pooling.cc 71.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yi Wang 已提交
14
#include "paddle/fluid/operators/math/pooling.h"
C
chengduo 已提交
15
#include <algorithm>
16
#include <string>
C
chengduo 已提交
17
#include <vector>
18
#include "paddle/fluid/operators/math/math_function.h"
19 20 21 22 23

namespace paddle {
namespace operators {
namespace math {

C
chengduoZH 已提交
24
/*
25 26 27 28 29 30
* Tensors are in NCHW or NHWC format.
* Ksize, strides are two elements. These two elements represent height
* and width, respectively.
* Paddings are four elements. These four elements represent height_up,
* height_down, width_left and width_right, respectively.
*/
31
template <typename PoolProcess, typename T>
Q
QI JUN 已提交
32
class Pool2dFunctor<platform::CPUDeviceContext, PoolProcess, T> {
33
 public:
Q
QI JUN 已提交
34
  void operator()(const platform::CPUDeviceContext& context,
C
chengduo 已提交
35
                  const framework::Tensor& input, const std::vector<int>& ksize,
36 37
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings, PoolProcess pool_process,
D
dengkaipeng 已提交
38
                  bool exclusive, bool adaptive, framework::Tensor* output) {
39 40 41
    const int batch_size = input.dims()[0];
    const int input_height = input.dims()[2];
    const int input_width = input.dims()[3];
C
chengduoZH 已提交
42 43 44
    const int output_channels = output->dims()[1];
    const int output_height = output->dims()[2];
    const int output_width = output->dims()[3];
45 46 47 48 49 50 51 52 53 54 55
    const int ksize_height = ksize[0];
    const int ksize_width = ksize[1];
    const int stride_height = strides[0];
    const int stride_width = strides[1];
    const int padding_height = paddings[0];
    const int padding_width = paddings[1];

    const int input_stride = input_height * input_width;
    const int output_stride = output_height * output_width;

    const T* input_data = input.data<T>();
C
chengduoZH 已提交
56
    T* output_data = output->mutable_data<T>(context.GetPlace());
57

58 59
    int hstart, hend;
    int wstart, wend;
60 61 62
    for (int i = 0; i < batch_size; i++) {
      for (int c = 0; c < output_channels; ++c) {
        for (int ph = 0; ph < output_height; ++ph) {
D
dengkaipeng 已提交
63
          if (adaptive) {
D
dengkaipeng 已提交
64 65
            hstart = AdaptStartIndex(ph, input_height, output_height);
            hend = AdaptEndIndex(ph, input_height, output_height);
D
dengkaipeng 已提交
66
          } else {
67 68
            hstart = ph * stride_height - padding_height;
            hend = std::min(hstart + ksize_height, input_height);
D
dengkaipeng 已提交
69 70
            hstart = std::max(hstart, 0);
          }
71
          for (int pw = 0; pw < output_width; ++pw) {
D
dengkaipeng 已提交
72
            if (adaptive) {
D
dengkaipeng 已提交
73 74
              wstart = AdaptStartIndex(pw, input_width, output_width);
              wend = AdaptEndIndex(pw, input_width, output_width);
D
dengkaipeng 已提交
75
            } else {
76 77
              wstart = pw * stride_width - padding_width;
              wend = std::min(wstart + ksize_width, input_width);
D
dengkaipeng 已提交
78 79
              wstart = std::max(wstart, 0);
            }
80 81

            T ele = pool_process.initial();
82 83
            for (int h = hstart; h < hend; ++h) {
              for (int w = wstart; w < wend; ++w) {
C
chengduo 已提交
84
                pool_process.compute(input_data[h * input_width + w], &ele);
85 86
              }
            }
D
dengkaipeng 已提交
87 88 89
            int pool_size = (exclusive || adaptive)
                                ? (hend - hstart) * (wend - wstart)
                                : ksize_height * ksize_width;
C
chengduo 已提交
90
            pool_process.finalize(static_cast<T>(pool_size), &ele);
91 92 93 94 95 96 97 98
            output_data[ph * output_width + pw] = ele;
          }
        }
        input_data += input_stride;
        output_data += output_stride;
      }
    }
  }
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221

  void operator()(const platform::CPUDeviceContext& context,
                  const framework::Tensor& input, const std::vector<int>& ksize,
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings,
                  const std::string data_format, PoolProcess pool_process,
                  bool exclusive, bool adaptive, framework::Tensor* output) {
    bool channel_last = (data_format == "NHWC");

    const int batch_size = input.dims()[0];
    const int input_channels = channel_last ? input.dims()[3] : input.dims()[1];
    const int input_height = channel_last ? input.dims()[1] : input.dims()[2];
    const int input_width = channel_last ? input.dims()[2] : input.dims()[3];

    const int output_channels =
        channel_last ? output->dims()[3] : output->dims()[1];
    const int output_height =
        channel_last ? output->dims()[1] : output->dims()[2];
    const int output_width =
        channel_last ? output->dims()[2] : output->dims()[3];

    const int ksize_height = ksize[0];
    const int ksize_width = ksize[1];

    const int stride_height = strides[0];
    const int stride_width = strides[1];

    const int padding_height = paddings[0];
    const int padding_width = paddings[1];

    const T* input_data = input.data<T>();
    T* output_data = output->mutable_data<T>(context.GetPlace());

    int hstart, hend;
    int wstart, wend;
    if (!channel_last) {
      const int input_stride = input_height * input_width;
      const int output_stride = output_height * output_width;
      for (int i = 0; i < batch_size; i++) {
        for (int c = 0; c < output_channels; ++c) {
          for (int ph = 0; ph < output_height; ++ph) {
            if (adaptive) {
              hstart = AdaptStartIndex(ph, input_height, output_height);
              hend = AdaptEndIndex(ph, input_height, output_height);
            } else {
              hstart = ph * stride_height - padding_height;
              hend = std::min(hstart + ksize_height, input_height);
              hstart = std::max(hstart, 0);
            }
            for (int pw = 0; pw < output_width; ++pw) {
              if (adaptive) {
                wstart = AdaptStartIndex(pw, input_width, output_width);
                wend = AdaptEndIndex(pw, input_width, output_width);
              } else {
                wstart = pw * stride_width - padding_width;
                wend = std::min(wstart + ksize_width, input_width);
                wstart = std::max(wstart, 0);
              }

              T ele = pool_process.initial();
              for (int h = hstart; h < hend; ++h) {
                for (int w = wstart; w < wend; ++w) {
                  pool_process.compute(input_data[h * input_width + w], &ele);
                }
              }
              int pool_size = (exclusive || adaptive)
                                  ? (hend - hstart) * (wend - wstart)
                                  : ksize_height * ksize_width;
              pool_process.finalize(static_cast<T>(pool_size), &ele);
              output_data[ph * output_width + pw] = ele;
            }
          }
          input_data += input_stride;
          output_data += output_stride;
        }
      }
    } else {
      const int input_stride = input_height * input_width * input_channels;
      const int output_stride = output_height * output_width * output_channels;
      for (int i = 0; i < batch_size; i++) {
        for (int c = 0; c < output_channels; ++c) {
          for (int ph = 0; ph < output_height; ++ph) {
            if (adaptive) {
              hstart = AdaptStartIndex(ph, input_height, output_height);
              hend = AdaptEndIndex(ph, input_height, output_height);
            } else {
              hstart = ph * stride_height - padding_height;
              hend = std::min(hstart + ksize_height, input_height);
              hstart = std::max(hstart, 0);
            }
            for (int pw = 0; pw < output_width; ++pw) {
              if (adaptive) {
                wstart = AdaptStartIndex(pw, input_width, output_width);
                wend = AdaptEndIndex(pw, input_width, output_width);
              } else {
                wstart = pw * stride_width - padding_width;
                wend = std::min(wstart + ksize_width, input_width);
                wstart = std::max(wstart, 0);
              }
              T ele = pool_process.initial();
              for (int h = hstart; h < hend; ++h) {
                for (int w = wstart; w < wend; ++w) {
                  pool_process.compute(
                      input_data[h * input_width * input_channels +
                                 w * input_channels + c],
                      &ele);
                }
              }
              int pool_size = (exclusive || adaptive)
                                  ? (hend - hstart) * (wend - wstart)
                                  : ksize_height * ksize_width;

              pool_process.finalize(static_cast<T>(pool_size), &ele);
              output_data[ph * output_width * output_channels +
                          pw * output_channels + c] = ele;
            }
          }
        }
        input_data += input_stride;
        output_data += output_stride;
      }
    }
  }
222 223
};

