ProcessGroupNCCL.cc 54.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/distributed/collective/ProcessGroupNCCL.h"
16

L
lilong12 已提交
17
#include "paddle/fluid/distributed/collective/Common.h"
18
#include "paddle/fluid/platform/device/gpu/nccl_helper.h"
19
#include "paddle/fluid/platform/place.h"
L
LiYuRio 已提交
20
#include "paddle/phi/api/lib/utils/allocator.h"
21 22 23 24 25 26 27 28 29

DECLARE_bool(nccl_blocking_wait);
DECLARE_bool(use_stream_safe_cuda_allocator);

constexpr int64_t kWaitBlockTImeout = 10;

namespace paddle {
namespace distributed {

30 31 32 33 34 35 36
ProcessGroupNCCL::NCCLTask::NCCLTask(const Place& place,
                                     int rank,
                                     CommType comm_type,
                                     bool sync_op,
                                     bool use_calc_stream)
    : TaskStream(rank, comm_type, sync_op, use_calc_stream),
      comm_event_(place),
W
Wen Sun 已提交
37
      task_place_(place) {}
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

ProcessGroupNCCL::NCCLTask::~NCCLTask() {}

bool ProcessGroupNCCL::NCCLTask::IsCompleted() { return comm_event_.Query(); }

void ProcessGroupNCCL::NCCLTask::UpdateWaitChain(
    const phi::DeviceContext& ctx) {
  comm_event_.Record(&ctx);
}

// TODO(sheniang03): Add timeout for wait, now timeout unused
bool ProcessGroupNCCL::NCCLTask::Wait(std::chrono::milliseconds timeout) {
  // Warning here when use calc stream but also invoke waiting explicitly.
  if (UseCalcStream()) {
    VLOG(3) << "Warning: The communication is on calc stream, wait here is "
               "useless.";
    return true;
  }

W
Wen Sun 已提交
57 58 59
  const auto* calc_ctx =
      platform::DeviceContextPool::Instance().Get(task_place_);
  comm_event_.Wait(platform::Place2DeviceType(task_place_), calc_ctx);
60 61 62 63 64 65

  if (FLAGS_nccl_blocking_wait) {
    // NOTE(shenliang03): It will block host for sync
    while (!IsCompleted()) {
      std::this_thread::sleep_for(std::chrono::milliseconds(kWaitBlockTImeout));
    }
66
  }
67

W
Wen Sun 已提交
68
  if (IsBlockCPUInWait()) {
69 70 71 72 73 74 75 76
    // If we use the work to do barrier, we should block cpu
#ifdef PADDLE_WITH_CUDA
    PADDLE_ENFORCE_GPU_SUCCESS(cudaDeviceSynchronize());
#else
    PADDLE_ENFORCE_GPU_SUCCESS(hipDeviceSynchronize());
#endif
  }
  return true;
77 78
}

79 80 81 82 83 84 85
// Same as Wait
void ProcessGroupNCCL::NCCLTask::Synchronize() { Wait(kWaitTimeout); }

ProcessGroupNCCL::ProcessGroupNCCL(const std::shared_ptr<Store>& store,
                                   int rank,
                                   int size,
                                   int gid)
86
    : ProcessGroupStream(rank, size, gid), store_(store) {}
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139

void ProcessGroupNCCL::GroupStart() {
  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupStart());
}

void ProcessGroupNCCL::GroupEnd() {
  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupEnd());
}

const phi::DeviceContext& ProcessGroupNCCL::GetDeviceContext(
    const Place& place) const {
  return GetDeviceContext(place, /*use_calc_stream*/ false);
}

const phi::DeviceContext& ProcessGroupNCCL::GetDeviceContext(
    const Place& place, bool use_calc_stream) const {
  const std::string& key = GetKeyFromPlace(place);
  if (use_calc_stream) {
    const auto& iter = place_to_calc_ctx_.find(key);
    return *iter->second;
  } else {
    const auto& iter = place_to_comm_ctx_.find(key);
    PADDLE_ENFORCE_NE(
        iter,
        place_to_comm_ctx_.end(),
        platform::errors::NotFound(
            "Cannot find the device context in this process group."));
    return *iter->second;
  }
}

ncclComm_t ProcessGroupNCCL::NCCLComm(const Place& place) const {
  const std::string& key = GetKeyFromPlace(place);
  const auto& iter = place_to_comm_ctx_.find(key);
  PADDLE_ENFORCE_NE(
      iter,
      place_to_comm_ctx_.end(),
      platform::errors::NotFound(
          "Cannot find the NCCL commmunicator in this process group."));
  return iter->second->nccl_comm();
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllGather(
    phi::DenseTensor* out_tensor,
    const phi::DenseTensor& in_tensor,
    bool sync_op,
    bool use_calc_stream) {
  return Collective(
      out_tensor,
      in_tensor,
      [&](phi::DenseTensor* output,
          const phi::DenseTensor& input,
          ncclComm_t comm,
140
          gpuStream_t stream) {
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
        return platform::dynload::ncclAllGather(
            input.data(),
            output->data(),
            input.numel(),
            platform::ToNCCLDataType(input.dtype()),
            comm,
            stream);
      },
      CommType::ALLGATHER,
      sync_op,
      use_calc_stream);
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllReduce(
    phi::DenseTensor* out_tensor,
    const phi::DenseTensor& in_tensor,
    const AllreduceOptions& opts,
    bool sync_op,
    bool use_calc_stream) {
  return Collective(
      out_tensor,
      in_tensor,
      [&](phi::DenseTensor* output,
          const phi::DenseTensor& input,
          ncclComm_t comm,
166
          gpuStream_t stream) {
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
        return platform::dynload::ncclAllReduce(
            input.data(),
            output->data(),
            input.numel(),
            platform::ToNCCLDataType(input.type()),
            ToNCCLRedType(opts.reduce_op),
            comm,
            stream);
      },
      CommType::ALLREDUCE,
      sync_op,
      use_calc_stream);
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Barrier(
    const BarrierOptions& opts) {
183 184 185 186 187
  PADDLE_ENFORCE_GE(opts.device_id,
                    0,
                    platform::errors::PreconditionNotMet(
                        "The barrier device id must greater or equal than 0."));
  platform::CUDAPlace place(opts.device_id);
188
  auto allocator = std::unique_ptr<phi::Allocator>(
189
      new paddle::experimental::DefaultAllocator(place));
190 191 192 193 194 195 196 197 198
  phi::DenseTensorMeta meta(phi::DataType::FLOAT32, phi::DDim{1});
  phi::DenseTensor barrier_tensor{allocator.get(), meta};

  auto task = AllReduce(&barrier_tensor,
                        barrier_tensor,
                        {},
                        /*sync_op*/ true,
                        /*use_calc_stream*/ false);
  auto nccl_task = dynamic_cast<NCCLTask*>(task.get());
W
Wen Sun 已提交
199
  nccl_task->SetBlockCPUInWait();
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
  return task;
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Broadcast(
    phi::DenseTensor* out_tensor,
    const phi::DenseTensor& in_tensor,
    const BroadcastOptions& opts,
    bool sync_op,
    bool use_calc_stream) {
  return Collective(
      out_tensor,
      in_tensor,
      [&](phi::DenseTensor* output,
          const phi::DenseTensor& input,
          ncclComm_t comm,
215
          gpuStream_t stream) {
216 217 218 219 220 221 222 223 224 225 226 227 228
        int root = opts.source_rank + opts.source_root;
        return platform::dynload::ncclBroadcast(
            input.data(),
            output->data(),
            input.numel(),
            platform::ToNCCLDataType(input.type()),
            root,
            comm,
            stream);
      },
      CommType::BROADCAST,
      sync_op,
      use_calc_stream);
229 230
}

