googlenet.py 10.2 KB
Newer Older
D
dangqingqing 已提交
1 2 3 4 5 6 7 8 9 10
from six.moves import xrange
from datetime import datetime
import math
import time

import tensorflow.python.platform
import tensorflow as tf

FLAGS = tf.app.flags.FLAGS

11 12
tf.app.flags.DEFINE_integer('batch_size', 128, """Batch size.""")
tf.app.flags.DEFINE_integer('num_batches', 100, """Number of batches to run.""")
D
dangqingqing 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
tf.app.flags.DEFINE_boolean('forward_only', False,
                            """Only run the forward pass.""")
tf.app.flags.DEFINE_boolean('forward_backward_only', False,
                            """Only run the forward-forward pass.""")
tf.app.flags.DEFINE_string('data_format', 'NCHW',
                           """The data format for Convnet operations.
                           Can be either NHWC or NCHW.
                           """)
tf.app.flags.DEFINE_boolean('log_device_placement', False,
                            """Whether to log device placement.""")

parameters = []

conv_counter = 1
pool_counter = 1
affine_counter = 1

30 31

def _conv(inpOp, nIn, nOut, kH, kW, dH, dW, padType, wd=0.0005):
D
dangqingqing 已提交
32 33 34 35 36
    global conv_counter
    global parameters
    name = 'conv' + str(conv_counter)
    conv_counter += 1
    with tf.name_scope(name) as scope:
37 38 39 40
        kernel = tf.Variable(
            tf.truncated_normal(
                [kH, kW, nIn, nOut], dtype=tf.float32, stddev=1e-1),
            name='weights')
D
dangqingqing 已提交
41 42 43 44 45 46

        if wd is not None and wd > 0:
            weight_decay = tf.mul(tf.nn.l2_loss(kernel), wd, name='weight_loss')
            tf.add_to_collection('losses', weight_decay)

        if FLAGS.data_format == 'NCHW':
47
            strides = [1, 1, dH, dW]
D
dangqingqing 已提交
48
        else:
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
            strides = [1, dH, dW, 1]
        conv = tf.nn.conv2d(
            inpOp,
            kernel,
            strides,
            padding=padType,
            data_format=FLAGS.data_format)
        biases = tf.Variable(
            tf.constant(
                0.0, shape=[nOut], dtype=tf.float32),
            trainable=True,
            name='biases')
        bias = tf.reshape(
            tf.nn.bias_add(
                conv, biases, data_format=FLAGS.data_format),
            conv.get_shape())
D
dangqingqing 已提交
65 66 67 68
        conv1 = tf.nn.relu(bias, name=scope)
        parameters += [kernel, biases]
        return conv1

69 70

def _affine(inpOp, nIn, nOut, act=True, wd=0.0005):
D
dangqingqing 已提交
71 72 73 74 75
    global affine_counter
    global parameters
    name = 'affine' + str(affine_counter)
    affine_counter += 1
    with tf.name_scope(name) as scope:
76 77 78 79
        kernel = tf.Variable(
            tf.truncated_normal(
                [nIn, nOut], dtype=tf.float32, stddev=1e-1),
            name='weights')
D
dangqingqing 已提交
80 81 82 83 84

        if wd is not None and wd > 0:
            weight_decay = tf.mul(tf.nn.l2_loss(kernel), wd, name='weight_loss')
            tf.add_to_collection('losses', weight_decay)

85 86 87 88 89 90 91 92
        biases = tf.Variable(
            tf.constant(
                0.0, shape=[nOut], dtype=tf.float32),
            trainable=True,
            name='biases')
        affine1 = tf.nn.relu_layer(
            inpOp, kernel, biases,
            name=name) if act else tf.matmul(inpOp, kernel) + biases
D
dangqingqing 已提交
93 94 95
        parameters += [kernel, biases]
        return affine1

96

D
dangqingqing 已提交
97 98 99 100 101 102
def _mpool(inpOp, kH, kW, dH, dW, padding):
    global pool_counter
    global parameters
    name = 'pool' + str(pool_counter)
    pool_counter += 1
    if FLAGS.data_format == 'NCHW':
103 104
        ksize = [1, 1, kH, kW]
        strides = [1, 1, dH, dW]
D
dangqingqing 已提交
105
    else:
106 107 108 109 110 111 112 113 114 115
        ksize = [1, kH, kW, 1]
        strides = [1, dH, dW, 1]
    return tf.nn.max_pool(
        inpOp,
        ksize=ksize,
        strides=strides,
        padding=padding,
        data_format=FLAGS.data_format,
        name=name)