C
chengduoZH 已提交
224
/*
225 226
* tensors are in NCHW or NHWC format.
* Ksize, strides are two elements. These two elements represent height
C
chengduoZH 已提交
227
* and width, respectively.
228 229
* Paddings are four elements. These four elements represent height_up,
* height_down, width_left and width_right, respectively.
C
chengduoZH 已提交
230
*/
231
template <typename PoolProcess, class T>
Q
QI JUN 已提交
232
class Pool2dGradFunctor<platform::CPUDeviceContext, PoolProcess, T> {
233
 public:
C
chengduo 已提交
234 235 236 237 238
  void operator()(
      const platform::CPUDeviceContext& context, const framework::Tensor& input,
      const framework::Tensor& output, const framework::Tensor& output_grad,
      const std::vector<int>& ksize, const std::vector<int>& strides,
      const std::vector<int>& paddings, PoolProcess pool_grad_process,
D
dengkaipeng 已提交
239
      bool exclusive, bool adaptive, framework::Tensor* input_grad) {
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
    const int batch_size = input.dims()[0];
    const int input_height = input.dims()[2];
    const int input_width = input.dims()[3];
    const int output_channels = output.dims()[1];
    const int output_height = output.dims()[2];
    const int output_width = output.dims()[3];
    const int ksize_height = ksize[0];
    const int ksize_width = ksize[1];
    const int stride_height = strides[0];
    const int stride_width = strides[1];
    const int padding_height = paddings[0];
    const int padding_width = paddings[1];
    const int input_stride = input_height * input_width;
    const int output_stride = output_height * output_width;

    const T* input_data = input.data<T>();
    const T* output_data = output.data<T>();
    const T* output_grad_data = output_grad.data<T>();
C
chengduoZH 已提交
258
    T* input_grad_data = input_grad->mutable_data<T>(context.GetPlace());
259

260 261
    int hstart, hend;
    int wstart, wend;
262 263 264
    for (int i = 0; i < batch_size; i++) {
      for (int c = 0; c < output_channels; ++c) {
        for (int ph = 0; ph < output_height; ++ph) {
D
dengkaipeng 已提交
265
          if (adaptive) {
D
dengkaipeng 已提交
266 267
            hstart = AdaptStartIndex(ph, input_height, output_height);
            hend = AdaptEndIndex(ph, input_height, output_height);
D
dengkaipeng 已提交
268
          } else {
269 270
            hstart = ph * stride_height - padding_height;
            hend = std::min(hstart + ksize_height, input_height);
D
dengkaipeng 已提交
271 272
            hstart = std::max(hstart, 0);
          }
273
          for (int pw = 0; pw < output_width; ++pw) {
D
dengkaipeng 已提交
274
            if (adaptive) {
D
dengkaipeng 已提交
275 276
              wstart = AdaptStartIndex(pw, input_width, output_width);
              wend = AdaptEndIndex(pw, input_width, output_width);
D
dengkaipeng 已提交
277
            } else {
278 279
              wstart = pw * stride_width - padding_width;
              wend = std::min(wstart + ksize_width, input_width);
D
dengkaipeng 已提交
280 281 282 283 284
              wstart = std::max(wstart, 0);
            }
            int pool_size = (exclusive || adaptive)
                                ? (hend - hstart) * (wend - wstart)
                                : ksize_height * ksize_width;
285
            float scale = 1.0 / pool_size;
286 287
            for (int h = hstart; h < hend; ++h) {
              for (int w = wstart; w < wend; ++w) {
288 289 290 291
                pool_grad_process.compute(
                    input_data[h * input_width + w],
                    output_data[ph * output_width + pw],
                    output_grad_data[ph * output_width + pw],
C
chengduo 已提交
292 293
                    static_cast<T>(scale),
                    input_grad_data + h * input_width + w);
294 295 296 297 298 299 300 301 302 303 304
              }
            }
          }
        }
        input_data += input_stride;
        output_data += output_stride;
        input_grad_data += input_stride;
        output_grad_data += output_stride;
      }
    }
  }
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436

  void operator()(
      const platform::CPUDeviceContext& context, const framework::Tensor& input,
      const framework::Tensor& output, const framework::Tensor& output_grad,
      const std::vector<int>& ksize, const std::vector<int>& strides,
      const std::vector<int>& paddings, const std::string data_format,
      PoolProcess pool_grad_process, bool exclusive, bool adaptive,
      framework::Tensor* input_grad) {
    bool channel_last = (data_format == "NHWC");

    const int batch_size = input.dims()[0];

    const int input_channels = channel_last ? input.dims()[3] : input.dims()[1];
    const int input_height = channel_last ? input.dims()[1] : input.dims()[2];
    const int input_width = channel_last ? input.dims()[2] : input.dims()[3];

    const int output_channels =
        channel_last ? output.dims()[3] : output.dims()[1];
    const int output_height =
        channel_last ? output.dims()[1] : output.dims()[2];
    const int output_width = channel_last ? output.dims()[2] : output.dims()[3];

    const int ksize_height = ksize[0];
    const int ksize_width = ksize[1];

    const int stride_height = strides[0];
    const int stride_width = strides[1];

    const int padding_height = paddings[0];
    const int padding_width = paddings[1];

    const T* input_data = input.data<T>();
    const T* output_data = output.data<T>();
    const T* output_grad_data = output_grad.data<T>();
    T* input_grad_data = input_grad->mutable_data<T>(context.GetPlace());

    int hstart, hend;
    int wstart, wend;
    if (!channel_last) {
      const int input_stride = input_height * input_width;
      const int output_stride = output_height * output_width;
      for (int i = 0; i < batch_size; i++) {
        for (int c = 0; c < output_channels; ++c) {
          for (int ph = 0; ph < output_height; ++ph) {
            if (adaptive) {
              hstart = AdaptStartIndex(ph, input_height, output_height);
              hend = AdaptEndIndex(ph, input_height, output_height);
            } else {
              hstart = ph * stride_height - padding_height;
              hend = std::min(hstart + ksize_height, input_height);
              hstart = std::max(hstart, 0);
            }
            for (int pw = 0; pw < output_width; ++pw) {
              if (adaptive) {
                wstart = AdaptStartIndex(pw, input_width, output_width);
                wend = AdaptEndIndex(pw, input_width, output_width);
              } else {
                wstart = pw * stride_width - padding_width;
                wend = std::min(wstart + ksize_width, input_width);
                wstart = std::max(wstart, 0);
              }
              int pool_size = (exclusive || adaptive)
                                  ? (hend - hstart) * (wend - wstart)
                                  : ksize_height * ksize_width;
              float scale = 1.0 / pool_size;
              for (int h = hstart; h < hend; ++h) {
                for (int w = wstart; w < wend; ++w) {
                  pool_grad_process.compute(
                      input_data[h * input_width + w],
                      output_data[ph * output_width + pw],
                      output_grad_data[ph * output_width + pw],
                      static_cast<T>(scale),
                      input_grad_data + h * input_width + w);
                }
              }
            }
          }
          input_data += input_stride;
          output_data += output_stride;
          input_grad_data += input_stride;
          output_grad_data += output_stride;
        }
      }
    } else {
      const int input_stride = input_height * input_width * input_channels;
      const int output_stride = output_height * output_width * output_channels;
      for (int i = 0; i < batch_size; i++) {
        for (int c = 0; c < output_channels; ++c) {
          for (int ph = 0; ph < output_height; ++ph) {
            if (adaptive) {
              hstart = AdaptStartIndex(ph, input_height, output_height);
              hend = AdaptEndIndex(ph, input_height, output_height);
            } else {
              hstart = ph * stride_height - padding_height;
              hend = std::min(hstart + ksize_height, input_height);
              hstart = std::max(hstart, 0);
            }
            for (int pw = 0; pw < output_width; ++pw) {
              if (adaptive) {
                wstart = AdaptStartIndex(pw, input_width, output_width);
                wend = AdaptEndIndex(pw, input_width, output_width);
              } else {
                wstart = pw * stride_width - padding_width;
                wend = std::min(wstart + ksize_width, input_width);
                wstart = std::max(wstart, 0);
              }
              int pool_size = (exclusive || adaptive)
                                  ? (hend - hstart) * (wend - wstart)
                                  : ksize_height * ksize_width;
              float scale = 1.0 / pool_size;
              for (int h = hstart; h < hend; ++h) {
                for (int w = wstart; w < wend; ++w) {
                  auto input_idx =
                      h * input_width * input_channels + w * input_channels + c;
                  auto output_idx = ph * output_width * output_channels +
                                    pw * output_channels + c;
                  pool_grad_process.compute(
                      input_data[input_idx], output_data[output_idx],
                      output_grad_data[output_idx], static_cast<T>(scale),
                      input_grad_data + input_idx);
                }
              }
            }
          }
        }
        input_data += input_stride;
        output_data += output_stride;
        input_grad_data += input_stride;
        output_grad_data += output_stride;
      }
    }
  }
437 438
};