231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Recv(
    phi::DenseTensor* tensor,
    int src_rank,
    bool sync_op,
    bool use_calc_stream) {
  return PointToPoint(
      tensor,
      src_rank,
      [&](phi::DenseTensor* output,
          int src,
          ncclComm_t comm,
          gpuStream_t stream) {
        return platform::dynload::ncclRecv(
            output->data(),
            output->numel(),
            platform::ToNCCLDataType(output->dtype()),
            src,
            comm,
            stream);
      },
      CommType::RECV,
      sync_op,
      use_calc_stream);
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::RecvPartial(
    phi::DenseTensor* tensor,
    int src_rank,
    int64_t offset,
    int64_t length,
    bool sync_op,
    bool use_calc_stream) {
  phi::DenseTensor tensor_flattened;
  tensor_flattened.ShareDataWith(*tensor).Resize({tensor->numel()});
  phi::DenseTensor tensor_recv =
      tensor_flattened.Slice(offset, offset + length);
  return PointToPoint(
      &tensor_recv,
      src_rank,
      [&](phi::DenseTensor* output,
          int src,
          ncclComm_t comm,
          gpuStream_t stream) {
        return platform::dynload::ncclRecv(
            output->data(),
            output->numel(),
            platform::ToNCCLDataType(output->dtype()),
            src,
            comm,
            stream);
      },
      CommType::RECV,
      sync_op,
      use_calc_stream);
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Send(
    phi::DenseTensor* tensor,
    int dst_rank,
    bool sync_op,
    bool use_calc_stream) {
  return PointToPoint(
      tensor,
      dst_rank,
      [&](phi::DenseTensor* input,
          int dst,
          ncclComm_t comm,
          gpuStream_t stream) {
        return platform::dynload::ncclSend(
            input->data(),
            input->numel(),
            platform::ToNCCLDataType(input->dtype()),
            dst,
            comm,
            stream);
      },
      CommType::SEND,
      sync_op,
      use_calc_stream);
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::SendPartial(
    phi::DenseTensor* tensor,
    int dst_rank,
    int64_t offset,
    int64_t length,
    bool sync_op,
    bool use_calc_stream) {
  phi::DenseTensor tensor_flattened;
  tensor_flattened.ShareDataWith(*tensor).Resize({tensor->numel()});
  phi::DenseTensor tensor_send =
      tensor_flattened.Slice(offset, offset + length);
  return PointToPoint(
      &tensor_send,
      dst_rank,
      [&](phi::DenseTensor* input,
          int dst,
          ncclComm_t comm,
          gpuStream_t stream) {
        return platform::dynload::ncclSend(
            input->data(),
            input->numel(),
            platform::ToNCCLDataType(input->dtype()),
            dst,
            comm,
            stream);
      },
      CommType::SEND,
      sync_op,
      use_calc_stream);
}

343
std::shared_ptr<ProcessGroupNCCL::NCCLTask> ProcessGroupNCCL::CreateTask(
344
    const Place& place,
345 346 347 348 349
    int rank,
    CommType comm_type,
    bool is_sync,
    bool use_calc_stream) {
  return std::make_shared<ProcessGroupNCCL::NCCLTask>(
350
      place, rank, comm_type, is_sync, use_calc_stream);
351 352
}

353 354 355 356 357 358 359 360 361 362 363 364
void ProcessGroupNCCL::BroadcastUniqueNCCLID(ncclUniqueId* nccl_id) {
  const std::string key =
      "ProcessGroupNCCL/nccl_ids/" + std::to_string(gid_) + "/0";
  if (rank_ == 0) {
    std::vector<uint8_t> nccl_id_wrapper(
        reinterpret_cast<uint8_t*>(nccl_id),
        reinterpret_cast<uint8_t*>(nccl_id) + NCCL_UNIQUE_ID_BYTES);
    store_->set(key, nccl_id_wrapper);
  } else {
    const auto& nccl_id_wrapper = store_->get(key);
    std::memcpy(nccl_id, nccl_id_wrapper.data(), nccl_id_wrapper.size());
  }
365 366
}

367 368
void ProcessGroupNCCL::CreateNCCLEnvCache(const Place& place,
                                          const std::string& place_key) {
W
Wen Sun 已提交
369 370 371 372
  if (place_to_comm_ctx_.size() > 0) {
    VLOG(3) << "Warning: Tensors from multiple devices are not supported yet.";
  }

373 374 375 376 377
  ncclUniqueId nccl_id;
  if (rank_ == 0) {
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGetUniqueId(&nccl_id));
  }
  BroadcastUniqueNCCLID(&nccl_id);
378

379 380 381
  VLOG(3) << "init nccl rank: " << rank_ << ", nranks: " << size_
          << ", place: " << place_key
          << ", nccl uniqueid: " << SerializeNCCLUniqueId(nccl_id);
382

383 384 385 386 387 388 389 390
  auto* calc_ctx = static_cast<phi::GPUContext*>(
      platform::DeviceContextPool::Instance().Get(place));
  auto comm_ctx = std::make_unique<phi::GPUContext>(place);
  ncclComm_t nccl_comm;
  NCCLCHECK(platform::dynload::ncclCommInitRank(
      &nccl_comm, GetSize(), nccl_id, GetRank()));
  comm_ctx->set_nccl_comm(nccl_comm);

W
Wen Sun 已提交
391 392 393
  place_to_calc_event_.emplace(place_key, place);
  place_to_calc_ctx_.emplace(place_key, calc_ctx);
  place_to_comm_ctx_.emplace(place_key, std::move(comm_ctx));
394 395

  // TODO(sunyilun): for compatibility, will be removed later
W
Wen Sun 已提交
396 397 398
  std::vector<phi::GPUContext*> comm_ctx_wrapper{
      place_to_comm_ctx_[place_key].get()};
  places_to_ctx_.emplace(place_key, comm_ctx_wrapper);
399 400
}

W
Wen Sun 已提交
401
void ProcessGroupNCCL::SyncCalcStream(const Place& place) {
402
  const std::string& key = GetKeyFromPlace(place);
W
Wen Sun 已提交
403 404 405 406 407
  auto& calc_event = place_to_calc_event_.at(key);
  const auto* calc_ctx = place_to_calc_ctx_.at(key);
  const auto* comm_ctx = place_to_comm_ctx_.at(key).get();
  calc_event.Record(calc_ctx);
  calc_event.Wait(platform::Place2DeviceType(place), comm_ctx);
408 409
}

410 411 412 413 414 415 416 417 418 419 420
template <typename Fn>
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Collective(
    phi::DenseTensor* out_tensor,
    const phi::DenseTensor& in_tensor,
    Fn fn,
    CommType comm_type,
    bool sync_op,
    bool use_calc_stream) {
  const auto& place = in_tensor.place();
  const auto& key = GetKeyFromPlace(place);

W
Wen Sun 已提交
421 422 423
  platform::CUDADeviceGuard cuda_guard(place);

  if (place_to_comm_ctx_.find(key) == place_to_comm_ctx_.end()) {
424
    CreateNCCLEnvCache(place, key);
425 426
  }

