape[0],
        true,
        platform::errors::InvalidArgument(
            "The sum of split_sizes must be equal to tensor's dim[0]."));
  }
}

477 478
// TODO(sunyilun): methods below will be removed later
void SyncDefaultStream(const std::vector<Place>& places,
W
Wen Sun 已提交
479
                       platform::DeviceEvent& nccl_event,         // NOLINT
480 481 482 483
                       std::vector<phi::GPUContext*>& dev_ctx) {  // NOLINT
  for (size_t i = 0; i < places.size(); ++i) {
    auto* default_ctx = static_cast<phi::GPUContext*>(
        platform::DeviceContextPool::Instance().Get(places[i]));
W
Wen Sun 已提交
484 485
    nccl_event.Record(default_ctx);
    nccl_event.Wait(platform::Place2DeviceType(places[i]), dev_ctx[i]);
B
Baibaifan 已提交
486
  }
487 488
}

489 490 491 492 493 494 495
std::shared_ptr<ProcessGroupNCCL::NCCLTask> ProcessGroupNCCL::CreateTask(
    std::vector<Place> places,
    int rank,
    CommType comm_type,
    const std::vector<phi::DenseTensor>& inputs) {
  return std::make_shared<ProcessGroupNCCL::NCCLTask>(
      places, rank, comm_type, inputs);
496
}
497

498 499 500 501 502 503 504 505 506
std::shared_ptr<ProcessGroupNCCL::NCCLTask> ProcessGroupNCCL::CreateTask(
    const std::vector<Place>& places,
    int rank,
    CommType comm_type,
    const std::vector<phi::DenseTensor>& inputs,
    bool is_sync,
    bool use_calc_stream) {
  return std::make_shared<ProcessGroupNCCL::NCCLTask>(
      places, rank, comm_type, inputs, is_sync, use_calc_stream);
507 508
}

509 510 511 512 513 514 515
ProcessGroupNCCL::NCCLTask::NCCLTask(
    const std::vector<Place>& places,
    int rank,
    CommType CommType,
    const std::vector<phi::DenseTensor>& inputs)
    : TaskStream(rank, inputs, CommType),
      comm_event_(places[0]),
W
Wen Sun 已提交
516
      task_place_(places[0]) {}
517 518 519 520 521 522 523 524 525 526

ProcessGroupNCCL::NCCLTask::NCCLTask(
    const std::vector<Place>& places,
    int rank,
    CommType comm_type,
    const std::vector<phi::DenseTensor>& inputs,
    bool sync_op,
    bool use_calc_stream)
    : TaskStream(rank, inputs, comm_type, sync_op, use_calc_stream),
      comm_event_(places[0]),
W
Wen Sun 已提交
527
      task_place_(places[0]) {}
528

529 530 531
// create NCCLManager cache for places_key
void ProcessGroupNCCL::CreateNCCLManagerCache(
    const std::string& places_key, const std::vector<Place>& places) {
532 533
  PADDLE_ENFORCE_EQ(places_key.empty(),
                    false,
534 535 536 537
                    platform::errors::PreconditionNotMet(
                        "Not able to create/get the NCCL Communicator since "
                        "the GPU place are not known"));

538
  ncclUniqueId nccl_id;
539 540 541
  if (rank_ == 0) {
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGetUniqueId(&nccl_id));
  }
542
  BroadcastUniqueNCCLID(&nccl_id);
543

544 545
  VLOG(3) << "init nccl rank: " << rank_ << ", nranks: " << size_
          << ", place: " << places_key
546 547
          << ", nccl uniqueid: " << SerializeNCCLUniqueId(nccl_id);

L
Leo Chen 已提交
548
  std::vector<std::unique_ptr<phi::GPUContext>> dev_ctx;
549 550
  dev_ctx.resize(places.size());

551 552 553
  std::vector<phi::GPUContext*> dev_ctx_raw;
  dev_ctx_raw.resize(places.size());

554 555 556 557
  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupStart());

  for (size_t i = 0; i < places.size(); ++i) {
    platform::CUDADeviceGuard guard(places[i]);
558

L
Leo Chen 已提交
559
    dev_ctx[i].reset(new phi::GPUContext(places[i]));
560 561 562 563 564
    ncclComm_t nccl_comm;
    NCCLCHECK(platform::dynload::ncclCommInitRank(
        &nccl_comm, GetSize(), nccl_id, GetRank()));
    dev_ctx[i]->set_nccl_comm(nccl_comm);
    dev_ctx_raw[i] = dev_ctx[i].get();
565 566 567 568
  }

