pool_op.cc 11.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/pool_op.h"

namespace paddle {
namespace operators {

C
chengduoZH 已提交
20
int OutputSizePool(int input_size, int filter_size, int padding, int stride) {
21 22 23 24
  int output_size = (input_size - filter_size + 2 * padding) / stride + 1;
  return output_size;
}

25 26 27 28 29 30 31
void PoolOp::InferShape(framework::InferShapeContext *ctx) const {
  PADDLE_ENFORCE(ctx->HasInput("X"), "X(Input) of Pooling should not be null.");
  PADDLE_ENFORCE(ctx->HasOutput("Out"),
                 "Out(Output) of Pooling should not be null.");

  auto in_x_dims = ctx->GetInputDim("X");

C
chengduoZH 已提交
32
  std::string pooling_type = ctx->Attrs().Get<std::string>("pooling_type");
33 34 35 36 37
  std::vector<int> ksize = ctx->Attrs().Get<std::vector<int>>("ksize");
  std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
  std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");

  PADDLE_ENFORCE(in_x_dims.size() == 4 || in_x_dims.size() == 5,
C
chengduoZH 已提交
38
                 "Pooling intput should be 4-D or 5-D tensor.");
39

C
chengduoZH 已提交
40
  if (ctx->Attrs().Get<bool>("global_pooling")) {
41
    ksize.resize(static_cast<size_t>(in_x_dims.size()) - 2);
C
fix bug  
chengduoZH 已提交
42 43
    for (size_t i = 0; i < ksize.size(); ++i) {
      paddings[i] = 0;
44
      ksize[i] = static_cast<int>(in_x_dims[i + 2]);
C
fix bug  
chengduoZH 已提交
45
    }
46
  }
47 48 49 50 51 52 53 54 55 56 57 58

  PADDLE_ENFORCE(in_x_dims.size() - ksize.size() == 2U,
                 "Input size and pooling size should be consistent.");
  PADDLE_ENFORCE_EQ(ksize.size(), strides.size(),
                    "Strides size and pooling size should be the same.");
  PADDLE_ENFORCE_EQ(ksize.size(), paddings.size(),
                    "Paddings size and pooling size should be the same.");

  std::vector<int64_t> output_shape({in_x_dims[0], in_x_dims[1]});
  for (size_t i = 0; i < ksize.size(); ++i) {
    output_shape.push_back(
        OutputSizePool(in_x_dims[i + 2], ksize[i], paddings[i], strides[i]));
59
  }
60
  ctx->SetOutputDim("Out", framework::make_ddim(output_shape));
Y
Yang Yu 已提交
61
  ctx->ShareLoD("X", "Out");
62 63
}

64 65 66
framework::OpKernelType PoolOp::GetExpectedKernelType(
    const framework::ExecutionContext &ctx) const {
  bool use_cudnn = ctx.Attr<bool>("use_cudnn");
C
chengduoZH 已提交
67 68 69
  if (paddle::platform::is_cpu_place(ctx.GetPlace())) {
    use_cudnn = false;
  }
70 71 72 73 74 75 76 77 78 79 80 81 82 83
  framework::LibraryType library_;
  if (use_cudnn) {
    library_ = framework::LibraryType::kCUDNN;
  } else {
    library_ = framework::LibraryType::kPlain;
  }

  std::string data_format = ctx.Attr<std::string>("data_format");
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
  return framework::OpKernelType(
      framework::ToDataType(ctx.Input<Tensor>("X")->type()), ctx.GetPlace(),
      layout_, library_);
}

84 85 86 87 88 89 90
void PoolOpGrad::InferShape(framework::InferShapeContext *ctx) const {
  PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must not be null.");
  PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
                 "Input(X@GRAD) should not be null.");
  ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
}

91 92 93
framework::OpKernelType PoolOpGrad::GetExpectedKernelType(
    const framework::ExecutionContext &ctx) const {
  bool use_cudnn = ctx.Attr<bool>("use_cudnn");
C
chengduoZH 已提交
94 95 96
  if (paddle::platform::is_cpu_place(ctx.GetPlace())) {
    use_cudnn = false;
  }
97 98 99 100 101 102 103 104 105 106 107 108 109 110
  framework::LibraryType library_;
  if (use_cudnn) {
    library_ = framework::LibraryType::kCUDNN;
  } else {
    library_ = framework::LibraryType::kPlain;
  }

  std::string data_format = ctx.Attr<std::string>("data_format");
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
  return framework::OpKernelType(
      framework::ToDataType(ctx.Input<Tensor>("X")->type()), ctx.GetPlace(),
      layout_, library_);
}

