googlenet.py 10.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

D
dangqingqing 已提交
15 16 17 18 19 20 21 22 23 24
from six.moves import xrange
from datetime import datetime
import math
import time

import tensorflow.python.platform
import tensorflow as tf

FLAGS = tf.app.flags.FLAGS

25 26
tf.app.flags.DEFINE_integer('batch_size', 128, """Batch size.""")
tf.app.flags.DEFINE_integer('num_batches', 100, """Number of batches to run.""")
D
dangqingqing 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
tf.app.flags.DEFINE_boolean('forward_only', False,
                            """Only run the forward pass.""")
tf.app.flags.DEFINE_boolean('forward_backward_only', False,
                            """Only run the forward-forward pass.""")
tf.app.flags.DEFINE_string('data_format', 'NCHW',
                           """The data format for Convnet operations.
                           Can be either NHWC or NCHW.
                           """)
tf.app.flags.DEFINE_boolean('log_device_placement', False,
                            """Whether to log device placement.""")

parameters = []

conv_counter = 1
pool_counter = 1
affine_counter = 1

44 45

def _conv(inpOp, nIn, nOut, kH, kW, dH, dW, padType, wd=0.0005):
D
dangqingqing 已提交
46 47 48 49 50
    global conv_counter
    global parameters
    name = 'conv' + str(conv_counter)
    conv_counter += 1
    with tf.name_scope(name) as scope:
51 52 53 54
        kernel = tf.Variable(
            tf.truncated_normal(
                [kH, kW, nIn, nOut], dtype=tf.float32, stddev=1e-1),
            name='weights')
D
dangqingqing 已提交
55 56 57 58 59 60

        if wd is not None and wd > 0:
            weight_decay = tf.mul(tf.nn.l2_loss(kernel), wd, name='weight_loss')
            tf.add_to_collection('losses', weight_decay)

        if FLAGS.data_format == 'NCHW':
61
            strides = [1, 1, dH, dW]
D
dangqingqing 已提交
62
        else:
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
            strides = [1, dH, dW, 1]
        conv = tf.nn.conv2d(
            inpOp,
            kernel,
            strides,
            padding=padType,
            data_format=FLAGS.data_format)
        biases = tf.Variable(
            tf.constant(
                0.0, shape=[nOut], dtype=tf.float32),
            trainable=True,
            name='biases')
        bias = tf.reshape(
            tf.nn.bias_add(
                conv, biases, data_format=FLAGS.data_format),
            conv.get_shape())
D
dangqingqing 已提交
79 80 81 82
        conv1 = tf.nn.relu(bias, name=scope)
        parameters += [kernel, biases]
        return conv1

83 84

def _affine(inpOp, nIn, nOut, act=True, wd=0.0005):
D
dangqingqing 已提交
85 86 87 88 89
    global affine_counter
    global parameters
    name = 'affine' + str(affine_counter)
    affine_counter += 1
    with tf.name_scope(name) as scope:
90 91 92 93
        kernel = tf.Variable(
            tf.truncated_normal(
                [nIn, nOut], dtype=tf.float32, stddev=1e-1),
            name='weights')
D
dangqingqing 已提交
94 95 96 97 98

        if wd is not None and wd > 0:
            weight_decay = tf.mul(tf.nn.l2_loss(kernel), wd, name='weight_loss')
            tf.add_to_collection('losses', weight_decay)

99 100 101 102 103 104 105 106
        biases = tf.Variable(
            tf.constant(
                0.0, shape=[nOut], dtype=tf.float32),
            trainable=True,
            name='biases')
        affine1 = tf.nn.relu_layer(
            inpOp, kernel, biases,
            name=name) if act else tf.matmul(inpOp, kernel) + biases
D
dangqingqing 已提交
107 108 109
        parameters += [kernel, biases]
        return affine1

110

D
dangqingqing 已提交
111 112 113 114 115 116
def _mpool(inpOp, kH, kW, dH, dW, padding):
    global pool_counter
    global parameters
    name = 'pool' + str(pool_counter)
    pool_counter += 1
    if FLAGS.data_format == 'NCHW':
117 118
        ksize = [1, 1, kH, kW]
        strides = [1, 1, dH, dW]
D
dangqingqing 已提交
119
    else:
120 121 122 123 124 125 126 127 128 129
        ksize = [1, kH, kW, 1]
        strides = [1, dH, dW, 1]
    return tf.nn.max_pool(
        inpOp,
        ksize=ksize,
        strides=strides,
        padding=padding,
        data_format=FLAGS.data_format,
        name=name)