D
dangqingqing 已提交
116 117 118 119 120 121 122

def _apool(inpOp, kH, kW, dH, dW, padding):
    global pool_counter
    global parameters
    name = 'pool' + str(pool_counter)
    pool_counter += 1
    if FLAGS.data_format == 'NCHW':
123 124
        ksize = [1, 1, kH, kW]
        strides = [1, 1, dH, dW]
D
dangqingqing 已提交
125
    else:
126 127 128 129 130 131 132 133 134 135
        ksize = [1, kH, kW, 1]
        strides = [1, dH, dW, 1]
    return tf.nn.avg_pool(
        inpOp,
        ksize=ksize,
        strides=strides,
        padding=padding,
        data_format=FLAGS.data_format,
        name=name)

D
dangqingqing 已提交
136 137 138 139 140 141 142 143 144 145 146 147 148 149

def _inception(inp, inSize, o1s, o2s1, o2s2, o3s1, o3s2, o4s1, o4s2):
    conv1 = _conv(inp, inSize, o1s, 1, 1, 1, 1, 'VALID')

    conv3_ = _conv(inp, inSize, o2s1, 1, 1, 1, 1, 'VALID')
    conv3 = _conv(conv3_, o2s1, o2s2, 3, 3, 1, 1, 'SAME')

    conv5_ = _conv(inp, inSize, o3s1, 1, 1, 1, 1, 'VALID')
    conv5 = _conv(conv5_, o3s1, o3s2, 5, 5, 1, 1, 'SAME')

    pool_ = _mpool(inp, o4s1, o4s1, 1, 1, 'SAME')
    pool = _conv(pool_, inSize, o4s2, 1, 1, 1, 1, 'VALID')

    if FLAGS.data_format == 'NCHW':
150
        channel_dim = 1
D
dangqingqing 已提交
151
    else:
152
        channel_dim = 3
D
dangqingqing 已提交
153 154 155 156 157 158 159 160 161
    incept = tf.concat(channel_dim, [conv1, conv3, conv5, pool])
    return incept


def loss(logits, labels):
    batch_size = tf.size(labels)
    labels = tf.expand_dims(labels, 1)
    indices = tf.expand_dims(tf.range(0, batch_size, 1), 1)
    concated = tf.concat(1, [indices, labels])
162 163 164 165
    onehot_labels = tf.sparse_to_dense(concated,
                                       tf.pack([batch_size, 1000]), 1.0, 0.0)
    cross_entropy = tf.nn.softmax_cross_entropy_with_logits(
        logits, onehot_labels, name='xentropy')
D
dangqingqing 已提交
166 167 168
    loss = tf.reduce_mean(cross_entropy, name='xentropy_mean')
    return loss

169

D
dangqingqing 已提交
170 171
def inference(images):
    # stage 1
172 173
    conv1 = _conv(images, 3, 64, 7, 7, 2, 2, 'SAME')
    pool1 = _mpool(conv1, 3, 3, 2, 2, 'SAME')
D
dangqingqing 已提交
174
    # stage 2
175 176 177
    conv2 = _conv(pool1, 64, 64, 1, 1, 1, 1, 'VALID')
    conv3 = _conv(conv2, 64, 192, 3, 3, 1, 1, 'SAME')
    pool3 = _mpool(conv3, 3, 3, 2, 2, 'SAME')
D
dangqingqing 已提交
178 179

    # stage 3
180
    incept3a = _inception(pool3, 192, 64, 96, 128, 16, 32, 3, 32)
D
dangqingqing 已提交
181
    incept3b = _inception(incept3a, 256, 128, 128, 192, 32, 96, 3, 64)
182
    pool4 = _mpool(incept3b, 3, 3, 2, 2, 'SAME')
D
dangqingqing 已提交
183 184

    # stage 4
185
    incept4a = _inception(pool4, 480, 192, 96, 208, 16, 48, 3, 64)
D
dangqingqing 已提交
186 187 188 189
    incept4b = _inception(incept4a, 512, 160, 112, 224, 24, 64, 3, 64)
    incept4c = _inception(incept4b, 512, 128, 128, 256, 24, 64, 3, 64)
    incept4d = _inception(incept4c, 512, 112, 144, 288, 32, 64, 3, 64)
    incept4e = _inception(incept4d, 528, 256, 160, 320, 32, 128, 3, 128)
190
    pool5 = _mpool(incept4e, 3, 3, 2, 2, 'SAME')
D
dangqingqing 已提交
191 192