C
chengduoZH 已提交
439
/*
440 441 442 443 444 445
* Tensors are in NCHW or NHWC format.
* Ksize, strides are two elements. These two elements represent height
* and width, respectively.
* Paddings are four elements. These four elements represent height_up,
* height_down, width_left and width_right, respectively.
*/
446
template <class T>
Q
QI JUN 已提交
447
class MaxPool2dGradFunctor<platform::CPUDeviceContext, T> {
448
 public:
C
chengduo 已提交
449 450 451 452 453
  void operator()(
      const platform::CPUDeviceContext& context, const framework::Tensor& input,
      const framework::Tensor& output, const framework::Tensor& output_grad,
      const std::vector<int>& ksize, const std::vector<int>& strides,
      const std::vector<int>& paddings, framework::Tensor* input_grad) {
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
    const int batch_size = input.dims()[0];
    const int input_height = input.dims()[2];
    const int input_width = input.dims()[3];
    const int output_channels = output.dims()[1];
    const int output_height = output.dims()[2];
    const int output_width = output.dims()[3];
    const int ksize_height = ksize[0];
    const int ksize_width = ksize[1];
    const int stride_height = strides[0];
    const int stride_width = strides[1];
    const int padding_height = paddings[0];
    const int padding_width = paddings[1];
    const int input_stride = input_height * input_width;
    const int output_stride = output_height * output_width;

    const T* input_data = input.data<T>();
    const T* output_data = output.data<T>();
    const T* output_grad_data = output_grad.data<T>();
C
chengduoZH 已提交
472
    T* input_grad_data = input_grad->mutable_data<T>(context.GetPlace());
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505

    for (int i = 0; i < batch_size; i++) {
      for (int c = 0; c < output_channels; ++c) {
        for (int ph = 0; ph < output_height; ++ph) {
          int hstart = ph * stride_height - padding_height;
          int hend = std::min(hstart + ksize_height, input_height);
          hstart = std::max(hstart, 0);
          for (int pw = 0; pw < output_width; ++pw) {
            int wstart = pw * stride_width - padding_width;
            int wend = std::min(wstart + ksize_width, input_width);
            wstart = std::max(wstart, 0);

            bool stop = false;
            for (int h = hstart; h < hend && !stop; ++h) {
              for (int w = wstart; w < wend && !stop; ++w) {
                int input_idx = h * input_width + w;
                int output_idx = ph * output_width + pw;
                if (input_data[input_idx] == output_data[output_idx]) {
                  input_grad_data[input_idx] += output_grad_data[output_idx];
                  stop = true;
                }
              }
            }
          }
        }
        input_data += input_stride;
        output_data += output_stride;
        input_grad_data += input_stride;
        output_grad_data += output_stride;
      }
    }
  }

506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
  void operator()(
      const platform::CPUDeviceContext& context, const framework::Tensor& input,
      const framework::Tensor& output, const framework::Tensor& output_grad,
      const std::vector<int>& ksize, const std::vector<int>& strides,
      const std::vector<int>& paddings, const std::string data_format,
      framework::Tensor* input_grad) {
    bool channel_last = (data_format == "NHWC");

    const int batch_size = input.dims()[0];

    const int input_channels = channel_last ? input.dims()[3] : input.dims()[1];
    const int input_height = channel_last ? input.dims()[1] : input.dims()[2];
    const int input_width = channel_last ? input.dims()[2] : input.dims()[3];

    const int output_channels =
        channel_last ? output.dims()[3] : output.dims()[1];
    const int output_height =
        channel_last ? output.dims()[1] : output.dims()[2];
    const int output_width = channel_last ? output.dims()[2] : output.dims()[3];

    const int ksize_height = ksize[0];
    const int ksize_width = ksize[1];

    const int stride_height = strides[0];
    const int stride_width = strides[1];

    const int padding_height = paddings[0];
    const int padding_width = paddings[1];

    const T* input_data = input.data<T>();
    const T* output_data = output.data<T>();
    const T* output_grad_data = output_grad.data<T>();
    T* input_grad_data = input_grad->mutable_data<T>(context.GetPlace());

    if (!channel_last) {
      const int input_stride = input_height * input_width;
      const int output_stride = output_height * output_width;
      for (int i = 0; i < batch_size; i++) {
        for (int c = 0; c < output_channels; ++c) {
          for (int ph = 0; ph < output_height; ++ph) {
            int hstart = ph * stride_height - padding_height;
            int hend = std::min(hstart + ksize_height, input_height);
            hstart = std::max(hstart, 0);
            for (int pw = 0; pw < output_width; ++pw) {
              int wstart = pw * stride_width - padding_width;
              int wend = std::min(wstart + ksize_width, input_width);
              wstart = std::max(wstart, 0);

              bool stop = false;
              for (int h = hstart; h < hend && !stop; ++h) {
                for (int w = wstart; w < wend && !stop; ++w) {
                  int input_idx = h * input_width + w;
                  int output_idx = ph * output_width + pw;
                  if (input_data[input_idx] == output_data[output_idx]) {
                    input_grad_data[input_idx] += output_grad_data[output_idx];
                    stop = true;
                  }
                }
              }
            }
          }
          input_data += input_stride;
          output_data += output_stride;
          input_grad_data += input_stride;
          output_grad_data += output_stride;
        }
      }
    } else {
      const int input_stride = input_height * input_width * input_channels;
      const int output_stride = output_height * output_width * output_channels;
      for (int i = 0; i < batch_size; i++) {
        for (int c = 0; c < output_channels; ++c) {
          for (int ph = 0; ph < output_height; ++ph) {
            int hstart = ph * stride_height - padding_height;
            int hend = std::min(hstart + ksize_height, input_height);
            hstart = std::max(hstart, 0);
            for (int pw = 0; pw < output_width; ++pw) {
              int wstart = pw * stride_width - padding_width;
              int wend = std::min(wstart + ksize_width, input_width);
              wstart = std::max(wstart, 0);

              bool stop = false;
              for (int h = hstart; h < hend && !stop; ++h) {
                for (int w = wstart; w < wend && !stop; ++w) {
                  int input_idx =
                      h * input_width * input_channels + w * input_channels + c;
                  int output_idx = ph * output_width * output_channels +
                                   pw * output_channels + c;
                  if (input_data[input_idx] == output_data[output_idx]) {
                    input_grad_data[input_idx] += output_grad_data[output_idx];
                    stop = true;
                  }
                }
              }
            }
          }
        }
        input_data += input_stride;
        output_data += output_stride;
        input_grad_data += input_stride;
        output_grad_data += output_stride;
      }
    }
  }
};
Q
QI JUN 已提交
611 612
template class MaxPool2dGradFunctor<platform::CPUDeviceContext, float>;
template class MaxPool2dGradFunctor<platform::CPUDeviceContext, double>;
C
chengduoZH 已提交
613

Q
QI JUN 已提交
614
template class Pool2dFunctor<platform::CPUDeviceContext,
615
                             paddle::operators::math::MaxPool<float>, float>;
Q
QI JUN 已提交
616
template class Pool2dFunctor<platform::CPUDeviceContext,
617
                             paddle::operators::math::AvgPool<float>, float>;
Q
QI JUN 已提交
618 619 620 621 622 623 624
template class Pool2dGradFunctor<platform::CPUDeviceContext,
                                 paddle::operators::math::MaxPoolGrad<float>,
                                 float>;
template class Pool2dGradFunctor<platform::CPUDeviceContext,
                                 paddle::operators::math::AvgPoolGrad<float>,
                                 float>;
template class Pool2dFunctor<platform::CPUDeviceContext,
625
                             paddle::operators::math::MaxPool<double>, double>;
Q
QI JUN 已提交
626
template class Pool2dFunctor<platform::CPUDeviceContext,
627
                             paddle::operators::math::AvgPool<double>, double>;
Q
QI JUN 已提交
628 629 630 631 632 633
template class Pool2dGradFunctor<platform::CPUDeviceContext,
                                 paddle::operators::math::MaxPoolGrad<double>,
                                 double>;
template class Pool2dGradFunctor<platform::CPUDeviceContext,
                                 paddle::operators::math::AvgPoolGrad<double>,
                                 double>;
634

C
chengduoZH 已提交
635
/*
636 637 638 639 640 641 642
* Tensors are in NCDHW or NDHWC format.
* Ksize, strides, paddings are three elements. These three elements represent
* depth, height and width, respectively.
* Paddings are six elements. These six elements represent depth_forth,
* depth_back,
* height_up, height_down, width_left and width_right, respectively.
*/
643
template <typename PoolProcess, class T>
Q
QI JUN 已提交
644
class Pool3dFunctor<platform::CPUDeviceContext, PoolProcess, T> {
645
 public:
Q
QI JUN 已提交
646
  void operator()(const platform::CPUDeviceContext& context,
C
chengduo 已提交
647
                  const framework::Tensor& input, const std::vector<int>& ksize,
648 649
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings, PoolProcess pool_process,
D
dengkaipeng 已提交
650
                  bool exclusive, bool adaptive, framework::Tensor* output) {
651 652 653 654
    const int batch_size = input.dims()[0];
    const int input_depth = input.dims()[2];
    const int input_height = input.dims()[3];
    const int input_width = input.dims()[4];
C
chengduoZH 已提交
655 656 657 658
    const int output_channels = output->dims()[1];
    const int output_depth = output->dims()[2];
    const int output_height = output->dims()[3];
    const int output_width = output->dims()[4];
659 660 661 662 663 664 665 666 667 668 669 670 671 672
    const int ksize_depth = ksize[0];
    const int ksize_height = ksize[1];
    const int ksize_width = ksize[2];
    const int stride_depth = strides[0];
    const int stride_height = strides[1];
    const int stride_width = strides[2];
    const int padding_depth = paddings[0];
    const int padding_height = paddings[1];
    const int padding_width = paddings[2];

    const int input_stride = input_depth * input_height * input_width;
    const int output_stride = output_depth * output_height * output_width;

    const T* input_data = input.data<T>();
C
chengduoZH 已提交
673
    T* output_data = output->mutable_data<T>(context.GetPlace());
674

