googlenet.py 10.8 KB
Newer Older
D
dzhwinter 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
D
dangqingqing 已提交
14 15 16 17 18 19 20 21 22 23
from six.moves import xrange
from datetime import datetime
import math
import time

import tensorflow.python.platform
import tensorflow as tf

FLAGS = tf.app.flags.FLAGS

24 25
tf.app.flags.DEFINE_integer('batch_size', 128, """Batch size.""")
tf.app.flags.DEFINE_integer('num_batches', 100, """Number of batches to run.""")
D
dangqingqing 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
tf.app.flags.DEFINE_boolean('forward_only', False,
                            """Only run the forward pass.""")
tf.app.flags.DEFINE_boolean('forward_backward_only', False,
                            """Only run the forward-forward pass.""")
tf.app.flags.DEFINE_string('data_format', 'NCHW',
                           """The data format for Convnet operations.
                           Can be either NHWC or NCHW.
                           """)
tf.app.flags.DEFINE_boolean('log_device_placement', False,
                            """Whether to log device placement.""")

parameters = []

conv_counter = 1
pool_counter = 1
affine_counter = 1

43 44

def _conv(inpOp, nIn, nOut, kH, kW, dH, dW, padType, wd=0.0005):
D
dangqingqing 已提交
45 46 47 48 49
    global conv_counter
    global parameters
    name = 'conv' + str(conv_counter)
    conv_counter += 1
    with tf.name_scope(name) as scope:
50 51 52 53
        kernel = tf.Variable(
            tf.truncated_normal(
                [kH, kW, nIn, nOut], dtype=tf.float32, stddev=1e-1),
            name='weights')
D
dangqingqing 已提交
54 55 56 57 58 59

        if wd is not None and wd > 0:
            weight_decay = tf.mul(tf.nn.l2_loss(kernel), wd, name='weight_loss')
            tf.add_to_collection('losses', weight_decay)

        if FLAGS.data_format == 'NCHW':
60
            strides = [1, 1, dH, dW]
D
dangqingqing 已提交
61
        else:
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
            strides = [1, dH, dW, 1]
        conv = tf.nn.conv2d(
            inpOp,
            kernel,
            strides,
            padding=padType,
            data_format=FLAGS.data_format)
        biases = tf.Variable(
            tf.constant(
                0.0, shape=[nOut], dtype=tf.float32),
            trainable=True,
            name='biases')
        bias = tf.reshape(
            tf.nn.bias_add(
                conv, biases, data_format=FLAGS.data_format),
            conv.get_shape())
D
dangqingqing 已提交
78 79 80 81
        conv1 = tf.nn.relu(bias, name=scope)
        parameters += [kernel, biases]
        return conv1

82 83

def _affine(inpOp, nIn, nOut, act=True, wd=0.0005):
D
dangqingqing 已提交
84 85 86 87 88
    global affine_counter
    global parameters
    name = 'affine' + str(affine_counter)
    affine_counter += 1
    with tf.name_scope(name) as scope:
89 90 91 92
        kernel = tf.Variable(
            tf.truncated_normal(
                [nIn, nOut], dtype=tf.float32, stddev=1e-1),
            name='weights')
D
dangqingqing 已提交
93 94 95 96 97

        if wd is not None and wd > 0:
            weight_decay = tf.mul(tf.nn.l2_loss(kernel), wd, name='weight_loss')
            tf.add_to_collection('losses', weight_decay)

98 99 100 101 102 103 104 105
        biases = tf.Variable(
            tf.constant(
                0.0, shape=[nOut], dtype=tf.float32),
            trainable=True,
            name='biases')
        affine1 = tf.nn.relu_layer(
            inpOp, kernel, biases,
            name=name) if act else tf.matmul(inpOp, kernel) + biases
D
dangqingqing 已提交
106 107 108
        parameters += [kernel, biases]
        return affine1

109

D
dangqingqing 已提交
110 111 112 113 114 115
def _mpool(inpOp, kH, kW, dH, dW, padding):
    global pool_counter
    global parameters
    name = 'pool' + str(pool_counter)
    pool_counter += 1
    if FLAGS.data_format == 'NCHW':
116 117
        ksize = [1, 1, kH, kW]
        strides = [1, 1, dH, dW]
D
dangqingqing 已提交
118
    else:
119 120 121 122 123 124 125 126 127 128
        ksize = [1, kH, kW, 1]
        strides = [1, dH, dW, 1]
    return tf.nn.max_pool(
        inpOp,
        ksize=ksize,
        strides=strides,
        padding=padding,
        data_format=FLAGS.data_format,
        name=name)

