pool_op.cc 11.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/pool_op.h"

namespace paddle {
namespace operators {

C
chengduoZH 已提交
20
int OutputSizePool(int input_size, int filter_size, int padding, int stride) {
21 22 23 24
  int output_size = (input_size - filter_size + 2 * padding) / stride + 1;
  return output_size;
}

25 26 27 28 29 30 31
void PoolOp::InferShape(framework::InferShapeContext *ctx) const {
  PADDLE_ENFORCE(ctx->HasInput("X"), "X(Input) of Pooling should not be null.");
  PADDLE_ENFORCE(ctx->HasOutput("Out"),
                 "Out(Output) of Pooling should not be null.");

  auto in_x_dims = ctx->GetInputDim("X");

C
chengduoZH 已提交
32
  std::string pooling_type = ctx->Attrs().Get<std::string>("pooling_type");
33 34 35 36 37
  std::vector<int> ksize = ctx->Attrs().Get<std::vector<int>>("ksize");
  std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
  std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");

  PADDLE_ENFORCE(in_x_dims.size() == 4 || in_x_dims.size() == 5,
C
chengduoZH 已提交
38
                 "Pooling intput should be 4-D or 5-D tensor.");
39

C
chengduoZH 已提交
40
  if (ctx->Attrs().Get<bool>("global_pooling")) {
41
    ksize.resize(static_cast<size_t>(in_x_dims.size()) - 2);
C
fix bug  
chengduoZH 已提交
42 43
    for (size_t i = 0; i < ksize.size(); ++i) {
      paddings[i] = 0;
44
      ksize[i] = static_cast<int>(in_x_dims[i + 2]);
C
fix bug  
chengduoZH 已提交
45
    }
46
  }
47 48 49 50 51 52 53 54 55 56 57 58

  PADDLE_ENFORCE(in_x_dims.size() - ksize.size() == 2U,
                 "Input size and pooling size should be consistent.");
  PADDLE_ENFORCE_EQ(ksize.size(), strides.size(),
                    "Strides size and pooling size should be the same.");
  PADDLE_ENFORCE_EQ(ksize.size(), paddings.size(),
                    "Paddings size and pooling size should be the same.");

  std::vector<int64_t> output_shape({in_x_dims[0], in_x_dims[1]});
  for (size_t i = 0; i < ksize.size(); ++i) {
    output_shape.push_back(
        OutputSizePool(in_x_dims[i + 2], ksize[i], paddings[i], strides[i]));
59
  }
60
  ctx->SetOutputDim("Out", framework::make_ddim(output_shape));
Y
Yang Yu 已提交
61
  ctx->ShareLoD("X", "Out");
62 63
}

64 65 66
framework::OpKernelType PoolOp::GetExpectedKernelType(
    const framework::ExecutionContext &ctx) const {
  bool use_cudnn = ctx.Attr<bool>("use_cudnn");
C
chengduoZH 已提交
67
  use_cudnn &= platform::is_gpu_place(ctx.GetPlace());
68 69 70 71 72 73 74 75 76 77 78 79 80 81
  framework::LibraryType library_;
  if (use_cudnn) {
    library_ = framework::LibraryType::kCUDNN;
  } else {
    library_ = framework::LibraryType::kPlain;
  }

  std::string data_format = ctx.Attr<std::string>("data_format");
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
  return framework::OpKernelType(
      framework::ToDataType(ctx.Input<Tensor>("X")->type()), ctx.GetPlace(),
      layout_, library_);
}

82 83 84 85 86 87 88
void PoolOpGrad::InferShape(framework::InferShapeContext *ctx) const {
  PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must not be null.");
  PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
                 "Input(X@GRAD) should not be null.");
  ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
}

89 90 91
framework::OpKernelType PoolOpGrad::GetExpectedKernelType(
    const framework::ExecutionContext &ctx) const {
  bool use_cudnn = ctx.Attr<bool>("use_cudnn");
C
chengduoZH 已提交
92 93 94
  if (paddle::platform::is_cpu_place(ctx.GetPlace())) {
    use_cudnn = false;
  }
95 96 97 98 99 100 101 102 103 104 105 106 107 108
  framework::LibraryType library_;
  if (use_cudnn) {
    library_ = framework::LibraryType::kCUDNN;
  } else {
    library_ = framework::LibraryType::kPlain;
  }

  std::string data_format = ctx.Attr<std::string>("data_format");
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
  return framework::OpKernelType(
      framework::ToDataType(ctx.Input<Tensor>("X")->type()), ctx.GetPlace(),
      layout_, library_);
}