427
  if (!use_calc_stream) {
W
Wen Sun 已提交
428
    SyncCalcStream(place);
429
  }
430

431 432
  auto task = CreateTask(place, rank_, comm_type, sync_op, use_calc_stream);

W
Wen Sun 已提交
433 434 435
  const auto* calc_ctx = place_to_calc_ctx_.at(key);
  const auto& comm_ctx = place_to_comm_ctx_.at(key);
  auto nccl_comm = comm_ctx->nccl_comm();
436
  auto nccl_stream = use_calc_stream ? calc_ctx->stream() : comm_ctx->stream();
W
Wen Sun 已提交
437
  fn(out_tensor, in_tensor, nccl_comm, nccl_stream);
438 439 440 441 442

  if (!use_calc_stream) {
    if (FLAGS_use_stream_safe_cuda_allocator) {
      memory::RecordStream(in_tensor.Holder(), nccl_stream);
    }
W
Wen Sun 已提交
443
    task->UpdateWaitChain(*comm_ctx);
444 445 446
  }

  return task;
447 448
}

449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
template <typename Fn>
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::PointToPoint(
    phi::DenseTensor* tensor,
    int rank,
    Fn fn,
    CommType comm_type,
    bool sync_op,
    bool use_calc_stream) {
  const auto& place = tensor->place();
  const auto& key = GetKeyFromPlace(place);

  platform::CUDADeviceGuard cuda_guard(place);

  if (place_to_comm_ctx_.find(key) == place_to_comm_ctx_.end()) {
    CreateNCCLEnvCache(place, key);
  }

  if (!use_calc_stream) {
    SyncCalcStream(place);
  }

  auto task = CreateTask(place, rank_, comm_type, sync_op, use_calc_stream);

  const auto* calc_ctx = place_to_calc_ctx_.at(key);
  const auto& comm_ctx = place_to_comm_ctx_.at(key);
  auto nccl_comm = comm_ctx->nccl_comm();
  auto nccl_stream = use_calc_stream ? calc_ctx->stream() : comm_ctx->stream();
  fn(tensor, rank, nccl_comm, nccl_stream);

  if (!use_calc_stream) {
    if (FLAGS_use_stream_safe_cuda_allocator) {
      memory::RecordStream(tensor->Holder(), nccl_stream);
    }
    task->UpdateWaitChain(*comm_ctx);
  }

  return task;
}

488
void ProcessGroupNCCL::CheckSplitSizes(std::vector<int64_t>* split_sizes,
489
                                       std::vector<int64_t> tensor_shape) {
490
  int64_t len_size = (*split_sizes).size();
491 492 493 494 495 496
  if (len_size == 0) {
    PADDLE_ENFORCE_EQ(tensor_shape[0] % size_ == 0,
                      true,
                      platform::errors::InvalidArgument(
                          "Tensor's dim[0] must be divisible by group size "
                          "when split_sizes not given."));
497 498 499 500
    (*split_sizes)
        .insert((*split_sizes).end(),
                size_,
                static_cast<int64_t>(tensor_shape[0] / size_));
501 502 503 504 505 506 507
  } else {
    PADDLE_ENFORCE_EQ(
        len_size == size_,
        true,
        platform::errors::InvalidArgument(
            "The length of split_sizes must be equal to group size."));
    auto sum_size = std::accumulate(
508
        (*split_sizes).begin(), (*split_sizes).end(), static_cast<int64_t>(0));
509 510 511 512 513 514 515 516
    PADDLE_ENFORCE_EQ(
        sum_size == tensor_shape[0],
        true,
        platform::errors::InvalidArgument(
            "The sum of split_sizes must be equal to tensor's dim[0]."));
  }
}

517 518
// TODO(sunyilun): methods below will be removed later
void SyncDefaultStream(const std::vector<Place>& places,
W
Wen Sun 已提交
519
                       platform::DeviceEvent& nccl_event,         // NOLINT
520 521 522 523
                       std::vector<phi::GPUContext*>& dev_ctx) {  // NOLINT
  for (size_t i = 0; i < places.size(); ++i) {
    auto* default_ctx = static_cast<phi::GPUContext*>(
        platform::DeviceContextPool::Instance().Get(places[i]));
W
Wen Sun 已提交
524 525
    nccl_event.Record(default_ctx);
    nccl_event.Wait(platform::Place2DeviceType(places[i]), dev_ctx[i]);
B
Baibaifan 已提交
526
  }
527 528
}

529 530 531 532 533 534 535
std::shared_ptr<ProcessGroupNCCL::NCCLTask> ProcessGroupNCCL::CreateTask(
    std::vector<Place> places,
    int rank,
    CommType comm_type,
    const std::vector<phi::DenseTensor>& inputs) {
  return std::make_shared<ProcessGroupNCCL::NCCLTask>(
      places, rank, comm_type, inputs);
536
}
537

538 539 540 541 542 543 544 545 546
std::shared_ptr<ProcessGroupNCCL::NCCLTask> ProcessGroupNCCL::CreateTask(
    const std::vector<Place>& places,
    int rank,
    CommType comm_type,
    const std::vector<phi::DenseTensor>& inputs,
    bool is_sync,
    bool use_calc_stream) {
  return std::make_shared<ProcessGroupNCCL::NCCLTask>(
      places, rank, comm_type, inputs, is_sync, use_calc_stream);
547 548
}

549 550 551 552 553 554 555
ProcessGroupNCCL::NCCLTask::NCCLTask(
    const std::vector<Place>& places,
    int rank,
    CommType CommType,
    const std::vector<phi::DenseTensor>& inputs)
    : TaskStream(rank, inputs, CommType),
      comm_event_(places[0]),
W
Wen Sun 已提交
556
      task_place_(places[0]) {}
557 558 559 560 561 562 563 564 565 566

ProcessGroupNCCL::NCCLTask::NCCLTask(
    const std::vector<Place>& places,
    int rank,
    CommType comm_type,
    const std::vector<phi::DenseTensor>& inputs,
    bool sync_op,
    bool use_calc_stream)
    : TaskStream(rank, inputs, comm_type, sync_op, use_calc_stream),
      comm_event_(places[0]),
W
Wen Sun 已提交
567
      task_place_(places[0]) {}
568

569 570 571
// create NCCLManager cache for places_key
void ProcessGroupNCCL::CreateNCCLManagerCache(
    const std::string& places_key, const std::vector<Place>& places) {
572 573
  PADDLE_ENFORCE_EQ(places_key.empty(),
                    false,
574 575 576 577
                    platform::errors::PreconditionNotMet(
                        "Not able to create/get the NCCL Communicator since "
                        "the GPU place are not known"));

578
  ncclUniqueId nccl_id;
579 580 581
  if (rank_ == 0) {
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGetUniqueId(&nccl_id));
  }
582
  BroadcastUniqueNCCLID(&nccl_id);
583

584 585
  VLOG(3) << "init nccl rank: " << rank_ << ", nranks: " << size_
          << ", place: " << places_key
586 587
          << ", nccl uniqueid: " << SerializeNCCLUniqueId(nccl_id);

L
Leo Chen 已提交
588
  std::vector<std::unique_ptr<phi::GPUContext>> dev_ctx;
589 590
  dev_ctx.resize(places.size());

591 592 593
  std::vector<phi::GPUContext*> dev_ctx_raw;
  dev_ctx_raw.resize(places.size());