  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupEnd());

569
  // TODO(sunyilun): for compatibility, will be removed later
W
Wen Sun 已提交
570 571 572 573 574 575
  place_to_calc_event_.emplace(places_key, places[0]);
  place_to_calc_ctx_.emplace(
      places_key,
      static_cast<phi::GPUContext*>(
          platform::DeviceContextPool::Instance().Get(places[0])));
  place_to_comm_ctx_.emplace(places_key, std::move(dev_ctx[0]));
576 577

  // These caches will be useful to process sync/wait/communicate
578
  places_to_ctx_.emplace(places_key, std::move(dev_ctx_raw));
579 580
}

581 582 583 584 585 586 587 588 589 590 591 592 593
template <typename Fn>
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Collective(
    std::vector<phi::DenseTensor>& inputs,
    std::vector<phi::DenseTensor>& outputs,
    Fn fn,
    CommType comm_type,
    bool sync_op,
    bool use_calc_stream) {
  const auto& places = GetPlaceList(inputs);
  const auto& key = GetKeyFromPlaces(places);

  {
    std::lock_guard<std::mutex> lock(mutex_);
W
Wen Sun 已提交
594
    if (place_to_comm_ctx_.find(key) == place_to_comm_ctx_.end()) {
595 596 597 598
      CreateNCCLManagerCache(key, places);
    }
  }

599
  if (!use_calc_stream) {
W
Wen Sun 已提交
600 601
    SyncDefaultStream(
        places, place_to_calc_event_.at(key), places_to_ctx_.at(key));
602
  }
603

604 605
  auto task =
      CreateTask(places, rank_, comm_type, inputs, sync_op, use_calc_stream);
606 607 608 609 610 611 612 613 614 615 616 617 618 619 620

  platform::CUDADeviceGuard cuda_guard;

  {
    platform::NCCLGroupGuard nccl_guard;
    for (size_t i = 0; i < inputs.size(); ++i) {
      cuda_guard.SetDevice(places[i]);

      gpuStream_t nccl_stream;
      if (use_calc_stream) {
        nccl_stream =
            static_cast<phi::GPUContext*>(
                platform::DeviceContextPool::Instance().Get(places[i]))
                ->stream();
      } else {
W
Wen Sun 已提交
621
        nccl_stream = places_to_ctx_.at(key)[i]->stream();
622 623
      }

624 625
      fn(inputs[i],
         outputs[i],
W
Wen Sun 已提交
626
         places_to_ctx_.at(key)[i]->nccl_comm(),
627
         nccl_stream);
628 629 630 631 632 633 634 635 636 637 638 639 640 641
    }
  }

  if (FLAGS_use_stream_safe_cuda_allocator) {
    for (size_t i = 0; i < inputs.size(); ++i) {
      cuda_guard.SetDevice(places[i]);

      gpuStream_t nccl_stream;
      if (use_calc_stream) {
        nccl_stream =
            static_cast<phi::GPUContext*>(
                platform::DeviceContextPool::Instance().Get(places[i]))
                ->stream();
      } else {
W
Wen Sun 已提交
642
        nccl_stream = places_to_ctx_.at(key)[i]->stream();
643 644 645 646 647 648 649 650 651 652
      }

      memory::RecordStream(inputs[i].Holder(), nccl_stream);
    }
  }

  // Adding stream event dependency only when use comm stream
  if (!use_calc_stream) {
    for (size_t i = 0; i < inputs.size(); ++i) {
      cuda_guard.SetDevice(places[i]);
W
Wen Sun 已提交
653
      task->UpdateWaitChain(*places_to_ctx_.at(key)[i]);
654 655 656 657 658 659
    }
  }

  return task;
}

660 661
template <typename Fn>
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Collective(
662
    std::vector<phi::DenseTensor>& inputs,
663 664 665
    std::vector<phi::DenseTensor>& outputs,
    Fn fn,
    CommType op_type) {
666 667 668 669 670
  const auto places = GetPlaceList(inputs);
  const auto key = GetKeyFromPlaces(places);

  {
    std::lock_guard<std::mutex> lock(mutex_);
W
Wen Sun 已提交
671
    if (place_to_comm_ctx_.find(key) == place_to_comm_ctx_.end()) {
672 673 674 675
      CreateNCCLManagerCache(key, places);
    }
  }