D
dangqingqing 已提交
129 130 131 132 133 134 135

def _apool(inpOp, kH, kW, dH, dW, padding):
    global pool_counter
    global parameters
    name = 'pool' + str(pool_counter)
    pool_counter += 1
    if FLAGS.data_format == 'NCHW':
136 137
        ksize = [1, 1, kH, kW]
        strides = [1, 1, dH, dW]
D
dangqingqing 已提交
138
    else:
139 140 141 142 143 144 145 146 147 148
        ksize = [1, kH, kW, 1]
        strides = [1, dH, dW, 1]
    return tf.nn.avg_pool(
        inpOp,
        ksize=ksize,
        strides=strides,
        padding=padding,
        data_format=FLAGS.data_format,
        name=name)

D
dangqingqing 已提交
149 150 151 152 153 154 155 156 157 158 159 160 161 162

def _inception(inp, inSize, o1s, o2s1, o2s2, o3s1, o3s2, o4s1, o4s2):
    conv1 = _conv(inp, inSize, o1s, 1, 1, 1, 1, 'VALID')

    conv3_ = _conv(inp, inSize, o2s1, 1, 1, 1, 1, 'VALID')
    conv3 = _conv(conv3_, o2s1, o2s2, 3, 3, 1, 1, 'SAME')

    conv5_ = _conv(inp, inSize, o3s1, 1, 1, 1, 1, 'VALID')
    conv5 = _conv(conv5_, o3s1, o3s2, 5, 5, 1, 1, 'SAME')

    pool_ = _mpool(inp, o4s1, o4s1, 1, 1, 'SAME')
    pool = _conv(pool_, inSize, o4s2, 1, 1, 1, 1, 'VALID')

    if FLAGS.data_format == 'NCHW':
163
        channel_dim = 1
D
dangqingqing 已提交
164
    else:
165
        channel_dim = 3
D
dangqingqing 已提交
166 167 168 169 170 171 172 173 174
    incept = tf.concat(channel_dim, [conv1, conv3, conv5, pool])
    return incept


def loss(logits, labels):
    batch_size = tf.size(labels)
    labels = tf.expand_dims(labels, 1)
    indices = tf.expand_dims(tf.range(0, batch_size, 1), 1)
    concated = tf.concat(1, [indices, labels])
175 176 177 178
    onehot_labels = tf.sparse_to_dense(concated,
                                       tf.pack([batch_size, 1000]), 1.0, 0.0)
    cross_entropy = tf.nn.softmax_cross_entropy_with_logits(
        logits, onehot_labels, name='xentropy')
D
dangqingqing 已提交
179 180 181
    loss = tf.reduce_mean(cross_entropy, name='xentropy_mean')
    return loss

182

D
dangqingqing 已提交
183 184
def inference(images):
    # stage 1
185 186
    conv1 = _conv(images, 3, 64, 7, 7, 2, 2, 'SAME')
    pool1 = _mpool(conv1, 3, 3, 2, 2, 'SAME')
D
dangqingqing 已提交
187
    # stage 2
188 189 190
    conv2 = _conv(pool1, 64, 64, 1, 1, 1, 1, 'VALID')
    conv3 = _conv(conv2, 64, 192, 3, 3, 1, 1, 'SAME')
    pool3 = _mpool(conv3, 3, 3, 2, 2, 'SAME')
D
dangqingqing 已提交
191 192

    # stage 3
193
    incept3a = _inception(pool3, 192, 64, 96, 128, 16, 32, 3, 32)
D
dangqingqing 已提交
194
    incept3b = _inception(incept3a, 256, 128, 128, 192, 32, 96, 3, 64)
195
    pool4 = _mpool(incept3b, 3, 3, 2, 2, 'SAME')
D
dangqingqing 已提交
196 197

    # stage 4
198
    incept4a = _inception(pool4, 480, 192, 96, 208, 16, 48, 3, 64)
D
dangqingqing 已提交
199 200 201 202
    incept4b = _inception(incept4a, 512, 160, 112, 224, 24, 64, 3, 64)
    incept4c = _inception(incept4b, 512, 128, 128, 256, 24, 64, 3, 64)
    incept4d = _inception(incept4c, 512, 112, 144, 288, 32, 64, 3, 64)
    incept4e = _inception(incept4d, 528, 256, 160, 320, 32, 128, 3, 128)
203
    pool5 = _mpool(incept4e, 3, 3, 2, 2, 'SAME')
D
dangqingqing 已提交
204 205