594 595 596 597
  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupStart());

  for (size_t i = 0; i < places.size(); ++i) {
    platform::CUDADeviceGuard guard(places[i]);
598

L
Leo Chen 已提交
599
    dev_ctx[i].reset(new phi::GPUContext(places[i]));
600 601 602 603 604
    ncclComm_t nccl_comm;
    NCCLCHECK(platform::dynload::ncclCommInitRank(
        &nccl_comm, GetSize(), nccl_id, GetRank()));
    dev_ctx[i]->set_nccl_comm(nccl_comm);
    dev_ctx_raw[i] = dev_ctx[i].get();
605 606 607 608
  }

  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupEnd());

609
  // TODO(sunyilun): for compatibility, will be removed later
W
Wen Sun 已提交
610 611 612 613 614 615
  place_to_calc_event_.emplace(places_key, places[0]);
  place_to_calc_ctx_.emplace(
      places_key,
      static_cast<phi::GPUContext*>(
          platform::DeviceContextPool::Instance().Get(places[0])));
  place_to_comm_ctx_.emplace(places_key, std::move(dev_ctx[0]));
616 617

  // These caches will be useful to process sync/wait/communicate
618
  places_to_ctx_.emplace(places_key, std::move(dev_ctx_raw));
619 620
}

621 622 623 624 625 626 627 628 629 630 631 632 633
template <typename Fn>
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Collective(
    std::vector<phi::DenseTensor>& inputs,
    std::vector<phi::DenseTensor>& outputs,
    Fn fn,
    CommType comm_type,
    bool sync_op,
    bool use_calc_stream) {
  const auto& places = GetPlaceList(inputs);
  const auto& key = GetKeyFromPlaces(places);

  {
    std::lock_guard<std::mutex> lock(mutex_);
W
Wen Sun 已提交
634
    if (place_to_comm_ctx_.find(key) == place_to_comm_ctx_.end()) {
635 636 637 638
      CreateNCCLManagerCache(key, places);
    }
  }

639
  if (!use_calc_stream) {
W
Wen Sun 已提交
640 641
    SyncDefaultStream(
        places, place_to_calc_event_.at(key), places_to_ctx_.at(key));
642
  }
643

644 645
  auto task =
      CreateTask(places, rank_, comm_type, inputs, sync_op, use_calc_stream);
646 647 648 649 650 651 652 653 654 655 656 657 658 659 660

  platform::CUDADeviceGuard cuda_guard;

  {
    platform::NCCLGroupGuard nccl_guard;
    for (size_t i = 0; i < inputs.size(); ++i) {
      cuda_guard.SetDevice(places[i]);

      gpuStream_t nccl_stream;
      if (use_calc_stream) {
        nccl_stream =
            static_cast<phi::GPUContext*>(
                platform::DeviceContextPool::Instance().Get(places[i]))
                ->stream();
      } else {
W
Wen Sun 已提交
661
        nccl_stream = places_to_ctx_.at(key)[i]->stream();
662 663
      }

664 665
      fn(inputs[i],
         outputs[i],
W
Wen Sun 已提交
666
         places_to_ctx_.at(key)[i]->nccl_comm(),
667
         nccl_stream);
668 669 670 671 672 673 674 675 676 677 678 679 680 681
    }
  }

  if (FLAGS_use_stream_safe_cuda_allocator) {
    for (size_t i = 0; i < inputs.size(); ++i) {
      cuda_guard.SetDevice(places[i]);

      gpuStream_t nccl_stream;
      if (use_calc_stream) {
        nccl_stream =
            static_cast<phi::GPUContext*>(
                platform::DeviceContextPool::Instance().Get(places[i]))
                ->stream();
      } else {
W
Wen Sun 已提交
682
        nccl_stream = places_to_ctx_.at(key)[i]->stream();
683 684 685 686 687 688 689 690 691 692
      }

      memory::RecordStream(inputs[i].Holder(), nccl_stream);
    }
  }

  // Adding stream event dependency only when use comm stream
  if (!use_calc_stream) {
    for (size_t i = 0; i < inputs.size(); ++i) {
      cuda_guard.SetDevice(places[i]);
W
Wen Sun 已提交
693
      task->UpdateWaitChain(*places_to_ctx_.at(key)[i]);
694 695 696 697 698 699
    }
  }

  return task;
}

700 701
template <typename Fn>
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Collective(
702
    std::vector<phi::DenseTensor>& inputs,
703 704 705
    std::vector<phi::DenseTensor>& outputs,
    Fn fn,
    CommType op_type) {
706 707 708 709 710
  const auto places = GetPlaceList(inputs);
  const auto key = GetKeyFromPlaces(places);

  {
    std::lock_guard<std::mutex> lock(mutex_);
W
Wen Sun 已提交
711
    if (place_to_comm_ctx_.find(key) == place_to_comm_ctx_.end()) {
712 713 714 715
      CreateNCCLManagerCache(key, places);
    }
  }

W
Wen Sun 已提交
716 717
  SyncDefaultStream(
      places, place_to_calc_event_.at(key), places_to_ctx_.at(key));
718 719 720 721 722 723

  auto task = CreateTask(places, rank_, op_type, inputs);

  // construct uninitialize guard for device
  platform::CUDADeviceGuard cuda_guard;

S
ShenLiang 已提交
724 725
  {
    platform::NCCLGroupGuard nccl_guard;
726 727
    for (size_t i = 0; i < inputs.size(); ++i) {
      cuda_guard.SetDevice(places[i]);
W
Wen Sun 已提交
728
      const auto& nccl_stream = places_to_ctx_.at(key)[i]->stream();
729 730
      fn(inputs[i],
         outputs[i],
W
Wen Sun 已提交
731
         places_to_ctx_.at(key)[i]->nccl_comm(),
732
         nccl_stream);
733 734 735
    }
  }

S
ShenLiang 已提交
736
  if (FLAGS_use_stream_safe_cuda_allocator) {
737 738
    for (size_t i = 0; i < inputs.size(); ++i) {
      cuda_guard.SetDevice(places[i]);
S
ShenLiang 已提交
739
      memory::RecordStream(inputs[i].Holder(),
W
Wen Sun 已提交
740
                           places_to_ctx_.at(key)[i]->stream());
741 742 743 744 745
    }
  }

  for (size_t i = 0; i < inputs.size(); ++i) {
    cuda_guard.SetDevice(places[i]);
W
Wen Sun 已提交
746
    task->UpdateWaitChain(*places_to_ctx_.at(key)[i]);
747 748 749 750
  }
  return task;
}

751 752
template <typename Fn>
void ProcessGroupNCCL::Collective(const phi::DenseTensor* in,
753 754
                                  phi::DenseTensor* out,
                                  Fn fn,
755 756 757
                                  CommType op_type) {
  std::vector<Place> places;
  places.push_back(in->place());
758
  const std::string& key = GetKeyFromPlaces(places);
759 760 761

  {
    std::lock_guard<std::mutex> lock(mutex_);
W
Wen Sun 已提交
762
    if (place_to_comm_ctx_.find(key) == place_to_comm_ctx_.end()) {
763 764 765 766
      CreateNCCLManagerCache(key, places);
    }
  }

W
Wen Sun 已提交
767 768
  SyncDefaultStream(
      places, place_to_calc_event_.at(key), places_to_ctx_.at(key));
769 770 771 772 773 774