111
Pool2dOpMaker::Pool2dOpMaker(OpProto *proto, OpAttrChecker *op_checker)
112 113 114
    : OpProtoAndCheckerMaker(proto, op_checker) {
  AddInput(
      "X",
C
chengduoZH 已提交
115
      "(Tensor) The input tensor of pooling operator. "
K
kexinzhao 已提交
116 117 118
      "The format of input tensor is NCHW, where N is batch size, C is the "
      "number of channels, H is the height of the feature, "
      "and W is the width of the feature.");
119
  AddOutput("Out",
K
kexinzhao 已提交
120 121 122 123 124
            "(Tensor) The output tensor of pooling operator. "
            "The format of output tensor is also NCHW, "
            "where N is batch size, C is the number of channels, "
            "H is the height of the feature, "
            "and W is the width of the feature.");
125

C
chengduoZH 已提交
126
  AddAttr<std::string>("pooling_type",
C
chengduoZH 已提交
127 128
                       "(string), pooling type, can be \"max\" for max-pooling "
                       "and \"avg\" for average-pooling.")
129
      .InEnum({"max", "avg"});
C
fix bug  
chengduoZH 已提交
130
  AddAttr<std::vector<int>>("ksize",
K
kexinzhao 已提交
131 132
                            "(vector<int>) The pooling window "
                            "size(height, width) of the pooling operator. "
C
chengduoZH 已提交
133
                            "If global_pooling = true, ksize and paddings will "
C
fix bug  
chengduoZH 已提交
134 135
                            "be ignored.");  // TODO(Chengduo): Add checker.
                                             // (Currently,
C
fix doc  
chengduoZH 已提交
136
  // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
137
  AddAttr<bool>("global_pooling",
K
kexinzhao 已提交
138
                "(bool, default false) Whether to use the global pooling. "
C
chengduoZH 已提交
139
                "If global_pooling = true, ksize and paddings will be ignored.")
140
      .SetDefault(false);
K
kexinzhao 已提交
141 142 143
  AddAttr<std::vector<int>>("strides",
                            "(vector<int>, default {1, 1}), strides(height, "
                            "width) of pooling operator.")
144 145
      .SetDefault({1, 1});
  // TODO(Chengduo): Add checker. (Currently,
C
fix doc  
chengduoZH 已提交
146 147 148
  // TypedAttrChecker don't support vector type.)
  AddAttr<std::vector<int>>(
      "paddings",
C
chengduoZH 已提交
149
      "(vector<int>, default {0,0}), paddings(height, width) of pooling "
K
kexinzhao 已提交
150
      "operator."
C
chengduoZH 已提交
151
      "If global_pooling = true, paddings and ksize will be ignored.")
152 153 154 155 156 157 158 159 160 161 162 163 164
      .SetDefault({0, 0});
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
      .SetDefault("AnyLayout");
  // TODO(dzhwinter): need to registered layout transform function
165 166

  AddComment(R"DOC(
K
kexinzhao 已提交
167 168
Pool2d Operator.

C
chengduoZH 已提交
169
The pooling2d operation calculates the output based on
C
chengduoZH 已提交
170
the input, pooling_type and ksize, strides, paddings parameters.
K
kexinzhao 已提交
171 172
Input(X) and output(Out) are in NCHW format, where N is batch size, C is the
number of channels, H is the height of the feature, and W is the width of the feature.
C
fix doc  
chengduoZH 已提交
173 174
Parameters(ksize, strides, paddings) are two elements.
These two elements represent height and width, respectively.
C
chengduoZH 已提交
175 176
The input(X) size and output(Out) size may be different.

C
chengduoZH 已提交
177
Example:   
C
chengduoZH 已提交
178
  Input:
K
kexinzhao 已提交
179
       X shape: $(N, C, H_{in}, W_{in})$
C
chengduoZH 已提交
180
  Output:
K
kexinzhao 已提交
181
       Out shape: $(N, C, H_{out}, W_{out})$
C
chengduoZH 已提交
182
  Where
K
kexinzhao 已提交
183
       $$ 
C
chengduoZH 已提交
184 185
       H_{out} = \frac{(H_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1 \\
       W_{out} = \frac{(W_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1
K
kexinzhao 已提交
186 187
       $$

188
)DOC");
189 190
}

191
Pool3dOpMaker::Pool3dOpMaker(OpProto *proto, OpAttrChecker *op_checker)
192
    : OpProtoAndCheckerMaker(proto, op_checker) {
K
kexinzhao 已提交
193 194 195 196 197 198
  AddInput("X",
           "(Tensor) The input tensor of pooling operator. "
           "The format of input tensor is NCDHW, where N is batch size, C is "
           "the number of channels, and D, H and W is the depth, height and "
           "width of "
           "the feature, respectively.");
199
  AddOutput("Out",
C
chengduoZH 已提交
200
            "(Tensor) The output tensor of pooling operator."
K
kexinzhao 已提交
201 202 203 204
            "The format of output tensor is also NCDHW, "
            "where N is batch size, C is "
            "the number of channels, and D, H and W is the depth, height and "
            "width of the feature, respectively.");
205