D
dangqingqing 已提交
130 131 132 133 134 135 136

def _apool(inpOp, kH, kW, dH, dW, padding):
    global pool_counter
    global parameters
    name = 'pool' + str(pool_counter)
    pool_counter += 1
    if FLAGS.data_format == 'NCHW':
137 138
        ksize = [1, 1, kH, kW]
        strides = [1, 1, dH, dW]
D
dangqingqing 已提交
139
    else:
140 141 142 143 144 145 146 147 148 149
        ksize = [1, kH, kW, 1]
        strides = [1, dH, dW, 1]
    return tf.nn.avg_pool(
        inpOp,
        ksize=ksize,
        strides=strides,
        padding=padding,
        data_format=FLAGS.data_format,
        name=name)

D
dangqingqing 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162 163

def _inception(inp, inSize, o1s, o2s1, o2s2, o3s1, o3s2, o4s1, o4s2):
    conv1 = _conv(inp, inSize, o1s, 1, 1, 1, 1, 'VALID')

    conv3_ = _conv(inp, inSize, o2s1, 1, 1, 1, 1, 'VALID')
    conv3 = _conv(conv3_, o2s1, o2s2, 3, 3, 1, 1, 'SAME')

    conv5_ = _conv(inp, inSize, o3s1, 1, 1, 1, 1, 'VALID')
    conv5 = _conv(conv5_, o3s1, o3s2, 5, 5, 1, 1, 'SAME')

    pool_ = _mpool(inp, o4s1, o4s1, 1, 1, 'SAME')
    pool = _conv(pool_, inSize, o4s2, 1, 1, 1, 1, 'VALID')

    if FLAGS.data_format == 'NCHW':
164
        channel_dim = 1
D
dangqingqing 已提交
165
    else:
166
        channel_dim = 3
D
dangqingqing 已提交
167 168 169 170 171 172 173 174 175
    incept = tf.concat(channel_dim, [conv1, conv3, conv5, pool])
    return incept


def loss(logits, labels):
    batch_size = tf.size(labels)
    labels = tf.expand_dims(labels, 1)
    indices = tf.expand_dims(tf.range(0, batch_size, 1), 1)
    concated = tf.concat(1, [indices, labels])
176 177 178 179
    onehot_labels = tf.sparse_to_dense(concated,
                                       tf.pack([batch_size, 1000]), 1.0, 0.0)
    cross_entropy = tf.nn.softmax_cross_entropy_with_logits(
        logits, onehot_labels, name='xentropy')
D
dangqingqing 已提交
180 181 182
    loss = tf.reduce_mean(cross_entropy, name='xentropy_mean')
    return loss

183

D
dangqingqing 已提交
184 185
def inference(images):
    # stage 1
186 187
    conv1 = _conv(images, 3, 64, 7, 7, 2, 2, 'SAME')
    pool1 = _mpool(conv1, 3, 3, 2, 2, 'SAME')
D
dangqingqing 已提交
188
    # stage 2
189 190 191
    conv2 = _conv(pool1, 64, 64, 1, 1, 1, 1, 'VALID')
    conv3 = _conv(conv2, 64, 192, 3, 3, 1, 1, 'SAME')
    pool3 = _mpool(conv3, 3, 3, 2, 2, 'SAME')
D
dangqingqing 已提交
192 193

    # stage 3
194
    incept3a = _inception(pool3, 192, 64, 96, 128, 16, 32, 3, 32)
D
dangqingqing 已提交
195
    incept3b = _inception(incept3a, 256, 128, 128, 192, 32, 96, 3, 64)
196
    pool4 = _mpool(incept3b, 3, 3, 2, 2, 'SAME')
D
dangqingqing 已提交
197 198

    # stage 4
199
    incept4a = _inception(pool4, 480, 192, 96, 208, 16, 48, 3, 64)
D
dangqingqing 已提交
200 201 202 203
    incept4b = _inception(incept4a, 512, 160, 112, 224, 24, 64, 3, 64)
    incept4c = _inception(incept4b, 512, 128, 128, 256, 24, 64, 3, 64)
    incept4d = _inception(incept4c, 512, 112, 144, 288, 32, 64, 3, 64)
    incept4e = _inception(incept4d, 528, 256, 160, 320, 32, 128, 3, 128)
204
    pool5 = _mpool(incept4e, 3, 3, 2, 2, 'SAME')
D
dangqingqing 已提交
205 206