W
Wen Sun 已提交
676 677
  SyncDefaultStream(
      places, place_to_calc_event_.at(key), places_to_ctx_.at(key));
678 679 680 681 682 683

  auto task = CreateTask(places, rank_, op_type, inputs);

  // construct uninitialize guard for device
  platform::CUDADeviceGuard cuda_guard;

S
ShenLiang 已提交
684 685
  {
    platform::NCCLGroupGuard nccl_guard;
686 687
    for (size_t i = 0; i < inputs.size(); ++i) {
      cuda_guard.SetDevice(places[i]);
W
Wen Sun 已提交
688
      const auto& nccl_stream = places_to_ctx_.at(key)[i]->stream();
689 690
      fn(inputs[i],
         outputs[i],
W
Wen Sun 已提交
691
         places_to_ctx_.at(key)[i]->nccl_comm(),
692
         nccl_stream);
693 694 695
    }
  }

S
ShenLiang 已提交
696
  if (FLAGS_use_stream_safe_cuda_allocator) {
697 698
    for (size_t i = 0; i < inputs.size(); ++i) {
      cuda_guard.SetDevice(places[i]);
S
ShenLiang 已提交
699
      memory::RecordStream(inputs[i].Holder(),
W
Wen Sun 已提交
700
                           places_to_ctx_.at(key)[i]->stream());
701 702 703 704 705
    }
  }

  for (size_t i = 0; i < inputs.size(); ++i) {
    cuda_guard.SetDevice(places[i]);
W
Wen Sun 已提交
706
    task->UpdateWaitChain(*places_to_ctx_.at(key)[i]);
707 708 709 710
  }
  return task;
}

711 712
template <typename Fn>
void ProcessGroupNCCL::Collective(const phi::DenseTensor* in,
713 714
                                  phi::DenseTensor* out,
                                  Fn fn,
715 716 717
                                  CommType op_type) {
  std::vector<Place> places;
  places.push_back(in->place());
718
  const std::string& key = GetKeyFromPlaces(places);
719 720 721

  {
    std::lock_guard<std::mutex> lock(mutex_);
W
Wen Sun 已提交
722
    if (place_to_comm_ctx_.find(key) == place_to_comm_ctx_.end()) {
723 724 725 726
      CreateNCCLManagerCache(key, places);
    }
  }

W
Wen Sun 已提交
727 728
  SyncDefaultStream(
      places, place_to_calc_event_.at(key), places_to_ctx_.at(key));
729 730 731 732 733 734

  // construct uninitialize guard for device
  platform::CUDADeviceGuard cuda_guard;

  if (FLAGS_use_stream_safe_cuda_allocator) {
    cuda_guard.SetDevice(places[0]);
W
Wen Sun 已提交
735
    memory::RecordStream(in->Holder(), places_to_ctx_.at(key)[0]->stream());
736 737 738 739 740
  }

  {
    platform::NCCLGroupGuard nccl_guard;
    cuda_guard.SetDevice(places[0]);
W
Wen Sun 已提交
741 742
    const auto& nccl_stream = places_to_ctx_.at(key)[0]->stream();
    fn(in, out, places_to_ctx_.at(key)[0]->nccl_comm(), nccl_stream);
743 744 745 746 747
  }

  cuda_guard.SetDevice(places[0]);
}

748 749 750 751 752 753 754 755 756 757 758 759 760
template <typename Fn>
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::PointToPoint(
    std::vector<phi::DenseTensor>& tensors,
    Fn fn,
    int dst_rank,
    CommType op_type,
    bool sync_op,
    bool use_calc_stream) {
  const auto& places = GetPlaceList(tensors);
  const auto& key = GetKeyFromPlaces(places);

  {
    std::lock_guard<std::mutex> lock(mutex_);
W
Wen Sun 已提交
761
    if (place_to_comm_ctx_.find(key) == place_to_comm_ctx_.end()) {
762 763 764 765 766
      CreateNCCLManagerCache(key, places);
    }
  }

  if (!use_calc_stream) {
W
Wen Sun 已提交
767 768
    SyncDefaultStream(
        places, place_to_calc_event_.at(key), places_to_ctx_.at(key));
769 770 771 772 773 774 775
  }

  auto task =
      CreateTask(places, rank_, op_type, tensors, sync_op, use_calc_stream);

  platform::CUDADeviceGuard cuda_guard;