675 676 677
    int dstart, dend;
    int hstart, hend;
    int wstart, wend;
678 679 680
    for (int i = 0; i < batch_size; i++) {
      for (int c = 0; c < output_channels; ++c) {
        for (int pd = 0; pd < output_depth; ++pd) {
D
dengkaipeng 已提交
681
          if (adaptive) {
D
dengkaipeng 已提交
682 683
            dstart = AdaptStartIndex(pd, input_depth, output_depth);
            dend = AdaptEndIndex(pd, input_depth, output_depth);
D
dengkaipeng 已提交
684
          } else {
685 686
            dstart = pd * stride_depth - padding_depth;
            dend = std::min(dstart + ksize_depth, input_depth);
D
dengkaipeng 已提交
687 688
            dstart = std::max(dstart, 0);
          }
689
          for (int ph = 0; ph < output_height; ++ph) {
D
dengkaipeng 已提交
690
            if (adaptive) {
D
dengkaipeng 已提交
691 692
              hstart = AdaptStartIndex(ph, input_height, output_height);
              hend = AdaptEndIndex(ph, input_height, output_height);
D
dengkaipeng 已提交
693
            } else {
694 695
              hstart = ph * stride_height - padding_height;
              hend = std::min(hstart + ksize_height, input_height);
D
dengkaipeng 已提交
696 697
              hstart = std::max(hstart, 0);
            }
698
            for (int pw = 0; pw < output_width; ++pw) {
D
dengkaipeng 已提交
699
              if (adaptive) {
D
dengkaipeng 已提交
700 701
                wstart = AdaptStartIndex(pw, input_width, output_width);
                wend = AdaptEndIndex(pw, input_width, output_width);
D
dengkaipeng 已提交
702
              } else {
703 704
                wstart = pw * stride_width - padding_width;
                wend = std::min(wstart + ksize_width, input_width);
D
dengkaipeng 已提交
705 706
                wstart = std::max(wstart, 0);
              }
707
              int output_idx = (pd * output_height + ph) * output_width + pw;
708
              T ele = pool_process.initial();
709 710 711
              for (int d = dstart; d < dend; ++d) {
                for (int h = hstart; h < hend; ++h) {
                  for (int w = wstart; w < wend; ++w) {
712
                    pool_process.compute(
C
chengduo 已提交
713 714
                        input_data[(d * input_height + h) * input_width + w],
                        &ele);
715 716 717
                  }
                }
              }
718
              int pool_size =
D
dengkaipeng 已提交
719
                  (exclusive || adaptive)
720 721
                      ? (dend - dstart) * (hend - hstart) * (wend - wstart)
                      : ksize_depth * ksize_height * ksize_width;
C
chengduo 已提交
722
              pool_process.finalize(static_cast<T>(pool_size), &ele);
723 724 725 726 727 728 729 730 731
              output_data[output_idx] = ele;
            }
          }
        }
        input_data += input_stride;
        output_data += output_stride;
      }
    }
  }
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
  void operator()(const platform::CPUDeviceContext& context,
                  const framework::Tensor& input, const std::vector<int>& ksize,
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings,
                  const std::string data_format, PoolProcess pool_process,
                  bool exclusive, bool adaptive, framework::Tensor* output) {
    bool channel_last = (data_format == "NDHWC");
    const int batch_size = input.dims()[0];

    const int input_channels = channel_last ? input.dims()[4] : input.dims()[1];
    const int input_depth = channel_last ? input.dims()[1] : input.dims()[2];
    const int input_height = channel_last ? input.dims()[2] : input.dims()[3];
    const int input_width = channel_last ? input.dims()[3] : input.dims()[4];

    const int output_channels =
        channel_last ? output->dims()[4] : output->dims()[1];
    const int output_depth =
        channel_last ? output->dims()[1] : output->dims()[2];
    const int output_height =
        channel_last ? output->dims()[2] : output->dims()[3];
    const int output_width =
        channel_last ? output->dims()[3] : output->dims()[4];

    const int ksize_depth = ksize[0];
    const int ksize_height = ksize[1];
    const int ksize_width = ksize[2];

    const int stride_depth = strides[0];
    const int stride_height = strides[1];
    const int stride_width = strides[2];

    const int padding_depth = paddings[0];
    const int padding_height = paddings[1];
    const int padding_width = paddings[2];

    const T* input_data = input.data<T>();
    T* output_data = output->mutable_data<T>(context.GetPlace());

    int dstart, dend;
    int hstart, hend;
    int wstart, wend;

    if (!channel_last) {
      const int input_stride = input_depth * input_height * input_width;
      const int output_stride = output_depth * output_height * output_width;
      for (int i = 0; i < batch_size; i++) {
        for (int c = 0; c < output_channels; ++c) {
          for (int pd = 0; pd < output_depth; ++pd) {
            if (adaptive) {
              dstart = AdaptStartIndex(pd, input_depth, output_depth);
              dend = AdaptEndIndex(pd, input_depth, output_depth);
            } else {
              dstart = pd * stride_depth - padding_depth;
              dend = std::min(dstart + ksize_depth, input_depth);
              dstart = std::max(dstart, 0);
            }
            for (int ph = 0; ph < output_height; ++ph) {
              if (adaptive) {
                hstart = AdaptStartIndex(ph, input_height, output_height);
                hend = AdaptEndIndex(ph, input_height, output_height);
              } else {
                hstart = ph * stride_height - padding_height;
                hend = std::min(hstart + ksize_height, input_height);
                hstart = std::max(hstart, 0);
              }
              for (int pw = 0; pw < output_width; ++pw) {
                if (adaptive) {
                  wstart = AdaptStartIndex(pw, input_width, output_width);
                  wend = AdaptEndIndex(pw, input_width, output_width);
                } else {
                  wstart = pw * stride_width - padding_width;
                  wend = std::min(wstart + ksize_width, input_width);
                  wstart = std::max(wstart, 0);
                }
                int output_idx = (pd * output_height + ph) * output_width + pw;
                T ele = pool_process.initial();
                for (int d = dstart; d < dend; ++d) {
                  for (int h = hstart; h < hend; ++h) {
                    for (int w = wstart; w < wend; ++w) {
                      pool_process.compute(
                          input_data[(d * input_height + h) * input_width + w],
                          &ele);
                    }
                  }
                }
                int pool_size =
                    (exclusive || adaptive)
                        ? (dend - dstart) * (hend - hstart) * (wend - wstart)
                        : ksize_depth * ksize_height * ksize_width;
                pool_process.finalize(static_cast<T>(pool_size), &ele);
                output_data[output_idx] = ele;
              }
            }
          }
          input_data += input_stride;
          output_data += output_stride;
        }
      }
    } else {
      const int input_stride =
          input_depth * input_height * input_width * input_channels;
      const int output_stride =
          output_depth * output_height * output_width * output_channels;
      for (int i = 0; i < batch_size; i++) {
        for (int c = 0; c < output_channels; ++c) {
          for (int pd = 0; pd < output_depth; ++pd) {
            if (adaptive) {
              dstart = AdaptStartIndex(pd, input_depth, output_depth);
              dend = AdaptEndIndex(pd, input_depth, output_depth);
            } else {
              dstart = pd * stride_depth - padding_depth;
              dend = std::min(dstart + ksize_depth, input_depth);
              dstart = std::max(dstart, 0);
            }
            for (int ph = 0; ph < output_height; ++ph) {
              if (adaptive) {
                hstart = AdaptStartIndex(ph, input_height, output_height);
                hend = AdaptEndIndex(ph, input_height, output_height);
              } else {
                hstart = ph * stride_height - padding_height;
                hend = std::min(hstart + ksize_height, input_height);
                hstart = std::max(hstart, 0);
              }
              for (int pw = 0; pw < output_width; ++pw) {
                if (adaptive) {
                  wstart = AdaptStartIndex(pw, input_width, output_width);
                  wend = AdaptEndIndex(pw, input_width, output_width);
                } else {
                  wstart = pw * stride_width - padding_width;
                  wend = std::min(wstart + ksize_width, input_width);
                  wstart = std::max(wstart, 0);
                }

                T ele = pool_process.initial();
                for (int d = dstart; d < dend; ++d) {
                  for (int h = hstart; h < hend; ++h) {
                    for (int w = wstart; w < wend; ++w) {
                      int input_idx =
                          ((d * input_height + h) * input_width + w) *
                              input_channels +
                          c;
                      pool_process.compute(input_data[input_idx], &ele);
                    }
                  }
                }
                int pool_size =
                    (exclusive || adaptive)
                        ? (dend - dstart) * (hend - hstart) * (wend - wstart)
                        : ksize_depth * ksize_height * ksize_width;
                pool_process.finalize(static_cast<T>(pool_size), &ele);
                int output_idx =
                    ((pd * output_height + ph) * output_width + pw) *
                        output_channels +
                    c;
                output_data[output_idx] = ele;
              }
            }
          }
        }
        input_data += input_stride;
        output_data += output_stride;
      }
    }
  }
896 897
};