  // construct uninitialize guard for device
  platform::CUDADeviceGuard cuda_guard;

  if (FLAGS_use_stream_safe_cuda_allocator) {
    cuda_guard.SetDevice(places[0]);
W
Wen Sun 已提交
775
    memory::RecordStream(in->Holder(), places_to_ctx_.at(key)[0]->stream());
776 777 778 779 780
  }

  {
    platform::NCCLGroupGuard nccl_guard;
    cuda_guard.SetDevice(places[0]);
W
Wen Sun 已提交
781 782
    const auto& nccl_stream = places_to_ctx_.at(key)[0]->stream();
    fn(in, out, places_to_ctx_.at(key)[0]->nccl_comm(), nccl_stream);
783 784 785 786 787
  }

  cuda_guard.SetDevice(places[0]);
}

788 789 790 791 792 793 794 795 796 797 798 799 800
template <typename Fn>
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::PointToPoint(
    std::vector<phi::DenseTensor>& tensors,
    Fn fn,
    int dst_rank,
    CommType op_type,
    bool sync_op,
    bool use_calc_stream) {
  const auto& places = GetPlaceList(tensors);
  const auto& key = GetKeyFromPlaces(places);

  {
    std::lock_guard<std::mutex> lock(mutex_);
W
Wen Sun 已提交
801
    if (place_to_comm_ctx_.find(key) == place_to_comm_ctx_.end()) {
802 803 804 805 806
      CreateNCCLManagerCache(key, places);
    }
  }

  if (!use_calc_stream) {
W
Wen Sun 已提交
807 808
    SyncDefaultStream(
        places, place_to_calc_event_.at(key), places_to_ctx_.at(key));
809 810 811 812 813 814 815
  }

  auto task =
      CreateTask(places, rank_, op_type, tensors, sync_op, use_calc_stream);

  platform::CUDADeviceGuard cuda_guard;

816 817
  {
    platform::NCCLGroupGuard nccl_guard;
818 819 820 821 822 823 824 825 826
    for (size_t i = 0; i < tensors.size(); ++i) {
      cuda_guard.SetDevice(places[i]);
      gpuStream_t nccl_stream;
      if (use_calc_stream) {
        nccl_stream =
            static_cast<phi::GPUContext*>(
                platform::DeviceContextPool::Instance().Get(places[i]))
                ->stream();
      } else {
W
Wen Sun 已提交
827
        nccl_stream = places_to_ctx_.at(key)[i]->stream();
828
      }
829
      fn(tensors[i],
W
Wen Sun 已提交
830
         places_to_ctx_.at(key)[i]->nccl_comm(),
831 832
         nccl_stream,
         dst_rank);
833 834 835
    }
  }

836
  if (FLAGS_use_stream_safe_cuda_allocator) {
837 838 839 840 841 842 843 844 845
    for (size_t i = 0; i < tensors.size(); ++i) {
      cuda_guard.SetDevice(places[i]);
      gpuStream_t nccl_stream;
      if (use_calc_stream) {
        nccl_stream =
            static_cast<phi::GPUContext*>(
                platform::DeviceContextPool::Instance().Get(places[i]))
                ->stream();
      } else {
W
Wen Sun 已提交
846
        nccl_stream = places_to_ctx_.at(key)[i]->stream();
847
      }
848
      memory::RecordStream(tensors[i].Holder(), nccl_stream);
849 850 851 852 853 854
    }
  }

  if (!use_calc_stream) {
    for (size_t i = 0; i < tensors.size(); ++i) {
      cuda_guard.SetDevice(places[i]);
W
Wen Sun 已提交
855
      task->UpdateWaitChain(*places_to_ctx_.at(key)[i]);
856 857 858 859 860 861
    }
  }

  return task;
}

B
Baibaifan 已提交
862 863
template <typename Fn>
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::PointToPoint(
864 865 866
    std::vector<phi::DenseTensor>& tensors,
    Fn fn,
    int dst_rank,
867
    CommType op_type) {
B
Baibaifan 已提交
868 869 870 871 872
  const auto places = GetPlaceList(tensors);
  const auto key = GetKeyFromPlaces(places);

  {
    std::lock_guard<std::mutex> lock(mutex_);
W
Wen Sun 已提交
873
    if (place_to_comm_ctx_.find(key) == place_to_comm_ctx_.end()) {
B
Baibaifan 已提交
874 875 876 877
      CreateNCCLManagerCache(key, places);
    }
  }

W
Wen Sun 已提交
878 879
  SyncDefaultStream(
      places, place_to_calc_event_.at(key), places_to_ctx_.at(key));
B
Baibaifan 已提交
880 881 882 883 884 885

  auto task = CreateTask(places, rank_, op_type, tensors);

  // construct uninitialize guard for device
  platform::CUDADeviceGuard cuda_guard;

886 887
  {
    platform::NCCLGroupGuard nccl_guard;
B
Baibaifan 已提交
888 889
    for (size_t i = 0; i < tensors.size(); ++i) {
      cuda_guard.SetDevice(places[i]);
W
Wen Sun 已提交
890
      const auto& nccl_stream = places_to_ctx_.at(key)[i]->stream();
891
      fn(tensors[i],
W
Wen Sun 已提交
892
         places_to_ctx_.at(key)[i]->nccl_comm(),
893 894
         nccl_stream,
         dst_rank);
B
Baibaifan 已提交
895 896 897
    }
  }

898
  if (FLAGS_use_stream_safe_cuda_allocator) {
B
Baibaifan 已提交
899 900
    for (size_t i = 0; i < tensors.size(); ++i) {
      cuda_guard.SetDevice(places[i]);
901
      memory::RecordStream(tensors[i].Holder(),
W
Wen Sun 已提交
902
                           places_to_ctx_.at(key)[i]->stream());
B
Baibaifan 已提交
903 904 905 906 907
    }
  }

  for (size_t i = 0; i < tensors.size(); ++i) {
    cuda_guard.SetDevice(places[i]);
W
Wen Sun 已提交
908
    task->UpdateWaitChain(*places_to_ctx_.at(key)[i]);
B
Baibaifan 已提交
909 910 911 912
  }
  return task;
}

913
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllReduce(
914
    std::vector<phi::DenseTensor>& in_tensors,
915 916
    std::vector<phi::DenseTensor>& out_tensors,
    const AllreduceOptions& opts) {
917
  PADDLE_ENFORCE_EQ(
918 919
      CheckTensorsInCudaPlace(in_tensors),
      true,
920
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
921
  return Collective(
922 923 924 925 926 927
      in_tensors,
      out_tensors,
      [&](const phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream) {
928
        return platform::dynload::ncclAllReduce(
929 930 931
            input.data(),
            output.data(),
            input.numel(),
932
            platform::ToNCCLDataType(input.type()),
933 934 935
            ToNCCLRedType(opts.reduce_op),
            comm,
            stream);
936 937
      },
      CommType::ALLREDUCE);
938 939 940
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Broadcast(
941
    std::vector<phi::DenseTensor>& in_tensors,
942 943
    std::vector<phi::DenseTensor>& out_tensors,
    const BroadcastOptions& opts) {
944
  PADDLE_ENFORCE_EQ(
945 946
      CheckTensorsInCudaPlace(in_tensors),
      true,
947 948
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));