776 777
  {
    platform::NCCLGroupGuard nccl_guard;
778 779 780 781 782 783 784 785 786
    for (size_t i = 0; i < tensors.size(); ++i) {
      cuda_guard.SetDevice(places[i]);
      gpuStream_t nccl_stream;
      if (use_calc_stream) {
        nccl_stream =
            static_cast<phi::GPUContext*>(
                platform::DeviceContextPool::Instance().Get(places[i]))
                ->stream();
      } else {
W
Wen Sun 已提交
787
        nccl_stream = places_to_ctx_.at(key)[i]->stream();
788
      }
789
      fn(tensors[i],
W
Wen Sun 已提交
790
         places_to_ctx_.at(key)[i]->nccl_comm(),
791 792
         nccl_stream,
         dst_rank);
793 794 795
    }
  }

796
  if (FLAGS_use_stream_safe_cuda_allocator) {
797 798 799 800 801 802 803 804 805
    for (size_t i = 0; i < tensors.size(); ++i) {
      cuda_guard.SetDevice(places[i]);
      gpuStream_t nccl_stream;
      if (use_calc_stream) {
        nccl_stream =
            static_cast<phi::GPUContext*>(
                platform::DeviceContextPool::Instance().Get(places[i]))
                ->stream();
      } else {
W
Wen Sun 已提交
806
        nccl_stream = places_to_ctx_.at(key)[i]->stream();
807
      }
808
      memory::RecordStream(tensors[i].Holder(), nccl_stream);
809 810 811 812 813 814
    }
  }

  if (!use_calc_stream) {
    for (size_t i = 0; i < tensors.size(); ++i) {
      cuda_guard.SetDevice(places[i]);
W
Wen Sun 已提交
815
      task->UpdateWaitChain(*places_to_ctx_.at(key)[i]);
816 817 818 819 820 821
    }
  }

  return task;
}

B
Baibaifan 已提交
822 823
template <typename Fn>
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::PointToPoint(
824 825 826
    std::vector<phi::DenseTensor>& tensors,
    Fn fn,
    int dst_rank,
827
    CommType op_type) {
B
Baibaifan 已提交
828 829 830 831 832
  const auto places = GetPlaceList(tensors);
  const auto key = GetKeyFromPlaces(places);

  {
    std::lock_guard<std::mutex> lock(mutex_);
W
Wen Sun 已提交
833
    if (place_to_comm_ctx_.find(key) == place_to_comm_ctx_.end()) {
B
Baibaifan 已提交
834 835 836 837
      CreateNCCLManagerCache(key, places);
    }
  }

W
Wen Sun 已提交
838 839
  SyncDefaultStream(
      places, place_to_calc_event_.at(key), places_to_ctx_.at(key));
B
Baibaifan 已提交
840 841 842 843 844 845

  auto task = CreateTask(places, rank_, op_type, tensors);

  // construct uninitialize guard for device
  platform::CUDADeviceGuard cuda_guard;

846 847
  {
    platform::NCCLGroupGuard nccl_guard;
B
Baibaifan 已提交
848 849
    for (size_t i = 0; i < tensors.size(); ++i) {
      cuda_guard.SetDevice(places[i]);
W
Wen Sun 已提交
850
      const auto& nccl_stream = places_to_ctx_.at(key)[i]->stream();
851
      fn(tensors[i],
W
Wen Sun 已提交
852
         places_to_ctx_.at(key)[i]->nccl_comm(),
853 854
         nccl_stream,
         dst_rank);
B
Baibaifan 已提交
855 856 857
    }
  }

858
  if (FLAGS_use_stream_safe_cuda_allocator) {
B
Baibaifan 已提交
859 860
    for (size_t i = 0; i < tensors.size(); ++i) {
      cuda_guard.SetDevice(places[i]);
861
      memory::RecordStream(tensors[i].Holder(),
W
Wen Sun 已提交
862
                           places_to_ctx_.at(key)[i]->stream());
B
Baibaifan 已提交
863 864 865 866 867
    }
  }

  for (size_t i = 0; i < tensors.size(); ++i) {
    cuda_guard.SetDevice(places[i]);
W
Wen Sun 已提交
868
    task->UpdateWaitChain(*places_to_ctx_.at(key)[i]);
B
Baibaifan 已提交
869 870 871 872
  }
  return task;
}