109
Pool2dOpMaker::Pool2dOpMaker(OpProto *proto, OpAttrChecker *op_checker)
110 111 112
    : OpProtoAndCheckerMaker(proto, op_checker) {
  AddInput(
      "X",
C
chengduoZH 已提交
113
      "(Tensor) The input tensor of pooling operator. "
K
kexinzhao 已提交
114 115 116
      "The format of input tensor is NCHW, where N is batch size, C is the "
      "number of channels, H is the height of the feature, "
      "and W is the width of the feature.");
117
  AddOutput("Out",
K
kexinzhao 已提交
118 119 120 121 122
            "(Tensor) The output tensor of pooling operator. "
            "The format of output tensor is also NCHW, "
            "where N is batch size, C is the number of channels, "
            "H is the height of the feature, "
            "and W is the width of the feature.");
123

C
chengduoZH 已提交
124
  AddAttr<std::string>("pooling_type",
C
chengduoZH 已提交
125 126
                       "(string), pooling type, can be \"max\" for max-pooling "
                       "and \"avg\" for average-pooling.")
127
      .InEnum({"max", "avg"});
C
fix bug  
chengduoZH 已提交
128
  AddAttr<std::vector<int>>("ksize",
K
kexinzhao 已提交
129 130
                            "(vector<int>) The pooling window "
                            "size(height, width) of the pooling operator. "
C
chengduoZH 已提交
131
                            "If global_pooling = true, ksize and paddings will "
C
fix bug  
chengduoZH 已提交
132 133
                            "be ignored.");  // TODO(Chengduo): Add checker.
                                             // (Currently,
C
fix doc  
chengduoZH 已提交
134
  // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
135
  AddAttr<bool>("global_pooling",
K
kexinzhao 已提交
136
                "(bool, default false) Whether to use the global pooling. "
C
chengduoZH 已提交
137
                "If global_pooling = true, ksize and paddings will be ignored.")
138
      .SetDefault(false);
K
kexinzhao 已提交
139 140 141
  AddAttr<std::vector<int>>("strides",
                            "(vector<int>, default {1, 1}), strides(height, "
                            "width) of pooling operator.")
142 143
      .SetDefault({1, 1});
  // TODO(Chengduo): Add checker. (Currently,
C
fix doc  
chengduoZH 已提交
144 145 146
  // TypedAttrChecker don't support vector type.)
  AddAttr<std::vector<int>>(
      "paddings",
C
chengduoZH 已提交
147
      "(vector<int>, default {0,0}), paddings(height, width) of pooling "
K
kexinzhao 已提交
148
      "operator."
C
chengduoZH 已提交
149
      "If global_pooling = true, paddings and ksize will be ignored.")
150 151 152 153 154 155 156 157 158 159 160 161 162
      .SetDefault({0, 0});
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
      .SetDefault("AnyLayout");
  // TODO(dzhwinter): need to registered layout transform function
163 164

  AddComment(R"DOC(
K
kexinzhao 已提交
165 166
Pool2d Operator.

C
chengduoZH 已提交
167
The pooling2d operation calculates the output based on
C
chengduoZH 已提交
168
the input, pooling_type and ksize, strides, paddings parameters.
K
kexinzhao 已提交
169 170
Input(X) and output(Out) are in NCHW format, where N is batch size, C is the
number of channels, H is the height of the feature, and W is the width of the feature.
C
fix doc  
chengduoZH 已提交
171 172
Parameters(ksize, strides, paddings) are two elements.
These two elements represent height and width, respectively.
C
chengduoZH 已提交
173 174
The input(X) size and output(Out) size may be different.

C
chengduoZH 已提交
175
Example:   
C
chengduoZH 已提交
176
  Input:
K
kexinzhao 已提交
177
       X shape: $(N, C, H_{in}, W_{in})$
C
chengduoZH 已提交
178
  Output:
K
kexinzhao 已提交
179
       Out shape: $(N, C, H_{out}, W_{out})$
C
chengduoZH 已提交
180
  Where
K
kexinzhao 已提交
181
       $$ 
C
chengduoZH 已提交
182 183
       H_{out} = \frac{(H_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1 \\
       W_{out} = \frac{(W_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1
K
kexinzhao 已提交
184 185
       $$

186
)DOC");
187 188
}

189
Pool3dOpMaker::Pool3dOpMaker(OpProto *proto, OpAttrChecker *op_checker)
190
    : OpProtoAndCheckerMaker(proto, op_checker) {
K
kexinzhao 已提交
191 192 193 194 195 196
  AddInput("X",
           "(Tensor) The input tensor of pooling operator. "
           "The format of input tensor is NCDHW, where N is batch size, C is "
           "the number of channels, and D, H and W is the depth, height and "
           "width of "
           "the feature, respectively.");
197
  AddOutput("Out",
C
chengduoZH 已提交
198
            "(Tensor) The output tensor of pooling operator."
K
kexinzhao 已提交
199 200 201 202
            "The format of output tensor is also NCDHW, "
            "where N is batch size, C is "
            "the number of channels, and D, H and W is the depth, height and "
            "width of the feature, respectively.");
203