949
  return Collective(
950 951 952 953 954
      in_tensors,
      out_tensors,
      [&](phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
955 956 957 958
          const gpuStream_t& stream) {
        const auto root =
            opts.source_rank * in_tensors.size() + opts.source_root;
        return platform::dynload::ncclBroadcast(
959 960 961 962 963 964 965
            input.data(),
            output.data(),
            input.numel(),
            platform::ToNCCLDataType(input.type()),
            root,
            comm,
            stream);
966 967
      },
      CommType::BROADCAST);
968 969
}

970 971
void CheckTensorsInDifferentDevices(
    const std::vector<phi::DenseTensor>& tensors, const size_t num_devices) {
B
Baibaifan 已提交
972
  PADDLE_ENFORCE_EQ(
973 974
      tensors.size() == 0,
      false,
B
Baibaifan 已提交
975 976
      platform::errors::InvalidArgument("Tensor list must be nonempty."));
  PADDLE_ENFORCE_LE(
977 978
      tensors.size(),
      num_devices,
B
Baibaifan 已提交
979 980 981 982 983 984
      platform::errors::InvalidArgument(
          "Tensor list mustn't be larger than the number of available GPUs."));

  std::set<Place> used_devices;

  for (const auto& t : tensors) {
985 986
    PADDLE_ENFORCE_EQ(platform::is_gpu_place(t.place()),
                      true,
B
Baibaifan 已提交
987 988 989
                      platform::errors::InvalidArgument(
                          "Tensors must be CUDA and dense tensor."));

990
    const auto inserted = used_devices.insert(t.place()).second;
991 992
    PADDLE_ENFORCE_EQ(inserted,
                      true,
B
Baibaifan 已提交
993 994 995 996 997 998
                      platform::errors::InvalidArgument(
                          "Tensors must be on distinct GPU devices."));
  }
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Send(
999
    std::vector<phi::DenseTensor>& tensors, int dst_rank) {
B
Baibaifan 已提交
1000 1001
  CheckTensorsInDifferentDevices(tensors, static_cast<size_t>(GetSize()));

1002 1003
  auto task = PointToPoint(
      tensors,
1004 1005 1006
      [&](phi::DenseTensor& input,
          ncclComm_t comm,
          const gpuStream_t& stream,
1007 1008
          int dst_rank) {
        return platform::dynload::ncclSend(
1009 1010 1011 1012 1013 1014
            input.data(),
            input.numel(),
            platform::ToNCCLDataType(input.dtype()),
            dst_rank,
            comm,
            stream);
1015
      },
1016 1017
      dst_rank,
      CommType::SEND);
B
Baibaifan 已提交
1018 1019 1020 1021
  return task;
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Recv(
1022
    std::vector<phi::DenseTensor>& tensors, int src_rank) {
B
Baibaifan 已提交
1023 1024
  CheckTensorsInDifferentDevices(tensors, static_cast<size_t>(GetSize()));

1025 1026
  auto task = PointToPoint(
      tensors,
1027 1028 1029
      [&](phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream,
1030 1031
          int src_rank) {
        return platform::dynload::ncclRecv(
1032 1033 1034 1035 1036 1037
            output.data(),
            output.numel(),
            platform::ToNCCLDataType(output.dtype()),
            src_rank,
            comm,
            stream);
1038
      },
1039 1040
      src_rank,
      CommType::RECV);
1041 1042 1043 1044
  return task;
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Send_Partial(
1045
    phi::DenseTensor& tensors, int dst_rank, int64_t offset, int64_t length) {
1046 1047 1048 1049 1050
  // CheckTensorsInDifferentDevices(tensors, static_cast<size_t>(GetSize()));

  phi::DenseTensor flatten_tensor;
  flatten_tensor.ShareDataWith(tensors).Resize({tensors.numel()});

1051 1052
  std::vector<phi::DenseTensor> shared_tensors{
      flatten_tensor.Slice(offset, offset + length)};
1053

1054 1055
  auto task = PointToPoint(
      shared_tensors,
1056 1057 1058
      [&](phi::DenseTensor& input,
          ncclComm_t comm,
          const gpuStream_t& stream,
1059 1060
          int dst_rank) {
        return platform::dynload::ncclSend(
1061 1062 1063 1064 1065 1066
            input.data(),
            input.numel(),
            platform::ToNCCLDataType(input.dtype()),
            dst_rank,
            comm,
            stream);
1067
      },
1068 1069
      dst_rank,
      CommType::SEND);
1070 1071 1072
  return task;
}

1073 1074 1075
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Send_Partial(
    phi::DenseTensor& tensors,
    int dst_rank,
1076 1077
    int64_t offset,
    int64_t length,
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
    bool sync_op,
    bool use_calc_stream) {
  phi::DenseTensor flatten_tensor;
  flatten_tensor.ShareDataWith(tensors).Resize({tensors.numel()});

  std::vector<phi::DenseTensor> shared_tensors{
      flatten_tensor.Slice(offset, offset + length)};

  auto task = PointToPoint(
      shared_tensors,
      [&](phi::DenseTensor& input,
          ncclComm_t comm,
          const gpuStream_t& stream,
          int dst_rank) {
        return platform::dynload::ncclSend(
            input.data(),
            input.numel(),
            platform::ToNCCLDataType(input.dtype()),
            dst_rank,
            comm,
            stream);
      },
      dst_rank,
      CommType::SEND,
      sync_op,
      use_calc_stream);
  return task;
}

1107
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Recv_Partial(
1108
    phi::DenseTensor& tensors, int src_rank, int64_t offset, int64_t length) {
1109 1110 1111 1112 1113
  // phi::DenseTensor shared_input = tensors.Slice(offset, offset+length);

  phi::DenseTensor flatten_tensor;
  flatten_tensor.ShareDataWith(tensors).Resize({tensors.numel()});

1114 1115
  std::vector<phi::DenseTensor> shared_tensors{
      flatten_tensor.Slice(offset, offset + length)};
1116

1117 1118
  auto task = PointToPoint(
      shared_tensors,
1119 1120 1121
      [&](phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream,
1122 1123
          int src_rank) {
        return platform::dynload::ncclRecv(
1124 1125 1126 1127 1128 1129
            output.data(),
            output.numel(),
            platform::ToNCCLDataType(output.dtype()),
            src_rank,
            comm,
            stream);
1130
      },
1131 1132
      src_rank,
      CommType::RECV);
B
Baibaifan 已提交
1133 1134 1135
  return task;
}

1136 1137 1138
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Recv_Partial(
    phi::DenseTensor& tensors,
    int src_rank,
1139 1140
    int64_t offset,
    int64_t length,
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
    bool sync_op,
    bool use_calc_stream) {
  phi::DenseTensor flatten_tensor;
  flatten_tensor.ShareDataWith(tensors).Resize({tensors.numel()});

  std::vector<phi::DenseTensor> shared_tensors{
      flatten_tensor.Slice(offset, offset + length)};

  auto task = PointToPoint(
      shared_tensors,
      [&](phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream,
          int src_rank) {
        return platform::dynload::ncclRecv(
            output.data(),
            output.numel(),
            platform::ToNCCLDataType(output.dtype()),
            src_rank,
            comm,
            stream);
      },
      src_rank,
      CommType::RECV,
      sync_op,
      use_calc_stream);
  return task;
}