873
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllReduce(
874
    std::vector<phi::DenseTensor>& in_tensors,
875 876
    std::vector<phi::DenseTensor>& out_tensors,
    const AllreduceOptions& opts) {
877
  PADDLE_ENFORCE_EQ(
878 879
      CheckTensorsInCudaPlace(in_tensors),
      true,
880
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
881
  return Collective(
882 883 884 885 886 887
      in_tensors,
      out_tensors,
      [&](const phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream) {
888
        return platform::dynload::ncclAllReduce(
889 890 891
            input.data(),
            output.data(),
            input.numel(),
892
            platform::ToNCCLDataType(input.type()),
893 894 895
            ToNCCLRedType(opts.reduce_op),
            comm,
            stream);
896 897
      },
      CommType::ALLREDUCE);
898 899 900
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Broadcast(
901
    std::vector<phi::DenseTensor>& in_tensors,
902 903
    std::vector<phi::DenseTensor>& out_tensors,
    const BroadcastOptions& opts) {
904
  PADDLE_ENFORCE_EQ(
905 906
      CheckTensorsInCudaPlace(in_tensors),
      true,
907 908
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));

909
  return Collective(
910 911 912 913 914
      in_tensors,
      out_tensors,
      [&](phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
915 916 917 918
          const gpuStream_t& stream) {
        const auto root =
            opts.source_rank * in_tensors.size() + opts.source_root;
        return platform::dynload::ncclBroadcast(
919 920 921 922 923 924 925
            input.data(),
            output.data(),
            input.numel(),
            platform::ToNCCLDataType(input.type()),
            root,
            comm,
            stream);
926 927
      },
      CommType::BROADCAST);
928 929
}

930 931
void CheckTensorsInDifferentDevices(
    const std::vector<phi::DenseTensor>& tensors, const size_t num_devices) {
B
Baibaifan 已提交
932
  PADDLE_ENFORCE_EQ(
933 934
      tensors.size() == 0,
      false,
B
Baibaifan 已提交
935 936
      platform::errors::InvalidArgument("Tensor list must be nonempty."));
  PADDLE_ENFORCE_LE(
937 938
      tensors.size(),
      num_devices,
B
Baibaifan 已提交
939 940 941 942 943 944
      platform::errors::InvalidArgument(
          "Tensor list mustn't be larger than the number of available GPUs."));

  std::set<Place> used_devices;

  for (const auto& t : tensors) {
945 946
    PADDLE_ENFORCE_EQ(platform::is_gpu_place(t.place()),
                      true,
B
Baibaifan 已提交
947 948 949
                      platform::errors::InvalidArgument(
                          "Tensors must be CUDA and dense tensor."));

950
    const auto inserted = used_devices.insert(t.place()).second;
951 952
    PADDLE_ENFORCE_EQ(inserted,
                      true,
B
Baibaifan 已提交
953 954 955 956 957 958
                      platform::errors::InvalidArgument(
                          "Tensors must be on distinct GPU devices."));
  }
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Send(
959
    std::vector<phi::DenseTensor>& tensors, int dst_rank) {
B
Baibaifan 已提交
960 961
  CheckTensorsInDifferentDevices(tensors, static_cast<size_t>(GetSize()));

962 963
  auto task = PointToPoint(
      tensors,
964 965 966
      [&](phi::DenseTensor& input,
          ncclComm_t comm,
          const gpuStream_t& stream,
967 968
          int dst_rank) {
        return platform::dynload::ncclSend(
969 970 971 972 973 974
            input.data(),
            input.numel(),
            platform::ToNCCLDataType(input.dtype()),
            dst_rank,
            comm,
            stream);
975
      },
976 977
      dst_rank,
      CommType::SEND);
B
Baibaifan 已提交
978 979 980 981
  return task;
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Recv(
982
    std::vector<phi::DenseTensor>& tensors, int src_rank) {
B
Baibaifan 已提交
983 984
  CheckTensorsInDifferentDevices(tensors, static_cast<size_t>(GetSize()));

985 986
  auto task = PointToPoint(
      tensors,
987 988 989
      [&](phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream,
990 991
          int src_rank) {
        return platform::dynload::ncclRecv(
992 993 994 995 996 997
            output.data(),
            output.numel(),
            platform::ToNCCLDataType(output.dtype()),
            src_rank,
            comm,
            stream);
998
      },
999 1000
      src_rank,
      CommType::RECV);
1001 1002 1003
  return task;
}

1004
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllGather(
1005 1006
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors) {
1007
  PADDLE_ENFORCE_EQ(
1008 1009
      CheckTensorsInCudaPlace(in_tensors),
      true,
1010 1011
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  PADDLE_ENFORCE_EQ(
1012 1013
      CheckTensorsInCudaPlace(out_tensors),
      true,
1014
      platform::errors::InvalidArgument("All outputs should be in CudaPlace."));
1015
  return Collective(
1016 1017 1018 1019 1020 1021
      in_tensors,
      out_tensors,
      [&](const phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream) {
1022
        return platform::dynload::ncclAllGather(
1023 1024 1025 1026 1027 1028
            input.data(),
            output.data(),
            input.numel(),
            platform::ToNCCLDataType(input.dtype()),
            comm,
            stream);
1029 1030
      },
      CommType::ALLGATHER);
1031 1032
}