C
chengduoZH 已提交
898
/*
899 900 901 902 903 904 905
* Tensors are in NCDHW or NDHWC format.
* Ksize, strides, paddings are three elements. These three elements represent
* depth, height and width, respectively.
* Paddings are six elements. These six elements represent depth_forth,
* depth_back,
* height_up, height_down, width_left and width_right, respectively.
*/
906
template <typename PoolProcess, class T>
Q
QI JUN 已提交
907
class Pool3dGradFunctor<platform::CPUDeviceContext, PoolProcess, T> {
908
 public:
C
chengduo 已提交
909 910 911 912 913
  void operator()(
      const platform::CPUDeviceContext& context, const framework::Tensor& input,
      const framework::Tensor& output, const framework::Tensor& output_grad,
      const std::vector<int>& ksize, const std::vector<int>& strides,
      const std::vector<int>& paddings, PoolProcess pool_grad_process,
D
dengkaipeng 已提交
914
      bool exclusive, bool adaptive, framework::Tensor* input_grad) {
915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937
    const int batch_size = input.dims()[0];
    const int input_depth = input.dims()[2];
    const int input_height = input.dims()[3];
    const int input_width = input.dims()[4];
    const int output_channels = output.dims()[1];
    const int output_depth = output.dims()[2];
    const int output_height = output.dims()[3];
    const int output_width = output.dims()[4];
    const int ksize_depth = ksize[0];
    const int ksize_height = ksize[1];
    const int ksize_width = ksize[2];
    const int stride_depth = strides[0];
    const int stride_height = strides[1];
    const int stride_width = strides[2];
    const int padding_depth = paddings[0];
    const int padding_height = paddings[1];
    const int padding_width = paddings[2];
    const int input_stride = input_depth * input_height * input_width;
    const int output_stride = output_depth * output_height * output_width;

    const T* input_data = input.data<T>();
    const T* output_data = output.data<T>();
    const T* output_grad_data = output_grad.data<T>();
C
chengduoZH 已提交
938
    T* input_grad_data = input_grad->mutable_data<T>(context.GetPlace());
939

940 941 942
    int dstart, dend;
    int hstart, hend;
    int wstart, wend;
943 944 945
    for (int i = 0; i < batch_size; i++) {
      for (int c = 0; c < output_channels; ++c) {
        for (int pd = 0; pd < output_depth; ++pd) {
D
dengkaipeng 已提交
946
          if (adaptive) {
D
dengkaipeng 已提交
947 948
            dstart = AdaptStartIndex(pd, input_depth, output_depth);
            dend = AdaptEndIndex(pd, input_depth, output_depth);
D
dengkaipeng 已提交
949
          } else {
950 951
            dstart = pd * stride_depth - padding_depth;
            dend = std::min(dstart + ksize_depth, input_depth);
D
dengkaipeng 已提交
952 953
            dstart = std::max(dstart, 0);
          }
954
          for (int ph = 0; ph < output_height; ++ph) {
D
dengkaipeng 已提交
955
            if (adaptive) {
D
dengkaipeng 已提交
956 957
              hstart = AdaptStartIndex(ph, input_height, output_height);
              hend = AdaptEndIndex(ph, input_height, output_height);
D
dengkaipeng 已提交
958
            } else {
959 960
              hstart = ph * stride_height - padding_height;
              hend = std::min(hstart + ksize_height, input_height);
D
dengkaipeng 已提交
961 962
              hstart = std::max(hstart, 0);
            }
963
            for (int pw = 0; pw < output_width; ++pw) {
D
dengkaipeng 已提交
964
              if (adaptive) {
D
dengkaipeng 已提交
965 966
                wstart = AdaptStartIndex(pw, input_width, output_width);
                wend = AdaptEndIndex(pw, input_width, output_width);
D
dengkaipeng 已提交
967
              } else {
968 969
                wstart = pw * stride_width - padding_width;
                wend = std::min(wstart + ksize_width, input_width);
D
dengkaipeng 已提交
970 971
                wstart = std::max(wstart, 0);
              }
972

973
              int pool_size =
D
dengkaipeng 已提交
974
                  (exclusive || adaptive)
975 976
                      ? (dend - dstart) * (hend - hstart) * (wend - wstart)
                      : ksize_depth * ksize_height * ksize_width;
977
              float scale = 1.0 / pool_size;
978 979 980 981 982 983
              for (int d = dstart; d < dend; ++d) {
                for (int h = hstart; h < hend; ++h) {
                  for (int w = wstart; w < wend; ++w) {
                    int input_idx = (d * input_height + h) * input_width + w;
                    int output_idx =
                        (pd * output_height + ph) * output_width + pw;
984
                    pool_grad_process.compute(
985
                        input_data[input_idx], output_data[output_idx],
C
chengduo 已提交
986 987
                        output_grad_data[output_idx], static_cast<T>(scale),
                        input_grad_data + input_idx);
988 989 990 991 992 993
                  }
                }
              }
            }
          }
        }
994 995 996 997
        input_data += input_stride;
        output_data += output_stride;
        input_grad_data += input_stride;
        output_grad_data += output_stride;
998 999 1000
      }
    }
  }
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
  void operator()(
      const platform::CPUDeviceContext& context, const framework::Tensor& input,
      const framework::Tensor& output, const framework::Tensor& output_grad,
      const std::vector<int>& ksize, const std::vector<int>& strides,
      const std::vector<int>& paddings, const std::string data_format,
      PoolProcess pool_grad_process, bool exclusive, bool adaptive,
      framework::Tensor* input_grad) {
    bool channel_last = (data_format == "NDHWC");

    const int batch_size = input.dims()[0];
    const int input_channels = channel_last ? input.dims()[4] : input.dims()[1];
    const int input_depth = channel_last ? input.dims()[1] : input.dims()[2];
    const int input_height = channel_last ? input.dims()[2] : input.dims()[3];
    const int input_width = channel_last ? input.dims()[3] : input.dims()[4];

    const int output_channels =
        channel_last ? output.dims()[4] : output.dims()[1];
    const int output_depth = channel_last ? output.dims()[1] : output.dims()[2];
    const int output_height =
        channel_last ? output.dims()[2] : output.dims()[3];
    const int output_width = channel_last ? output.dims()[3] : output.dims()[4];

    const int ksize_depth = ksize[0];
    const int ksize_height = ksize[1];
    const int ksize_width = ksize[2];

    const int stride_depth = strides[0];
    const int stride_height = strides[1];
    const int stride_width = strides[2];

    const int padding_depth = paddings[0];
    const int padding_height = paddings[1];
    const int padding_width = paddings[2];

    const T* input_data = input.data<T>();
    const T* output_data = output.data<T>();
    const T* output_grad_data = output_grad.data<T>();
    T* input_grad_data = input_grad->mutable_data<T>(context.GetPlace());

    int dstart, dend;
    int hstart, hend;
    int wstart, wend;
    if (!channel_last) {
      const int input_stride = input_depth * input_height * input_width;
      const int output_stride = output_depth * output_height * output_width;
      for (int i = 0; i < batch_size; i++) {
        for (int c = 0; c < output_channels; ++c) {
          for (int pd = 0; pd < output_depth; ++pd) {
            if (adaptive) {
              dstart = AdaptStartIndex(pd, input_depth, output_depth);
              dend = AdaptEndIndex(pd, input_depth, output_depth);
            } else {
              dstart = pd * stride_depth - padding_depth;
              dend = std::min(dstart + ksize_depth, input_depth);
              dstart = std::max(dstart, 0);
            }
            for (int ph = 0; ph < output_height; ++ph) {
              if (adaptive) {
                hstart = AdaptStartIndex(ph, input_height, output_height);
                hend = AdaptEndIndex(ph, input_height, output_height);
              } else {
                hstart = ph * stride_height - padding_height;
                hend = std::min(hstart + ksize_height, input_height);
                hstart = std::max(hstart, 0);
              }
              for (int pw = 0; pw < output_width; ++pw) {
                if (adaptive) {
                  wstart = AdaptStartIndex(pw, input_width, output_width);
                  wend = AdaptEndIndex(pw, input_width, output_width);
                } else {
                  wstart = pw * stride_width - padding_width;
                  wend = std::min(wstart + ksize_width, input_width);
                  wstart = std::max(wstart, 0);
                }