    # stage 5
207
    incept5a = _inception(pool5, 832, 256, 160, 320, 32, 128, 3, 128)
D
dangqingqing 已提交
208
    incept5b = _inception(incept5a, 832, 384, 192, 384, 48, 128, 3, 128)
209
    pool6 = _apool(incept5b, 7, 7, 1, 1, 'VALID')
D
dangqingqing 已提交
210 211 212 213 214 215 216 217 218 219

    # output 1
    resh1 = tf.reshape(pool6, [-1, 1024])
    drop = tf.nn.dropout(resh1, 0.4)
    affn1 = _affine(resh1, 1024, 1000, act=False)

    return affn1


def time_tensorflow_run(session, target, info_string):
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
    num_steps_burn_in = 10
    total_duration = 0.0
    total_duration_squared = 0.0
    if not isinstance(target, list):
        target = [target]
    target_op = tf.group(*target)
    for i in range(FLAGS.num_batches + num_steps_burn_in):
        start_time = time.time()
        _ = session.run(target_op)
        duration = time.time() - start_time
        if i > num_steps_burn_in:
            if not i % 10:
                print('%s: step %d, duration = %.3f' %
                      (datetime.now(), i - num_steps_burn_in, duration))
            total_duration += duration
            total_duration_squared += duration * duration
    mn = total_duration / FLAGS.num_batches
    vr = total_duration_squared / FLAGS.num_batches - mn * mn
    sd = math.sqrt(vr)
    print('%s: %s across %d steps, %.3f +/- %.3f sec / batch' %
          (datetime.now(), info_string, FLAGS.num_batches, mn, sd))

D
dangqingqing 已提交
242 243

def run_benchmark():
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
    global parameters
    with tf.Graph().as_default():
        # Generate some dummy images.
        image_size = 224
        if FLAGS.data_format == 'NCHW':
            image_shape = [FLAGS.batch_size, 3, image_size, image_size]
        else:
            image_shape = [FLAGS.batch_size, image_size, image_size, 3]

        images = tf.get_variable(
            'image',
            image_shape,
            initializer=tf.truncated_normal_initializer(
                stddev=0.1, dtype=tf.float32),
            dtype=tf.float32,
            trainable=False)

        labels = tf.get_variable(
            'label', [FLAGS.batch_size],
            initializer=tf.constant_initializer(1),
            dtype=tf.int32,
            trainable=False)

        # Build a Graph that computes the logits predictions from the
        # inference model.
        last_layer = inference(images)

        objective = loss(last_layer, labels)

        # Compute gradients.
        # opt = tf.train.GradientDescentOptimizer(0.001)
        opt = tf.train.MomentumOptimizer(0.001, 0.9)
        grads = opt.compute_gradients(objective)
        global_step = tf.get_variable(
            'global_step', [],
            initializer=tf.constant_initializer(
                0.0, dtype=tf.float32),
            trainable=False,
            dtype=tf.float32)
        apply_gradient_op = opt.apply_gradients(grads, global_step=global_step)

        # Track the moving averages of all trainable variables.
        variable_averages = tf.train.ExponentialMovingAverage(0.9, global_step)
        variables_averages_op = variable_averages.apply(tf.trainable_variables(
        ))

        # Build an initialization operation.
        init = tf.initialize_all_variables()

        # Start running operations on the Graph.
        sess = tf.Session(config=tf.ConfigProto(
            allow_soft_placement=True,
            log_device_placement=FLAGS.log_device_placement))
        sess.run(init)

        run_forward = True
        run_forward_backward = True
        if FLAGS.forward_only and FLAGS.forward_backward_only:
            raise ValueError("Cannot specify --forward_only and "
                             "--forward_backward_only at the same time.")
        if FLAGS.forward_only:
            run_forward_backward = False
        elif FLAGS.forward_backward_only:
            run_forward = False

        if run_forward:
            # Run the forward benchmark.
            time_tensorflow_run(sess, last_layer, "Forward")

        if run_forward_backward:
            with tf.control_dependencies(
                [apply_gradient_op, variables_averages_op]):
                train_op = tf.no_op(name='train')
            time_tensorflow_run(sess, [train_op, objective], "Forward-backward")
D
dangqingqing 已提交
318 319 320


def main(_):
321
    run_benchmark()
D
dangqingqing 已提交
322 323 324


if __name__ == '__main__':
325
    tf.app.run()