1033 1034
void* GetPointerByOffset(void* raw_pointer,
                         size_t offset,
1035 1036 1037 1038 1039 1040 1041
                         experimental::DataType type) {
  if (type == experimental::DataType::FLOAT32) {
    return reinterpret_cast<void*>(reinterpret_cast<float*>(raw_pointer) +
                                   offset);
  } else if (type == experimental::DataType::FLOAT64) {
    return reinterpret_cast<void*>(reinterpret_cast<double*>(raw_pointer) +
                                   offset);
1042 1043 1044
  } else if (type == experimental::DataType::FLOAT16) {
    return reinterpret_cast<void*>(reinterpret_cast<int16_t*>(raw_pointer) +
                                   offset);
1045 1046 1047 1048 1049 1050
  } else if (type == experimental::DataType::INT32) {
    return reinterpret_cast<void*>(reinterpret_cast<int32_t*>(raw_pointer) +
                                   offset);
  } else if (type == experimental::DataType::INT64) {
    return reinterpret_cast<void*>(reinterpret_cast<int64_t*>(raw_pointer) +
                                   offset);
1051 1052 1053 1054 1055 1056 1057 1058
  } else if (type == experimental::DataType::INT8) {
    return reinterpret_cast<void*>(reinterpret_cast<int8_t*>(raw_pointer) +
                                   offset);
  } else if (type == experimental::DataType::UINT8) {
    return reinterpret_cast<void*>(reinterpret_cast<uint8_t*>(raw_pointer) +
                                   offset);
  } else if (type == experimental::DataType::BOOL) {
    return reinterpret_cast<void*>(reinterpret_cast<bool*>(raw_pointer) +
1059
                                   offset);
1060 1061 1062
  } else if (type == experimental::DataType::BFLOAT16) {
    return reinterpret_cast<void*>(reinterpret_cast<uint16_t*>(raw_pointer) +
                                   offset);
1063 1064
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
1065
        "Datatype %s in NCCL is not supported.", type));
1066
  }
1067
  return nullptr;
1068 1069 1070
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllToAll(
1071 1072
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors) {
1073
  PADDLE_ENFORCE_EQ(
1074 1075
      CheckTensorsInCudaPlace(in_tensors),
      true,
1076 1077
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  PADDLE_ENFORCE_EQ(
1078 1079
      CheckTensorsInCudaPlace(out_tensors),
      true,
1080 1081
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  return Collective(
1082 1083 1084 1085 1086
      in_tensors,
      out_tensors,
      [&](phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
1087 1088 1089 1090 1091
          const gpuStream_t& stream) {
        size_t offset = 0;
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupStart());
        for (auto i = 0; i < size_; i++) {
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclSend(
1092
              GetPointerByOffset(input.data(), offset, input.dtype()),
1093 1094 1095 1096 1097
              input.numel() / size_,
              platform::ToNCCLDataType(input.dtype()),
              i,
              comm,
              stream));
1098
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRecv(
1099
              GetPointerByOffset(output.data(), offset, input.dtype()),
1100 1101 1102 1103 1104
              input.numel() / size_,
              platform::ToNCCLDataType(input.dtype()),
              i,
              comm,
              stream));
1105
          offset += input.numel() / size_;
1106 1107 1108
        }
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupEnd());
      },
1109 1110 1111
      CommType::ALLTOALL);
}

1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllToAll(
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors,
    bool sync_op,
    bool use_calc_stream) {
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(in_tensors),
      true,
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(out_tensors),
      true,
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  return Collective(
      in_tensors,
      out_tensors,
      [&](phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream) {
        size_t offset = 0;
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupStart());
        for (auto i = 0; i < size_; i++) {
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclSend(
              GetPointerByOffset(input.data(), offset, input.dtype()),
              input.numel() / size_,
              platform::ToNCCLDataType(input.dtype()),
              i,
              comm,
              stream));
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRecv(
              GetPointerByOffset(output.data(), offset, input.dtype()),
              input.numel() / size_,
              platform::ToNCCLDataType(input.dtype()),
              i,
              comm,
              stream));
          offset += input.numel() / size_;
        }
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupEnd());
      },
      CommType::ALLTOALL,
      sync_op,
      use_calc_stream);
}