                int pool_size =
                    (exclusive || adaptive)
                        ? (dend - dstart) * (hend - hstart) * (wend - wstart)
                        : ksize_depth * ksize_height * ksize_width;
                float scale = 1.0 / pool_size;
                for (int d = dstart; d < dend; ++d) {
                  for (int h = hstart; h < hend; ++h) {
                    for (int w = wstart; w < wend; ++w) {
                      int input_idx = (d * input_height + h) * input_width + w;
                      int output_idx =
                          (pd * output_height + ph) * output_width + pw;
                      pool_grad_process.compute(
                          input_data[input_idx], output_data[output_idx],
                          output_grad_data[output_idx], static_cast<T>(scale),
                          input_grad_data + input_idx);
                    }
                  }
                }
              }
            }
          }
          input_data += input_stride;
          output_data += output_stride;
          input_grad_data += input_stride;
          output_grad_data += output_stride;
        }
      }
    } else {
      const int input_stride =
          input_depth * input_height * input_width * input_channels;
      const int output_stride =
          output_depth * output_height * output_width * output_channels;
      for (int i = 0; i < batch_size; i++) {
        for (int c = 0; c < output_channels; ++c) {
          for (int pd = 0; pd < output_depth; ++pd) {
            if (adaptive) {
              dstart = AdaptStartIndex(pd, input_depth, output_depth);
              dend = AdaptEndIndex(pd, input_depth, output_depth);
            } else {
              dstart = pd * stride_depth - padding_depth;
              dend = std::min(dstart + ksize_depth, input_depth);
              dstart = std::max(dstart, 0);
            }
            for (int ph = 0; ph < output_height; ++ph) {
              if (adaptive) {
                hstart = AdaptStartIndex(ph, input_height, output_height);
                hend = AdaptEndIndex(ph, input_height, output_height);
              } else {
                hstart = ph * stride_height - padding_height;
                hend = std::min(hstart + ksize_height, input_height);
                hstart = std::max(hstart, 0);
              }
              for (int pw = 0; pw < output_width; ++pw) {
                if (adaptive) {
                  wstart = AdaptStartIndex(pw, input_width, output_width);
                  wend = AdaptEndIndex(pw, input_width, output_width);
                } else {
                  wstart = pw * stride_width - padding_width;
                  wend = std::min(wstart + ksize_width, input_width);
                  wstart = std::max(wstart, 0);
                }

                int pool_size =
                    (exclusive || adaptive)
                        ? (dend - dstart) * (hend - hstart) * (wend - wstart)
                        : ksize_depth * ksize_height * ksize_width;
                float scale = 1.0 / pool_size;
                for (int d = dstart; d < dend; ++d) {
                  for (int h = hstart; h < hend; ++h) {
                    for (int w = wstart; w < wend; ++w) {
                      int input_idx =
                          ((d * input_height + h) * input_width + w) *
                              input_channels +
                          c;
                      int output_idx =
                          ((pd * output_height + ph) * output_width + pw) *
                              output_channels +
                          c;
                      pool_grad_process.compute(
                          input_data[input_idx], output_data[output_idx],
                          output_grad_data[output_idx], static_cast<T>(scale),
                          input_grad_data + input_idx);
                    }
                  }
                }
              }
            }
          }
        }
        input_data += input_stride;
        output_data += output_stride;
        input_grad_data += input_stride;
        output_grad_data += output_stride;
      }
    }
  }
1172 1173
};

C
chengduoZH 已提交
1174
/*
1175 1176 1177 1178 1179 1180 1181
* Tensors are in NCDHW or NDHWC format.
* Ksize, strides, paddings are three elements. These three elements represent
* depth, height and width, respectively.
* Paddings are six elements. These six elements represent depth_forth,
* depth_back,
* height_up, height_down, width_left and width_right, respectively.
*/
1182
template <class T>
Q
QI JUN 已提交
1183
class MaxPool3dGradFunctor<platform::CPUDeviceContext, T> {
1184
 public:
C
chengduo 已提交
1185 1186 1187 1188 1189
  void operator()(
      const platform::CPUDeviceContext& context, const framework::Tensor& input,
      const framework::Tensor& output, const framework::Tensor& output_grad,
      const std::vector<int>& ksize, const std::vector<int>& strides,
      const std::vector<int>& paddings, framework::Tensor* input_grad) {
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
    const int batch_size = input.dims()[0];
    const int input_depth = input.dims()[2];
    const int input_height = input.dims()[3];
    const int input_width = input.dims()[4];
    const int output_channels = output.dims()[1];
    const int output_depth = output.dims()[2];
    const int output_height = output.dims()[3];
    const int output_width = output.dims()[4];
    const int ksize_depth = ksize[0];
    const int ksize_height = ksize[1];
    const int ksize_width = ksize[2];
    const int stride_depth = strides[0];
    const int stride_height = strides[1];
    const int stride_width = strides[2];
    const int padding_depth = paddings[0];
    const int padding_height = paddings[1];
    const int padding_width = paddings[2];
    const int input_stride = input_depth * input_height * input_width;
    const int output_stride = output_depth * output_height * output_width;

    const T* input_data = input.data<T>();
    const T* output_data = output.data<T>();
    const T* output_grad_data = output_grad.data<T>();
C
chengduoZH 已提交
1213
    T* input_grad_data = input_grad->mutable_data<T>(context.GetPlace());
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254

    for (int i = 0; i < batch_size; i++) {
      for (int c = 0; c < output_channels; ++c) {
        for (int pd = 0; pd < output_depth; ++pd) {
          int dstart = pd * stride_depth - padding_depth;
          int dend = std::min(dstart + ksize_depth, input_depth);
          dstart = std::max(dstart, 0);
          for (int ph = 0; ph < output_height; ++ph) {
            int hstart = ph * stride_height - padding_height;
            int hend = std::min(hstart + ksize_height, input_height);
            hstart = std::max(hstart, 0);
            for (int pw = 0; pw < output_width; ++pw) {
              int wstart = pw * stride_width - padding_width;
              int wend = std::min(wstart + ksize_width, input_width);
              wstart = std::max(wstart, 0);
              bool stop = false;
              for (int d = dstart; d < dend && !stop; ++d) {
                for (int h = hstart; h < hend && !stop; ++h) {
                  for (int w = wstart; w < wend && !stop; ++w) {
                    int input_idx = (d * input_height + h) * input_width + w;
                    int output_idx =
                        (pd * output_height + ph) * output_width + pw;

                    if (input_data[input_idx] == output_data[output_idx]) {
                      input_grad_data[input_idx] +=
                          output_grad_data[output_idx];
                      stop = true;
                    }
                  }
                }
              }
            }
          }
        }
        input_data += input_stride;
        output_data += output_stride;
        input_grad_data += input_stride;
        output_grad_data += output_stride;
      }
    }
  }
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
  void operator()(
      const platform::CPUDeviceContext& context, const framework::Tensor& input,
      const framework::Tensor& output, const framework::Tensor& output_grad,
      const std::vector<int>& ksize, const std::vector<int>& strides,
      const std::vector<int>& paddings, const std::string data_format,
      framework::Tensor* input_grad) {
    bool channel_last = (data_format == "NDHWC");
    const int batch_size = input.dims()[0];

    const int input_channels = channel_last ? input.dims()[4] : input.dims()[1];
    const int input_depth = channel_last ? input.dims()[1] : input.dims()[2];
    const int input_height = channel_last ? input.dims()[2] : input.dims()[3];
    const int input_width = channel_last ? input.dims()[3] : input.dims()[4];

    const int output_channels =
        channel_last ? output.dims()[4] : output.dims()[1];
    const int output_depth = channel_last ? output.dims()[1] : output.dims()[2];
    const int output_height =
        channel_last ? output.dims()[2] : output.dims()[3];
    const int output_width = channel_last ? output.dims()[3] : output.dims()[4];

    const int ksize_depth = ksize[0];
    const int ksize_height = ksize[1];
    const int ksize_width = ksize[2];

    const int stride_depth = strides[0];
    const int stride_height = strides[1];
    const int stride_width = strides[2];

    const int padding_depth = paddings[0];
    const int padding_height = paddings[1];
    const int padding_width = paddings[2];

    const T* input_data = input.data<T>();
    const T* output_data = output.data<T>();
    const T* output_grad_data = output_grad.data<T>();
    T* input_grad_data = input_grad->mutable_data<T>(context.GetPlace());

    if (!channel_last) {
      const int input_stride = input_depth * input_height * input_width;
      const int output_stride = output_depth * output_height * output_width;
      for (int i = 0; i < batch_size; i++) {
        for (int c = 0; c < output_channels; ++c) {
          for (int pd = 0; pd < output_depth; ++pd) {
            int dstart = pd * stride_depth - padding_depth;
            int dend = std::min(dstart + ksize_depth, input_depth);
            dstart = std::max(dstart, 0);
            for (int ph = 0; ph < output_height; ++ph) {
              int hstart = ph * stride_height - padding_height;
              int hend = std::min(hstart + ksize_height, input_height);
              hstart = std::max(hstart, 0);
              for (int pw = 0; pw < output_width; ++pw) {
                int wstart = pw * stride_width - padding_width;
                int wend = std::min(wstart + ksize_width, input_width);
                wstart = std::max(wstart, 0);
                bool stop = false;
                for (int d = dstart; d < dend && !stop; ++d) {
                  for (int h = hstart; h < hend && !stop; ++h) {
                    for (int w = wstart; w < wend && !stop; ++w) {
                      int input_idx = (d * input_height + h) * input_width + w;
                      int output_idx =
                          (pd * output_height + ph) * output_width + pw;

                      if (input_data[input_idx] == output_data[output_idx]) {
                        input_grad_data[input_idx] +=
                            output_grad_data[output_idx];
                        stop = true;
                      }
                    }
                  }
                }
              }
            }
          }
          input_data += input_stride;
          output_data += output_stride;
          input_grad_data += input_stride;
          output_grad_data += output_stride;
        }
      }
    } else {
      const int input_stride =
          input_depth * input_height * input_width * input_channels;
      const int output_stride =
          output_depth * output_height * output_width * output_channels;
      for (int i = 0; i < batch_size; i++) {
        for (int c = 0; c < output_channels; ++c) {
          for (int pd = 0; pd < output_depth; ++pd) {
            int dstart = pd * stride_depth - padding_depth;
            int dend = std::min(dstart + ksize_depth, input_depth);
            dstart = std::max(dstart, 0);
            for (int ph = 0; ph < output_height; ++ph) {
              int hstart = ph * stride_height - padding_height;
              int hend = std::min(hstart + ksize_height, input_height);
              hstart = std::max(hstart, 0);
              for (int pw = 0; pw < output_width; ++pw) {
                int wstart = pw * stride_width - padding_width;
                int wend = std::min(wstart + ksize_width, input_width);
                wstart = std::max(wstart, 0);
                bool stop = false;
1355