C
chengduoZH 已提交
206
  AddAttr<std::string>("pooling_type",
K
kexinzhao 已提交
207
                       "(string) Pooling type, can be \"max\" for max-pooling "
C
chengduoZH 已提交
208
                       "and \"avg\" for average-pooling.")
209
      .InEnum({"max", "avg"});
K
kexinzhao 已提交
210 211 212 213
  AddAttr<std::vector<int>>(
      "ksize",
      "(vector<int>) The pooling window size(depth, height, "
      "width) of pooling operator. "
C
chengduoZH 已提交
214
      "If global_pooling = true, ksize and paddings will "
K
kexinzhao 已提交
215 216
      "be ignored.");  // TODO(Chengduo): Add checker.
                       // (Currently,
C
fix bug  
chengduoZH 已提交
217
  // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
218 219 220 221
  AddAttr<bool>(
      "global_pooling",
      "(bool, default false) Whether to use the global pooling. "
      "If global_pooling = true, ksize and paddings wille be ignored.")
222
      .SetDefault(false);
K
kexinzhao 已提交
223 224 225 226
  AddAttr<std::vector<int>>(
      "strides",
      "(vector<int>, default {1,1,1}) Strides(depth, height, "
      "width) of the pooling operator.")
227 228
      .SetDefault({1, 1, 1});  // TODO(Chengduo): Add checker. (Currently,
                               // TypedAttrChecker don't support vector type.)
C
fix bug  
chengduoZH 已提交
229 230
  AddAttr<std::vector<int>>(
      "paddings",
C
chengduoZH 已提交
231
      "(vector<int>, default {0,0,0}), paddings(depth, height, "
K
kexinzhao 已提交
232
      "width) of pooling operator. "
C
chengduoZH 已提交
233
      "If global_pooling = true, ksize and paddings will be ignored.")
234 235 236
      .SetDefault({0, 0, 0});  // TODO(Chengduo): Add checker. (Currently,
                               // TypedAttrChecker don't support vector type.)

237 238 239 240 241 242 243 244 245 246 247 248 249
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
      .SetDefault("AnyLayout");
  // TODO(dzhwinter): need to registered layout transform function

250
  AddComment(R"DOC(
K
kexinzhao 已提交
251 252
Pool3d Operator.

C
chengduoZH 已提交
253
The pooling3d operation calculates the output based on
C
chengduoZH 已提交
254
the input, pooling_type, ksize, strides, and paddings parameters.
K
kexinzhao 已提交
255 256 257 258 259
Input(X) and output(Out) are in NCDHW format, where N is batch
size, C is the number of channels, and D, H and W are the depth, height and
width of the feature, respectively. Parameters(ksize, strides, paddings) 
are three elements. These three elements represent depth, height and 
width, respectively. The input(X) size and output(Out) size may be different.
C
chengduoZH 已提交
260 261 262

Example:
  Input:
K
kexinzhao 已提交
263
       X shape: $(N, C, D_{in}, H_{in}, W_{in})$
C
chengduoZH 已提交
264
  Output:
K
kexinzhao 已提交
265
       Out shape: $(N, C, D_{out}, H_{out}, W_{out})$
C
chengduoZH 已提交
266 267 268 269 270 271
  Where
  $$
       D_{out} = \frac{(D_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1 \\
       H_{out} = \frac{(H_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1 \\
       W_{out} = \frac{(W_{in} - ksize[2] + 2 * paddings[2])}{strides[2]} + 1
  $$
K
kexinzhao 已提交
272

273
)DOC");
274
}
275 276 277 278 279 280 281 282
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP(pool2d, ops::PoolOp, ops::Pool2dOpMaker, pool2d_grad,
            ops::PoolOpGrad);

Q
QI JUN 已提交
283 284 285 286 287 288
REGISTER_OP_CPU_KERNEL(
    pool2d, ops::PoolKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PoolKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    pool2d_grad, ops::PoolGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PoolGradKernel<paddle::platform::CPUDeviceContext, double>)
289 290 291 292

REGISTER_OP(pool3d, ops::PoolOp, ops::Pool3dOpMaker, pool3d_grad,
            ops::PoolOpGrad);

Q
QI JUN 已提交
293 294 295 296 297 298
REGISTER_OP_CPU_KERNEL(
    pool3d, ops::PoolKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PoolKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    pool3d_grad, ops::PoolGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PoolGradKernel<paddle::platform::CPUDeviceContext, double>);