1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllToAll_Single(
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors,
    std::vector<int64_t>& in_sizes,
    std::vector<int64_t>& out_sizes) {
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(in_tensors),
      true,
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(out_tensors),
      true,
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  return Collective(
      in_tensors,
      out_tensors,
      [&](phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream) {
        PADDLE_ENFORCE_EQ(input.dtype() == output.dtype(),
                          true,
                          platform::errors::InvalidArgument(
                              "The dtypes of input and output must be equal."));

        std::vector<int64_t> in_dims = phi::vectorize(input.dims());
        std::vector<int64_t> out_dims = phi::vectorize(output.dims());
1185 1186
        CheckSplitSizes(&in_sizes, in_dims);
        CheckSplitSizes(&out_sizes, out_dims);
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217

        size_t in_offset = 0, out_offset = 0;
        size_t in_length = 0, out_length = 0;
        size_t in_row_size = input.numel() / in_dims[0];
        size_t out_row_size = output.numel() / out_dims[0];

        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupStart());
        for (auto i = 0; i < size_; i++) {
          in_length = in_sizes[i] * in_row_size;
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclSend(
              GetPointerByOffset(input.data(), in_offset, input.dtype()),
              in_length,
              platform::ToNCCLDataType(input.dtype()),
              i,
              comm,
              stream));
          in_offset += in_length;

          out_length = out_sizes[i] * out_row_size;
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRecv(
              GetPointerByOffset(output.data(), out_offset, input.dtype()),
              out_length,
              platform::ToNCCLDataType(input.dtype()),
              i,
              comm,
              stream));
          out_offset += out_length;
        }
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupEnd());
      },
      CommType::ALLTOALL_SINGLE);
1218 1219
}

1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllToAllSingle(
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors,
    std::vector<int64_t>& in_sizes,
    std::vector<int64_t>& out_sizes,
    bool sync_op,
    bool use_calc_stream) {
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(in_tensors),
      true,
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(out_tensors),
      true,
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  return Collective(
      in_tensors,
      out_tensors,
      [&](phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream) {
        PADDLE_ENFORCE_EQ(input.dtype() == output.dtype(),
                          true,
                          platform::errors::InvalidArgument(
                              "The dtypes of input and output must be equal."));

        std::vector<int64_t> in_dims = phi::vectorize(input.dims());
        std::vector<int64_t> out_dims = phi::vectorize(output.dims());
        CheckSplitSizes(&in_sizes, in_dims);
        CheckSplitSizes(&out_sizes, out_dims);

        size_t in_offset = 0, out_offset = 0;
        size_t in_length = 0, out_length = 0;
        size_t in_row_size = input.numel() / in_dims[0];
        size_t out_row_size = output.numel() / out_dims[0];

        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupStart());
        for (auto i = 0; i < size_; i++) {
          in_length = in_sizes[i] * in_row_size;
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclSend(
              GetPointerByOffset(input.data(), in_offset, input.dtype()),
              in_length,
              platform::ToNCCLDataType(input.dtype()),
              i,
              comm,
              stream));
          in_offset += in_length;

          out_length = out_sizes[i] * out_row_size;
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRecv(
              GetPointerByOffset(output.data(), out_offset, input.dtype()),
              out_length,
              platform::ToNCCLDataType(input.dtype()),
              i,
              comm,
              stream));
          out_offset += out_length;
        }
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupEnd());
      },
      CommType::ALLTOALL_SINGLE,
      sync_op,
      use_calc_stream);
}

1286
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Reduce(
1287
    std::vector<phi::DenseTensor>& in_tensors,
1288 1289
    std::vector<phi::DenseTensor>& out_tensors,
    const ReduceOptions& opts) {
1290
  PADDLE_ENFORCE_EQ(
1291 1292
      CheckTensorsInCudaPlace(in_tensors),
      true,
1293 1294
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  return Collective(
1295 1296 1297 1298 1299 1300
      in_tensors,
      out_tensors,
      [&](const phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream) {
1301
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclReduce(
1302 1303 1304
            input.data(),
            output.data(),
            input.numel(),
1305
            platform::ToNCCLDataType(input.dtype()),
1306 1307 1308 1309
            ToNCCLRedType(opts.reduce_op),
            opts.root_rank,
            comm,
            stream));
1310 1311 1312 1313
      },
      CommType::REDUCE);
}