    # stage 5
193
    incept5a = _inception(pool5, 832, 256, 160, 320, 32, 128, 3, 128)
D
dangqingqing 已提交
194
    incept5b = _inception(incept5a, 832, 384, 192, 384, 48, 128, 3, 128)
195
    pool6 = _apool(incept5b, 7, 7, 1, 1, 'VALID')
D
dangqingqing 已提交
196 197 198 199 200 201 202 203 204 205

    # output 1
    resh1 = tf.reshape(pool6, [-1, 1024])
    drop = tf.nn.dropout(resh1, 0.4)
    affn1 = _affine(resh1, 1024, 1000, act=False)

    return affn1


def time_tensorflow_run(session, target, info_string):
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
    num_steps_burn_in = 10
    total_duration = 0.0
    total_duration_squared = 0.0
    if not isinstance(target, list):
        target = [target]
    target_op = tf.group(*target)
    for i in range(FLAGS.num_batches + num_steps_burn_in):
        start_time = time.time()
        _ = session.run(target_op)
        duration = time.time() - start_time
        if i > num_steps_burn_in:
            if not i % 10:
                print('%s: step %d, duration = %.3f' %
                      (datetime.now(), i - num_steps_burn_in, duration))
            total_duration += duration
            total_duration_squared += duration * duration
    mn = total_duration / FLAGS.num_batches
    vr = total_duration_squared / FLAGS.num_batches - mn * mn
    sd = math.sqrt(vr)
    print('%s: %s across %d steps, %.3f +/- %.3f sec / batch' %
          (datetime.now(), info_string, FLAGS.num_batches, mn, sd))

D
dangqingqing 已提交
228 229

def run_benchmark():
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
    global parameters
    with tf.Graph().as_default():
        # Generate some dummy images.
        image_size = 224
        if FLAGS.data_format == 'NCHW':
            image_shape = [FLAGS.batch_size, 3, image_size, image_size]
        else:
            image_shape = [FLAGS.batch_size, image_size, image_size, 3]

        images = tf.get_variable(
            'image',
            image_shape,
            initializer=tf.truncated_normal_initializer(
                stddev=0.1, dtype=tf.float32),
            dtype=tf.float32,
            trainable=False)

        labels = tf.get_variable(
            'label', [FLAGS.batch_size],
            initializer=tf.constant_initializer(1),
            dtype=tf.int32,
            trainable=False)

        # Build a Graph that computes the logits predictions from the
        # inference model.
        last_layer = inference(images)

        objective = loss(last_layer, labels)

        # Compute gradients.
        # opt = tf.train.GradientDescentOptimizer(0.001)
        opt = tf.train.MomentumOptimizer(0.001, 0.9)
        grads = opt.compute_gradients(objective)
        global_step = tf.get_variable(
            'global_step', [],
            initializer=tf.constant_initializer(
                0.0, dtype=tf.float32),
            trainable=False,
            dtype=tf.float32)
        apply_gradient_op = opt.apply_gradients(grads, global_step=global_step)

        # Track the moving averages of all trainable variables.
        variable_averages = tf.train.ExponentialMovingAverage(0.9, global_step)
        variables_averages_op = variable_averages.apply(tf.trainable_variables(
        ))

        # Build an initialization operation.
        init = tf.initialize_all_variables()

        # Start running operations on the Graph.
        sess = tf.Session(config=tf.ConfigProto(
            allow_soft_placement=True,
            log_device_placement=FLAGS.log_device_placement))
        sess.run(init)

        run_forward = True
        run_forward_backward = True
        if FLAGS.forward_only and FLAGS.forward_backward_only:
            raise ValueError("Cannot specify --forward_only and "
                             "--forward_backward_only at the same time.")
        if FLAGS.forward_only:
            run_forward_backward = False
        elif FLAGS.forward_backward_only:
            run_forward = False

        if run_forward:
            # Run the forward benchmark.
            time_tensorflow_run(sess, last_layer, "Forward")

        if run_forward_backward:
            with tf.control_dependencies(
                [apply_gradient_op, variables_averages_op]):
                train_op = tf.no_op(name='train')
            time_tensorflow_run(sess, [train_op, objective], "Forward-backward")
D
dangqingqing 已提交
304 305 306


def main(_):
307
    run_benchmark()
D
dangqingqing 已提交
308 309 310


if __name__ == '__main__':
311
    tf.app.run()