    # stage 5
206
    incept5a = _inception(pool5, 832, 256, 160, 320, 32, 128, 3, 128)
D
dangqingqing 已提交
207
    incept5b = _inception(incept5a, 832, 384, 192, 384, 48, 128, 3, 128)
208
    pool6 = _apool(incept5b, 7, 7, 1, 1, 'VALID')
D
dangqingqing 已提交
209 210 211 212 213 214 215 216 217 218

    # output 1
    resh1 = tf.reshape(pool6, [-1, 1024])
    drop = tf.nn.dropout(resh1, 0.4)
    affn1 = _affine(resh1, 1024, 1000, act=False)

    return affn1


def time_tensorflow_run(session, target, info_string):
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
    num_steps_burn_in = 10
    total_duration = 0.0
    total_duration_squared = 0.0
    if not isinstance(target, list):
        target = [target]
    target_op = tf.group(*target)
    for i in range(FLAGS.num_batches + num_steps_burn_in):
        start_time = time.time()
        _ = session.run(target_op)
        duration = time.time() - start_time
        if i > num_steps_burn_in:
            if not i % 10:
                print('%s: step %d, duration = %.3f' %
                      (datetime.now(), i - num_steps_burn_in, duration))
            total_duration += duration
            total_duration_squared += duration * duration
    mn = total_duration / FLAGS.num_batches
    vr = total_duration_squared / FLAGS.num_batches - mn * mn
    sd = math.sqrt(vr)
    print('%s: %s across %d steps, %.3f +/- %.3f sec / batch' %
          (datetime.now(), info_string, FLAGS.num_batches, mn, sd))

D
dangqingqing 已提交
241 242

def run_benchmark():
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
    global parameters
    with tf.Graph().as_default():
        # Generate some dummy images.
        image_size = 224
        if FLAGS.data_format == 'NCHW':
            image_shape = [FLAGS.batch_size, 3, image_size, image_size]
        else:
            image_shape = [FLAGS.batch_size, image_size, image_size, 3]

        images = tf.get_variable(
            'image',
            image_shape,
            initializer=tf.truncated_normal_initializer(
                stddev=0.1, dtype=tf.float32),
            dtype=tf.float32,
            trainable=False)

        labels = tf.get_variable(
            'label', [FLAGS.batch_size],
            initializer=tf.constant_initializer(1),
            dtype=tf.int32,
            trainable=False)

        # Build a Graph that computes the logits predictions from the
        # inference model.
        last_layer = inference(images)

        objective = loss(last_layer, labels)

        # Compute gradients.
        # opt = tf.train.GradientDescentOptimizer(0.001)
        opt = tf.train.MomentumOptimizer(0.001, 0.9)
        grads = opt.compute_gradients(objective)
        global_step = tf.get_variable(
            'global_step', [],
            initializer=tf.constant_initializer(
                0.0, dtype=tf.float32),
            trainable=False,
            dtype=tf.float32)
        apply_gradient_op = opt.apply_gradients(grads, global_step=global_step)

        # Track the moving averages of all trainable variables.
        variable_averages = tf.train.ExponentialMovingAverage(0.9, global_step)
        variables_averages_op = variable_averages.apply(tf.trainable_variables(
        ))

        # Build an initialization operation.
        init = tf.initialize_all_variables()

        # Start running operations on the Graph.
        sess = tf.Session(config=tf.ConfigProto(
            allow_soft_placement=True,
            log_device_placement=FLAGS.log_device_placement))
        sess.run(init)

        run_forward = True
        run_forward_backward = True
        if FLAGS.forward_only and FLAGS.forward_backward_only:
            raise ValueError("Cannot specify --forward_only and "
                             "--forward_backward_only at the same time.")
        if FLAGS.forward_only:
            run_forward_backward = False
        elif FLAGS.forward_backward_only:
            run_forward = False

        if run_forward:
            # Run the forward benchmark.
            time_tensorflow_run(sess, last_layer, "Forward")

        if run_forward_backward:
            with tf.control_dependencies(
                [apply_gradient_op, variables_averages_op]):
                train_op = tf.no_op(name='train')
            time_tensorflow_run(sess, [train_op, objective], "Forward-backward")
D
dangqingqing 已提交
317 318 319


def main(_):
320
    run_benchmark()
D
dangqingqing 已提交
321 322 323


if __name__ == '__main__':
324
    tf.app.run()