1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
                for (int d = dstart; d < dend && !stop; ++d) {
                  for (int h = hstart; h < hend && !stop; ++h) {
                    for (int w = wstart; w < wend && !stop; ++w) {
                      int input_idx =
                          ((d * input_height + h) * input_width + w) *
                              input_channels +
                          c;
                      int output_idx =
                          ((pd * output_height + ph) * output_width + pw) *
                              output_channels +
                          c;

                      if (input_data[input_idx] == output_data[output_idx]) {
                        input_grad_data[input_idx] +=
                            output_grad_data[output_idx];
                        stop = true;
                      }
                    }
                  }
                }
              }
            }
          }
        }
        input_data += input_stride;
        output_data += output_stride;
        input_grad_data += input_stride;
        output_grad_data += output_stride;
      }
    }
  }
};
Q
QI JUN 已提交
1388 1389
template class MaxPool3dGradFunctor<platform::CPUDeviceContext, float>;
template class MaxPool3dGradFunctor<platform::CPUDeviceContext, double>;
C
chengduoZH 已提交
1390

Q
QI JUN 已提交
1391
template class Pool3dFunctor<platform::CPUDeviceContext,
1392
                             paddle::operators::math::MaxPool<float>, float>;
Q
QI JUN 已提交
1393
template class Pool3dFunctor<platform::CPUDeviceContext,
1394
                             paddle::operators::math::AvgPool<float>, float>;
Q
QI JUN 已提交
1395 1396 1397 1398 1399 1400 1401
template class Pool3dGradFunctor<platform::CPUDeviceContext,
                                 paddle::operators::math::MaxPoolGrad<float>,
                                 float>;
template class Pool3dGradFunctor<platform::CPUDeviceContext,
                                 paddle::operators::math::AvgPoolGrad<float>,
                                 float>;
template class Pool3dFunctor<platform::CPUDeviceContext,
1402
                             paddle::operators::math::MaxPool<double>, double>;
Q
QI JUN 已提交
1403
template class Pool3dFunctor<platform::CPUDeviceContext,
1404
                             paddle::operators::math::AvgPool<double>, double>;
Q
QI JUN 已提交
1405 1406 1407 1408 1409 1410
template class Pool3dGradFunctor<platform::CPUDeviceContext,
                                 paddle::operators::math::MaxPoolGrad<double>,
                                 double>;
template class Pool3dGradFunctor<platform::CPUDeviceContext,
                                 paddle::operators::math::AvgPoolGrad<double>,
                                 double>;
C
chengduoZH 已提交
1411

C
chengduoZH 已提交
1412 1413 1414 1415 1416
/*
 * All tensors are in NCHW format.
 * Ksize, strides, paddings are two elements. These two elements represent
 * height and width, respectively.
 */
C
chengduoZH 已提交
1417
template <typename T1, typename T2>
Q
QI JUN 已提交
1418
class MaxPool2dWithIndexFunctor<platform::CPUDeviceContext, T1, T2> {
C
chengduoZH 已提交
1419
 public:
Q
QI JUN 已提交
1420
  void operator()(const platform::CPUDeviceContext& context,
C
chengduo 已提交
1421 1422
                  const framework::Tensor& input, const std::vector<int>& ksize,
                  const std::vector<int>& strides,
D
dengkaipeng 已提交
1423 1424
                  const std::vector<int>& paddings, bool adaptive,
                  framework::Tensor* output, framework::Tensor* mask) {
C
chengduoZH 已提交
1425 1426 1427
    const int batch_size = input.dims()[0];
    const int input_height = input.dims()[2];
    const int input_width = input.dims()[3];
C
chengduoZH 已提交
1428 1429 1430
    const int output_channels = output->dims()[1];
    const int output_height = output->dims()[2];
    const int output_width = output->dims()[3];
C
chengduoZH 已提交
1431 1432 1433 1434 1435 1436 1437 1438 1439
    const int ksize_height = ksize[0];
    const int ksize_width = ksize[1];
    const int stride_height = strides[0];
    const int stride_width = strides[1];
    const int padding_height = paddings[0];
    const int padding_width = paddings[1];
    const int input_stride = input_height * input_width;
    const int output_stride = output_height * output_width;

C
chengduoZH 已提交
1440 1441 1442
    const T1* input_data = input.data<T1>();
    T1* output_data = output->mutable_data<T1>(context.GetPlace());
    T2* mask_data = mask->mutable_data<T2>(context.GetPlace());
C
chengduoZH 已提交
1443

1444 1445
    int hstart, hend;
    int wstart, wend;
C
chengduoZH 已提交
1446 1447 1448
    for (int i = 0; i < batch_size; i++) {
      for (int c = 0; c < output_channels; ++c) {
        for (int ph = 0; ph < output_height; ++ph) {
D
dengkaipeng 已提交
1449
          if (adaptive) {
D
dengkaipeng 已提交
1450 1451
            hstart = AdaptStartIndex(ph, input_height, output_height);
            hend = AdaptEndIndex(ph, input_height, output_height);
D
dengkaipeng 已提交
1452
          } else {
1453 1454
            hstart = ph * stride_height - padding_height;
            hend = std::min(hstart + ksize_height, input_height);
D
dengkaipeng 已提交
1455 1456
            hstart = std::max(hstart, 0);
          }
C
chengduoZH 已提交
1457
          for (int pw = 0; pw < output_width; ++pw) {
D
dengkaipeng 已提交
1458
            if (adaptive) {
D
dengkaipeng 已提交
1459 1460
              wstart = AdaptStartIndex(pw, input_width, output_width);
              wend = AdaptEndIndex(pw, input_width, output_width);
D
dengkaipeng 已提交
1461
            } else {
1462 1463
              wstart = pw * stride_width - padding_width;
              wend = std::min(wstart + ksize_width, input_width);
D
dengkaipeng 已提交
1464 1465
              wstart = std::max(wstart, 0);
            }
C
chengduoZH 已提交
1466

C
chengduoZH 已提交
1467
            T1 ele = static_cast<T1>(-FLT_MAX);
C
chengduoZH 已提交
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
            int index = -1;
            for (int h = hstart; h < hend; ++h) {
              for (int w = wstart; w < wend; ++w) {
                if (ele < input_data[h * input_width + w]) {
                  ele = input_data[h * input_width + w];
                  index = h * input_width + w;
                }
              }
            }
            output_data[ph * output_width + pw] = ele;
            mask_data[ph * output_width + pw] = index;
          }
        }
        // offset
        input_data += input_stride;
        output_data += output_stride;
        mask_data += output_stride;
      }
    }
  }
};

C
chengduoZH 已提交
1490 1491 1492 1493 1494
/*
 * All tensors are in NCHW format.
 * Ksize, strides, paddings are two elements. These two elements represent
 * height and width, respectively.
 */
C
chengduoZH 已提交
1495
template <typename T1, typename T2>
Q
QI JUN 已提交
1496
class MaxPool2dWithIndexGradFunctor<platform::CPUDeviceContext, T1, T2> {
C
chengduoZH 已提交
1497
 public:
Q
QI JUN 已提交
1498
  void operator()(const platform::CPUDeviceContext& context,
C
chengduoZH 已提交
1499
                  const framework::Tensor& output_grad,
C
chengduo 已提交
1500 1501
                  const framework::Tensor& mask, const std::vector<int>& ksize,
                  const std::vector<int>& strides,
1502
                  const std::vector<int>& paddings, bool adaptive,
C
chengduoZH 已提交
1503 1504 1505 1506
                  framework::Tensor* input_grad) {
    const int batch_size = input_grad->dims()[0];
    const int input_height = input_grad->dims()[2];
    const int input_width = input_grad->dims()[3];
C
chengduoZH 已提交
1507 1508 1509 1510 1511 1512
    const int output_channels = output_grad.dims()[1];
    const int output_height = output_grad.dims()[2];
    const int output_width = output_grad.dims()[3];
    const int input_stride = input_height * input_width;
    const int output_stride = output_height * output_width;