1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Reduce(
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors,
    const ReduceOptions& opts,
    bool sync_op,
    bool use_calc_stream) {
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(in_tensors),
      true,
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  return Collective(
      in_tensors,
      out_tensors,
      [&](const phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream) {
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclReduce(
            input.data(),
            output.data(),
            input.numel(),
            platform::ToNCCLDataType(input.dtype()),
            ToNCCLRedType(opts.reduce_op),
            opts.root_rank,
            comm,
            stream));
      },
      CommType::REDUCE,
      sync_op,
      use_calc_stream);
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::ReduceScatter(
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors,
    const ReduceScatterOptions& opts,
    bool sync_op,
    bool use_calc_stream) {
  return Collective(
      in_tensors,
      out_tensors,
      [&](phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream) {
        if (FLAGS_use_stream_safe_cuda_allocator) {
          platform::CUDADeviceGuard cuda_guard;
          cuda_guard.SetDevice(output.place());
          memory::RecordStream(output.Holder(), stream);
        }
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclReduceScatter(
            input.data(),
            output.data(),
            output.numel(),
            platform::ToNCCLDataType(input.dtype()),
            ToNCCLRedType(opts.reduce_op),
            comm,
            stream));
      },
      CommType::REDUCE_SCATTER,
      sync_op,
      use_calc_stream);
}

1378
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Scatter(
1379
    std::vector<phi::DenseTensor>& in_tensors,
1380 1381
    std::vector<phi::DenseTensor>& out_tensors,
    const ScatterOptions& opts) {
1382
  PADDLE_ENFORCE_EQ(
1383 1384
      CheckTensorsInCudaPlace(in_tensors),
      true,
1385 1386
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  PADDLE_ENFORCE_EQ(
1387 1388
      CheckTensorsInCudaPlace(out_tensors),
      true,
1389 1390
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  return Collective(
1391 1392 1393 1394 1395
      in_tensors,
      out_tensors,
      [&](phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
1396 1397 1398 1399 1400 1401
          const gpuStream_t& stream) {
        size_t offset = 0;
        if (rank_ == opts.root_rank) {
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupStart());
          for (auto i = 0; i < size_; i++) {
            PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclSend(
1402
                GetPointerByOffset(input.data(), offset, input.dtype()),
1403 1404 1405 1406 1407
                input.numel() / size_,
                platform::ToNCCLDataType(input.dtype()),
                i,
                comm,
                stream));
1408
            offset += input.numel() / size_;
1409 1410
          }
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRecv(
1411 1412 1413 1414 1415
              output.data(),
              input.numel() / size_,
              platform::ToNCCLDataType(input.dtype()),
              opts.root_rank,
              comm,
1416 1417 1418 1419
              stream));
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupEnd());
        } else {
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRecv(
1420 1421 1422 1423 1424
              output.data(),
              input.numel() / size_,
              platform::ToNCCLDataType(input.dtype()),
              opts.root_rank,
              comm,
1425 1426 1427 1428 1429 1430
              stream));
        }
      },
      CommType::SCATTER);
}

1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Scatter(
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors,
    const ScatterOptions& opts,
    bool sync_op,
    bool use_calc_stream) {
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(in_tensors),
      true,
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(out_tensors),
      true,
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  return Collective(
      in_tensors,
      out_tensors,
      [&](phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream) {
        PADDLE_ENFORCE_EQ(
            output.numel(),
            input.numel() / size_,
            platform::errors::InvalidArgument(
                "Input and output tensors should have the same shape."));
        size_t offset = 0;
        if (rank_ == opts.root_rank) {
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupStart());
          for (auto i = 0; i < size_; i++) {
            PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclSend(
                GetPointerByOffset(input.data(), offset, input.dtype()),
                input.numel() / size_,
                platform::ToNCCLDataType(input.dtype()),
                i,
                comm,
                stream));
            offset += input.numel() / size_;
          }
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRecv(
              output.data(),
              input.numel() / size_,
              platform::ToNCCLDataType(input.dtype()),
              opts.root_rank,
              comm,
              stream));
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupEnd());
        } else {
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRecv(
              output.data(),
              input.numel() / size_,
              platform::ToNCCLDataType(input.dtype()),
              opts.root_rank,
              comm,
              stream));
        }
      },
      CommType::SCATTER,
      sync_op,
      use_calc_stream);
}

1493 1494
}  //  namespace distributed
}  //  namespace paddle