C
chengduoZH 已提交
204
  AddAttr<std::string>("pooling_type",
K
kexinzhao 已提交
205
                       "(string) Pooling type, can be \"max\" for max-pooling "
C
chengduoZH 已提交
206
                       "and \"avg\" for average-pooling.")
207
      .InEnum({"max", "avg"});
K
kexinzhao 已提交
208 209 210 211
  AddAttr<std::vector<int>>(
      "ksize",
      "(vector<int>) The pooling window size(depth, height, "
      "width) of pooling operator. "
C
chengduoZH 已提交
212
      "If global_pooling = true, ksize and paddings will "
K
kexinzhao 已提交
213 214
      "be ignored.");  // TODO(Chengduo): Add checker.
                       // (Currently,
C
fix bug  
chengduoZH 已提交
215
  // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
216 217 218 219
  AddAttr<bool>(
      "global_pooling",
      "(bool, default false) Whether to use the global pooling. "
      "If global_pooling = true, ksize and paddings wille be ignored.")
220
      .SetDefault(false);
K
kexinzhao 已提交
221 222 223 224
  AddAttr<std::vector<int>>(
      "strides",
      "(vector<int>, default {1,1,1}) Strides(depth, height, "
      "width) of the pooling operator.")
225 226
      .SetDefault({1, 1, 1});  // TODO(Chengduo): Add checker. (Currently,
                               // TypedAttrChecker don't support vector type.)
C
fix bug  
chengduoZH 已提交
227 228
  AddAttr<std::vector<int>>(
      "paddings",
C
chengduoZH 已提交
229
      "(vector<int>, default {0,0,0}), paddings(depth, height, "
K
kexinzhao 已提交
230
      "width) of pooling operator. "
C
chengduoZH 已提交
231
      "If global_pooling = true, ksize and paddings will be ignored.")
232 233 234
      .SetDefault({0, 0, 0});  // TODO(Chengduo): Add checker. (Currently,
                               // TypedAttrChecker don't support vector type.)

235 236 237 238 239 240 241 242 243 244 245 246 247
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
      .SetDefault("AnyLayout");
  // TODO(dzhwinter): need to registered layout transform function

248
  AddComment(R"DOC(
K
kexinzhao 已提交
249 250
Pool3d Operator.

C
chengduoZH 已提交
251
The pooling3d operation calculates the output based on
C
chengduoZH 已提交
252
the input, pooling_type, ksize, strides, and paddings parameters.
K
kexinzhao 已提交
253 254 255 256 257
Input(X) and output(Out) are in NCDHW format, where N is batch
size, C is the number of channels, and D, H and W are the depth, height and
width of the feature, respectively. Parameters(ksize, strides, paddings) 
are three elements. These three elements represent depth, height and 
width, respectively. The input(X) size and output(Out) size may be different.
C
chengduoZH 已提交
258 259 260

Example:
  Input:
K
kexinzhao 已提交
261
       X shape: $(N, C, D_{in}, H_{in}, W_{in})$
C
chengduoZH 已提交
262
  Output:
K
kexinzhao 已提交
263
       Out shape: $(N, C, D_{out}, H_{out}, W_{out})$
C
chengduoZH 已提交
264 265 266 267 268 269
  Where
  $$
       D_{out} = \frac{(D_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1 \\
       H_{out} = \frac{(H_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1 \\
       W_{out} = \frac{(W_{in} - ksize[2] + 2 * paddings[2])}{strides[2]} + 1
  $$
K
kexinzhao 已提交
270

271
)DOC");
272
}
273 274 275 276 277 278 279 280
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP(pool2d, ops::PoolOp, ops::Pool2dOpMaker, pool2d_grad,
            ops::PoolOpGrad);

Q
QI JUN 已提交
281 282 283 284 285 286
REGISTER_OP_CPU_KERNEL(
    pool2d, ops::PoolKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PoolKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    pool2d_grad, ops::PoolGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PoolGradKernel<paddle::platform::CPUDeviceContext, double>)
287 288 289 290

REGISTER_OP(pool3d, ops::PoolOp, ops::Pool3dOpMaker, pool3d_grad,
            ops::PoolOpGrad);

Q
QI JUN 已提交
291 292 293 294 295 296
REGISTER_OP_CPU_KERNEL(
    pool3d, ops::PoolKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PoolKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    pool3d_grad, ops::PoolGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PoolGradKernel<paddle::platform::CPUDeviceContext, double>);