C
chengduoZH 已提交
1513 1514 1515
    const T2* mask_data = mask.data<T2>();
    const T1* output_grad_data = output_grad.data<T1>();
    T1* input_grad_data = input_grad->mutable_data<T1>(context.GetPlace());
C
chengduoZH 已提交
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534

    for (int n = 0; n < batch_size; ++n) {
      for (int c = 0; c < output_channels; ++c) {
        for (int ph = 0; ph < output_height; ++ph) {
          for (int pw = 0; pw < output_width; ++pw) {
            const int output_idx = ph * output_width + pw;
            const int input_idx = static_cast<int>(mask_data[output_idx]);
            input_grad_data[input_idx] += output_grad_data[output_idx];
          }
        }
        // offset
        input_grad_data += input_stride;
        output_grad_data += output_stride;
        mask_data += output_stride;
      }
    }
  }
};

Q
QI JUN 已提交
1535 1536 1537 1538 1539 1540 1541 1542
template class MaxPool2dWithIndexFunctor<platform::CPUDeviceContext, float,
                                         int>;
template class MaxPool2dWithIndexGradFunctor<platform::CPUDeviceContext, float,
                                             int>;
template class MaxPool2dWithIndexFunctor<platform::CPUDeviceContext, double,
                                         int>;
template class MaxPool2dWithIndexGradFunctor<platform::CPUDeviceContext, double,
                                             int>;
C
chengduoZH 已提交
1543

C
chengduoZH 已提交
1544 1545 1546 1547 1548
/*
 * All tensors are in NCDHW format.
 * Ksize, strides, paddings are three elements. These three elements represent
 * depth, height and width, respectively.
 */
C
chengduoZH 已提交
1549
template <typename T1, typename T2>
Q
QI JUN 已提交
1550
class MaxPool3dWithIndexFunctor<platform::CPUDeviceContext, T1, T2> {
C
chengduoZH 已提交
1551
 public:
Q
QI JUN 已提交
1552
  void operator()(const platform::CPUDeviceContext& context,
C
chengduo 已提交
1553 1554
                  const framework::Tensor& input, const std::vector<int>& ksize,
                  const std::vector<int>& strides,
1555 1556
                  const std::vector<int>& paddings, bool adaptive,
                  framework::Tensor* output, framework::Tensor* mask) {
C
chengduoZH 已提交
1557 1558 1559 1560
    const int batch_size = input.dims()[0];
    const int input_depth = input.dims()[2];
    const int input_height = input.dims()[3];
    const int input_width = input.dims()[4];
C
chengduoZH 已提交
1561 1562 1563 1564
    const int output_channels = output->dims()[1];
    const int output_depth = output->dims()[2];
    const int output_height = output->dims()[3];
    const int output_width = output->dims()[4];
C
chengduoZH 已提交
1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
    const int ksize_depth = ksize[0];
    const int ksize_height = ksize[1];
    const int ksize_width = ksize[2];
    const int stride_depth = strides[0];
    const int stride_height = strides[1];
    const int stride_width = strides[2];
    const int padding_depth = paddings[0];
    const int padding_height = paddings[1];
    const int padding_width = paddings[2];
    const int input_stride = input_depth * input_height * input_width;
    const int output_stride = output_depth * output_height * output_width;

C
chengduoZH 已提交
1577 1578 1579
    const T1* input_data = input.data<T1>();
    T1* output_data = output->mutable_data<T1>(context.GetPlace());
    T2* mask_data = mask->mutable_data<T2>(context.GetPlace());
C
chengduoZH 已提交
1580

1581 1582 1583
    int dstart, dend;
    int hstart, hend;
    int wstart, wend;
C
chengduoZH 已提交
1584 1585 1586
    for (int i = 0; i < batch_size; i++) {
      for (int c = 0; c < output_channels; ++c) {
        for (int pd = 0; pd < output_depth; ++pd) {
D
dengkaipeng 已提交
1587
          if (adaptive) {
D
dengkaipeng 已提交
1588 1589
            dstart = AdaptStartIndex(pd, input_depth, output_depth);
            dend = AdaptEndIndex(pd, input_depth, output_depth);
D
dengkaipeng 已提交
1590
          } else {
1591 1592
            dstart = pd * stride_depth - padding_depth;
            dend = std::min(dstart + ksize_depth, input_depth);
D
dengkaipeng 已提交
1593 1594
            dstart = std::max(dstart, 0);
          }
C
chengduoZH 已提交
1595
          for (int ph = 0; ph < output_height; ++ph) {
D
dengkaipeng 已提交
1596
            if (adaptive) {
D
dengkaipeng 已提交
1597 1598
              hstart = AdaptStartIndex(ph, input_height, output_height);
              hend = AdaptEndIndex(ph, input_height, output_height);
D
dengkaipeng 已提交
1599
            } else {
1600 1601
              hstart = ph * stride_height - padding_height;
              hend = std::min(hstart + ksize_height, input_height);
D
dengkaipeng 已提交
1602 1603
              hstart = std::max(hstart, 0);
            }
C
chengduoZH 已提交
1604
            for (int pw = 0; pw < output_width; ++pw) {
D
dengkaipeng 已提交
1605
              if (adaptive) {
D
dengkaipeng 已提交
1606 1607
                wstart = AdaptStartIndex(pw, input_width, output_width);
                wend = AdaptEndIndex(pw, input_width, output_width);
D
dengkaipeng 已提交
1608
              } else {
1609 1610
                wstart = pw * stride_width - padding_width;
                wend = std::min(wstart + ksize_width, input_width);
D
dengkaipeng 已提交
1611 1612
                wstart = std::max(wstart, 0);
              }
C
chengduoZH 已提交
1613 1614

              int output_idx = (pd * output_height + ph) * output_width + pw;
C
chengduoZH 已提交
1615
              T1 ele = static_cast<T1>(-FLT_MAX);
C
chengduoZH 已提交
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
              int index = -1;
              for (int d = dstart; d < dend; ++d) {
                for (int h = hstart; h < hend; ++h) {
                  for (int w = wstart; w < wend; ++w) {
                    int input_idx = (d * input_height + h) * input_width + w;
                    if (ele < input_data[input_idx]) {
                      index = input_idx;
                      ele = input_data[input_idx];
                    }
                  }
                }
              }
              output_data[output_idx] = ele;
              mask_data[output_idx] = index;
            }
          }
        }
        // offset
        input_data += input_stride;
        output_data += output_stride;
        mask_data += output_stride;
      }
    }
  }
};

C
chengduoZH 已提交
1642 1643 1644 1645 1646
/*
 * All tensors are in NCDHW format.
 * Ksize, strides, paddings are three elements. These three elements represent
 * depth, height and width, respectively.
 */
C
chengduoZH 已提交
1647
template <typename T1, typename T2>
Q
QI JUN 已提交
1648
class MaxPool3dWithIndexGradFunctor<platform::CPUDeviceContext, T1, T2> {
C
chengduoZH 已提交
1649
 public:
Q
QI JUN 已提交
1650
  void operator()(const platform::CPUDeviceContext& context,
C
chengduoZH 已提交
1651
                  const framework::Tensor& output_grad,
C
chengduo 已提交
1652 1653
                  const framework::Tensor& mask, const std::vector<int>& ksize,
                  const std::vector<int>& strides,
1654
                  const std::vector<int>& paddings, bool adaptive,
C
chengduoZH 已提交
1655 1656 1657 1658 1659
                  framework::Tensor* input_grad) {
    const int batch_size = input_grad->dims()[0];
    const int input_depth = input_grad->dims()[2];
    const int input_height = input_grad->dims()[3];
    const int input_width = input_grad->dims()[4];
C
chengduoZH 已提交
1660 1661 1662 1663 1664 1665 1666
    const int output_channels = output_grad.dims()[1];
    const int output_depth = output_grad.dims()[2];
    const int output_height = output_grad.dims()[3];
    const int output_width = output_grad.dims()[4];
    const int input_stride = input_depth * input_height * input_width;
    const int output_stride = output_depth * output_height * output_width;

C
chengduoZH 已提交
1667 1668 1669
    const T2* mask_data = mask.data<T2>();
    const T1* output_grad_data = output_grad.data<T1>();
    T1* input_grad_data = input_grad->mutable_data<T1>(context.GetPlace());
C
chengduoZH 已提交
1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691

    for (int n = 0; n < batch_size; ++n) {
      for (int c = 0; c < output_channels; ++c) {
        for (int pd = 0; pd < output_depth; ++pd) {
          for (int ph = 0; ph < output_height; ++ph) {
            for (int pw = 0; pw < output_width; ++pw) {
              const int output_idx =
                  (pd * output_height + ph) * output_width + pw;
              const int input_idx = static_cast<int>(mask_data[output_idx]);
              input_grad_data[input_idx] += output_grad_data[output_idx];
            }
          }
        }
        // offset
        input_grad_data += input_stride;
        output_grad_data += output_stride;
        mask_data += output_stride;
      }
    }
  }
};

Q
QI JUN 已提交
1692 1693 1694 1695 1696 1697 1698 1699
template class MaxPool3dWithIndexFunctor<platform::CPUDeviceContext, float,
                                         int>;
template class MaxPool3dWithIndexGradFunctor<platform::CPUDeviceContext, float,
                                             int>;
template class MaxPool3dWithIndexFunctor<platform::CPUDeviceContext, double,
                                         int>;
template class MaxPool3dWithIndexGradFunctor<platform::CPUDeviceContext, double,
                                             int>;
1700 1701 1702
}  // namespace math
}  // namespace operators
}  // namespace paddle