1170
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllGather(
1171 1172
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors) {
1173
  PADDLE_ENFORCE_EQ(
1174 1175
      CheckTensorsInCudaPlace(in_tensors),
      true,
1176 1177
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  PADDLE_ENFORCE_EQ(
1178 1179
      CheckTensorsInCudaPlace(out_tensors),
      true,
1180
      platform::errors::InvalidArgument("All outputs should be in CudaPlace."));
1181
  return Collective(
1182 1183 1184 1185 1186 1187
      in_tensors,
      out_tensors,
      [&](const phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream) {
1188
        return platform::dynload::ncclAllGather(
1189 1190 1191 1192 1193 1194
            input.data(),
            output.data(),
            input.numel(),
            platform::ToNCCLDataType(input.dtype()),
            comm,
            stream);
1195 1196
      },
      CommType::ALLGATHER);
1197 1198
}

1199 1200
void* GetPointerByOffset(void* raw_pointer,
                         size_t offset,
1201 1202 1203 1204 1205 1206 1207
                         experimental::DataType type) {
  if (type == experimental::DataType::FLOAT32) {
    return reinterpret_cast<void*>(reinterpret_cast<float*>(raw_pointer) +
                                   offset);
  } else if (type == experimental::DataType::FLOAT64) {
    return reinterpret_cast<void*>(reinterpret_cast<double*>(raw_pointer) +
                                   offset);
1208 1209 1210
  } else if (type == experimental::DataType::FLOAT16) {
    return reinterpret_cast<void*>(reinterpret_cast<int16_t*>(raw_pointer) +
                                   offset);
1211 1212 1213 1214 1215 1216
  } else if (type == experimental::DataType::INT32) {
    return reinterpret_cast<void*>(reinterpret_cast<int32_t*>(raw_pointer) +
                                   offset);
  } else if (type == experimental::DataType::INT64) {
    return reinterpret_cast<void*>(reinterpret_cast<int64_t*>(raw_pointer) +
                                   offset);
1217 1218 1219 1220 1221 1222 1223 1224
  } else if (type == experimental::DataType::INT8) {
    return reinterpret_cast<void*>(reinterpret_cast<int8_t*>(raw_pointer) +
                                   offset);
  } else if (type == experimental::DataType::UINT8) {
    return reinterpret_cast<void*>(reinterpret_cast<uint8_t*>(raw_pointer) +
                                   offset);
  } else if (type == experimental::DataType::BOOL) {
    return reinterpret_cast<void*>(reinterpret_cast<bool*>(raw_pointer) +
1225
                                   offset);
1226 1227 1228
  } else if (type == experimental::DataType::BFLOAT16) {
    return reinterpret_cast<void*>(reinterpret_cast<uint16_t*>(raw_pointer) +
                                   offset);
1229 1230 1231 1232
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "This datatype in nccl is not supported."));
  }
1233
  return nullptr;
1234 1235
}

1236 1237 1238
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllGather_Partial(
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors,
1239 1240
    int64_t offset,
    int64_t length) {
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(in_tensors),
      true,
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(out_tensors),
      true,
      platform::errors::InvalidArgument("All outputs should be in CudaPlace."));
  return Collective(
      in_tensors,
      out_tensors,
      [&](phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream) {
        return platform::dynload::ncclAllGather(
            GetPointerByOffset(input.data(), offset, input.dtype()),
            output.data(),
            length,
            platform::ToNCCLDataType(input.dtype()),
            comm,
            stream);
      },
      CommType::ALLGATHER);
}

1267 1268 1269
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllGather_Partial(
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors,
1270 1271
    int64_t offset,
    int64_t length,
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
    bool sync_op,
    bool use_calc_stream) {
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(in_tensors),
      true,
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(out_tensors),
      true,
      platform::errors::InvalidArgument("All outputs should be in CudaPlace."));
  return Collective(
      in_tensors,
      out_tensors,
      [&](phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream) {
        return platform::dynload::ncclAllGather(
            GetPointerByOffset(input.data(), offset, input.dtype()),
            output.data(),
            length,
            platform::ToNCCLDataType(input.dtype()),
            comm,
            stream);
      },
      CommType::ALLGATHER,
      sync_op,
      use_calc_stream);
}

1302
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllToAll(
1303 1304
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors) {
1305
  PADDLE_ENFORCE_EQ(
1306 1307
      CheckTensorsInCudaPlace(in_tensors),
      true,
1308 1309
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  PADDLE_ENFORCE_EQ(
1310 1311
      CheckTensorsInCudaPlace(out_tensors),
      true,
1312 1313
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  return Collective(
1314 1315 1316 1317 1318
      in_tensors,
      out_tensors,
      [&](phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
1319 1320 1321 1322 1323
          const gpuStream_t& stream) {
        size_t offset = 0;
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupStart());
        for (auto i = 0; i < size_; i++) {
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclSend(
1324
              GetPointerByOffset(input.data(), offset, input.dtype()),
1325 1326 1327 1328 1329
              input.numel() / size_,
              platform::ToNCCLDataType(input.dtype()),
              i,
              comm,
              stream));
1330
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRecv(
1331
              GetPointerByOffset(output.data(), offset, input.dtype()),
1332 1333 1334 1335 1336
              input.numel() / size_,
              platform::ToNCCLDataType(input.dtype()),
              i,
              comm,
              stream));
1337
          offset += input.numel() / size_;
1338 1339 1340
        }
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupEnd());
      },
1341 1342 1343
      CommType::ALLTOALL);
}

1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllToAll(
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors,
    bool sync_op,
    bool use_calc_stream) {
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(in_tensors),
      true,
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(out_tensors),
      true,
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  return Collective(
      in_tensors,
      out_tensors,
      [&](phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream) {
        size_t offset = 0;
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupStart());
        for (auto i = 0; i < size_; i++) {
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclSend(
              GetPointerByOffset(input.data(), offset, input.dtype()),
              input.numel() / size_,
              platform::ToNCCLDataType(input.dtype()),
              i,
              comm,
              stream));
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRecv(
              GetPointerByOffset(output.data(), offset, input.dtype()),
              input.numel() / size_,
              platform::ToNCCLDataType(input.dtype()),
              i,
              comm,
              stream));
          offset += input.numel() / size_;
        }
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupEnd());
      },
      CommType::ALLTOALL,
      sync_op,
      use_calc_stream);
}

1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllToAll_Single(
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors,
    std::vector<int64_t>& in_sizes,
    std::vector<int64_t>& out_sizes) {
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(in_tensors),
      true,
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(out_tensors),
      true,
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  return Collective(
      in_tensors,
      out_tensors,
      [&](phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream) {
        PADDLE_ENFORCE_EQ(input.dtype() == output.dtype(),
                          true,
                          platform::errors::InvalidArgument(
                              "The dtypes of input and output must be equal."));

        std::vector<int64_t> in_dims = phi::vectorize(input.dims());
        std::vector<int64_t> out_dims = phi::vectorize(output.dims());
1417 1418
        CheckSplitSizes(&in_sizes, in_dims);
        CheckSplitSizes(&out_sizes, out_dims);
1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449

        size_t in_offset = 0, out_offset = 0;
        size_t in_length = 0, out_length = 0;
        size_t in_row_size = input.numel() / in_dims[0];
        size_t out_row_size = output.numel() / out_dims[0];

        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupStart());
        for (auto i = 0; i < size_; i++) {
          in_length = in_sizes[i] * in_row_size;
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclSend(
              GetPointerByOffset(input.data(), in_offset, input.dtype()),
              in_length,
              platform::ToNCCLDataType(input.dtype()),
              i,
              comm,
              stream));
          in_offset += in_length;

          out_length = out_sizes[i] * out_row_size;
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRecv(
              GetPointerByOffset(output.data(), out_offset, input.dtype()),
              out_length,
              platform::ToNCCLDataType(input.dtype()),
              i,
              comm,
              stream));
          out_offset += out_length;
        }
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupEnd());
      },
      CommType::ALLTOALL_SINGLE);
1450 1451
}

1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllToAllSingle(
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors,
    std::vector<int64_t>& in_sizes,
    std::vector<int64_t>& out_sizes,
    bool sync_op,
    bool use_calc_stream) {
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(in_tensors),
      true,
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(out_tensors),
      true,
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  return Collective(
      in_tensors,
      out_tensors,
      [&](phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream) {
        PADDLE_ENFORCE_EQ(input.dtype() == output.dtype(),
                          true,
                          platform::errors::InvalidArgument(
                              "The dtypes of input and output must be equal."));

        std::vector<int64_t> in_dims = phi::vectorize(input.dims());
        std::vector<int64_t> out_dims = phi::vectorize(output.dims());
        CheckSplitSizes(&in_sizes, in_dims);
        CheckSplitSizes(&out_sizes, out_dims);

        size_t in_offset = 0, out_offset = 0;
        size_t in_length = 0, out_length = 0;
        size_t in_row_size = input.numel() / in_dims[0];
        size_t out_row_size = output.numel() / out_dims[0];

        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupStart());
        for (auto i = 0; i < size_; i++) {
          in_length = in_sizes[i] * in_row_size;
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclSend(
              GetPointerByOffset(input.data(), in_offset, input.dtype()),
              in_length,
              platform::ToNCCLDataType(input.dtype()),
              i,
              comm,
              stream));
          in_offset += in_length;

          out_length = out_sizes[i] * out_row_size;
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRecv(
              GetPointerByOffset(output.data(), out_offset, input.dtype()),
              out_length,
              platform::ToNCCLDataType(input.dtype()),
              i,
              comm,
              stream));
          out_offset += out_length;
        }
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupEnd());
      },
      CommType::ALLTOALL_SINGLE,
      sync_op,
      use_calc_stream);
}

1518
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Reduce(
1519
    std::vector<phi::DenseTensor>& in_tensors,
1520 1521
    std::vector<phi::DenseTensor>& out_tensors,
    const ReduceOptions& opts) {
1522
  PADDLE_ENFORCE_EQ(
1523 1524
      CheckTensorsInCudaPlace(in_tensors),
      true,
1525 1526
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  return Collective(
1527 1528 1529 1530 1531 1532
      in_tensors,
      out_tensors,
      [&](const phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream) {
1533
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclReduce(
1534 1535 1536
            input.data(),
            output.data(),
            input.numel(),
1537
            platform::ToNCCLDataType(input.dtype()),
1538 1539 1540 1541
            ToNCCLRedType(opts.reduce_op),
            opts.root_rank,
            comm,
            stream));
1542 1543 1544 1545
      },
      CommType::REDUCE);
}

1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Reduce(
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors,
    const ReduceOptions& opts,
    bool sync_op,
    bool use_calc_stream) {
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(in_tensors),
      true,
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  return Collective(
      in_tensors,
      out_tensors,
      [&](const phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream) {
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclReduce(
            input.data(),
            output.data(),
            input.numel(),
            platform::ToNCCLDataType(input.dtype()),
            ToNCCLRedType(opts.reduce_op),
            opts.root_rank,
            comm,
            stream));
      },
      CommType::REDUCE,
      sync_op,
      use_calc_stream);
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::ReduceScatter(
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors,
    const ReduceScatterOptions& opts,
    bool sync_op,
    bool use_calc_stream) {
  return Collective(
      in_tensors,
      out_tensors,
      [&](phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream) {
        if (FLAGS_use_stream_safe_cuda_allocator) {
          platform::CUDADeviceGuard cuda_guard;
          cuda_guard.SetDevice(output.place());
          memory::RecordStream(output.Holder(), stream);
        }
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclReduceScatter(
            input.data(),
            output.data(),
            output.numel(),
            platform::ToNCCLDataType(input.dtype()),
            ToNCCLRedType(opts.reduce_op),
            comm,
            stream));
      },
      CommType::REDUCE_SCATTER,
      sync_op,
      use_calc_stream);
}

1610
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Scatter(
1611
    std::vector<phi::DenseTensor>& in_tensors,
1612 1613
    std::vector<phi::DenseTensor>& out_tensors,
    const ScatterOptions& opts) {
1614
  PADDLE_ENFORCE_EQ(
1615 1616
      CheckTensorsInCudaPlace(in_tensors),
      true,
1617 1618
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  PADDLE_ENFORCE_EQ(
1619 1620
      CheckTensorsInCudaPlace(out_tensors),
      true,
1621 1622
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  return Collective(
1623 1624 1625 1626 1627
      in_tensors,
      out_tensors,
      [&](phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
1628 1629 1630 1631 1632 1633
          const gpuStream_t& stream) {
        size_t offset = 0;
        if (rank_ == opts.root_rank) {
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupStart());
          for (auto i = 0; i < size_; i++) {
            PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclSend(
1634
                GetPointerByOffset(input.data(), offset, input.dtype()),
1635 1636 1637 1638 1639
                input.numel() / size_,
                platform::ToNCCLDataType(input.dtype()),
                i,
                comm,
                stream));
1640
            offset += input.numel() / size_;
1641 1642
          }
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRecv(
1643 1644 1645 1646 1647
              output.data(),
              input.numel() / size_,
              platform::ToNCCLDataType(input.dtype()),
              opts.root_rank,
              comm,
1648 1649 1650 1651
              stream));
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupEnd());
        } else {
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRecv(
1652 1653 1654 1655 1656
              output.data(),
              input.numel() / size_,
              platform::ToNCCLDataType(input.dtype()),
              opts.root_rank,
              comm,
1657 1658 1659 1660 1661 1662
              stream));
        }
      },
      CommType::SCATTER);
}

1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Scatter(
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors,
    const ScatterOptions& opts,
    bool sync_op,
    bool use_calc_stream) {
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(in_tensors),
      true,
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(out_tensors),
      true,
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  return Collective(
      in_tensors,
      out_tensors,
      [&](phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream) {
        PADDLE_ENFORCE_EQ(
            output.numel(),
            input.numel() / size_,
            platform::errors::InvalidArgument(
                "Input and output tensors should have the same shape."));
        size_t offset = 0;
        if (rank_ == opts.root_rank) {
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupStart());
          for (auto i = 0; i < size_; i++) {
            PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclSend(
                GetPointerByOffset(input.data(), offset, input.dtype()),
                input.numel() / size_,
                platform::ToNCCLDataType(input.dtype()),
                i,
                comm,
                stream));
            offset += input.numel() / size_;
          }
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRecv(
              output.data(),
              input.numel() / size_,
              platform::ToNCCLDataType(input.dtype()),
              opts.root_rank,
              comm,
              stream));
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupEnd());
        } else {
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRecv(
              output.data(),
              input.numel() / size_,
              platform::ToNCCLDataType(input.dtype()),
              opts.root_rank,
              comm,
              stream));
        }
      },
      CommType::SCATTER,
      sync_op,
      use_calc_stream);
}

1725 1726
}  //  namespace distributed
}  //  namespace paddle