transforms.py 45.1 KB
Newer Older
L
LielinJiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import division

import math
import sys
import random

import numpy as np
import numbers
import types
import collections
import warnings
import traceback

L
LielinJiang 已提交
28
from paddle.utils import try_import
L
LielinJiang 已提交
29 30 31 32 33 34 35 36 37
from . import functional as F

if sys.version_info < (3, 3):
    Sequence = collections.Sequence
    Iterable = collections.Iterable
else:
    Sequence = collections.abc.Sequence
    Iterable = collections.abc.Iterable

38
__all__ = []
L
LielinJiang 已提交
39 40


41 42 43 44 45
def _get_image_size(img):
    if F._is_pil_image(img):
        return img.size
    elif F._is_numpy_image(img):
        return img.shape[:2][::-1]
46 47
    elif F._is_tensor_image(img):
        return img.shape[1:][::-1]  # chw
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
    else:
        raise TypeError("Unexpected type {}".format(type(img)))


def _check_input(value,
                 name,
                 center=1,
                 bound=(0, float('inf')),
                 clip_first_on_zero=True):
    if isinstance(value, numbers.Number):
        if value < 0:
            raise ValueError(
                "If {} is a single number, it must be non negative.".format(
                    name))
        value = [center - value, center + value]
        if clip_first_on_zero:
            value[0] = max(value[0], 0)
    elif isinstance(value, (tuple, list)) and len(value) == 2:
        if not bound[0] <= value[0] <= value[1] <= bound[1]:
            raise ValueError("{} values should be between {}".format(name,
                                                                     bound))
    else:
        raise TypeError(
            "{} should be a single number or a list/tuple with lenght 2.".
            format(name))

    if value[0] == value[1] == center:
        value = None
    return value


L
LielinJiang 已提交
79 80 81 82 83 84
class Compose(object):
    """
    Composes several transforms together use for composing list of transforms
    together for a dataset transform.

    Args:
85
        transforms (list|tuple): List/Tuple of transforms to compose.
L
LielinJiang 已提交
86 87 88 89 90 91 92 93 94

    Returns:
        A compose object which is callable, __call__ for this Compose
        object will call each given :attr:`transforms` sequencely.

    Examples:
    
        .. code-block:: python

95 96
            from paddle.vision.datasets import Flowers
            from paddle.vision.transforms import Compose, ColorJitter, Resize
L
LielinJiang 已提交
97 98 99 100 101 102

            transform = Compose([ColorJitter(), Resize(size=608)])
            flowers = Flowers(mode='test', transform=transform)

            for i in range(10):
                sample = flowers[i]
103
                print(sample[0].size, sample[1])
L
LielinJiang 已提交
104 105 106 107 108 109

    """

    def __init__(self, transforms):
        self.transforms = transforms

110
    def __call__(self, data):
L
LielinJiang 已提交
111 112
        for f in self.transforms:
            try:
113
                data = f(data)
L
LielinJiang 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
            except Exception as e:
                stack_info = traceback.format_exc()
                print("fail to perform transform [{}] with error: "
                      "{} and stack:\n{}".format(f, e, str(stack_info)))
                raise e
        return data

    def __repr__(self):
        format_string = self.__class__.__name__ + '('
        for t in self.transforms:
            format_string += '\n'
            format_string += '    {0}'.format(t)
        format_string += '\n)'
        return format_string


130 131 132
class BaseTransform(object):
    """
    Base class of all transforms used in computer vision.
L
LielinJiang 已提交
133

134 135 136 137 138 139 140 141 142
    calling logic: 

        if keys is None:
            _get_params -> _apply_image()
        else:
            _get_params -> _apply_*() for * in keys 

    If you want to implement a self-defined transform method for image,
    rewrite _apply_* method in subclass.
L
LielinJiang 已提交
143

144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
    Args:
        keys (list[str]|tuple[str], optional): Input type. Input is a tuple contains different structures,
            key is used to specify the type of input. For example, if your input
            is image type, then the key can be None or ("image"). if your input
            is (image, image) type, then the keys should be ("image", "image"). 
            if your input is (image, boxes), then the keys should be ("image", "boxes").

            Current available strings & data type are describe below:

            - "image": input image, with shape of (H, W, C) 
            - "coords": coordinates, with shape of (N, 2) 
            - "boxes": bounding boxes, with shape of (N, 4), "xyxy" format, 
            
                       the 1st "xy" represents top left point of a box, 
                       the 2nd "xy" represents right bottom point.

            - "mask": map used for segmentation, with shape of (H, W, 1)
            
            You can also customize your data types only if you implement the corresponding
            _apply_*() methods, otherwise ``NotImplementedError`` will be raised.
    
L
LielinJiang 已提交
165 166 167 168 169
    Examples:
    
        .. code-block:: python

            import numpy as np
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
            from PIL import Image
            import paddle.vision.transforms.functional as F
            from paddle.vision.transforms import BaseTransform

            def _get_image_size(img):
                if F._is_pil_image(img):
                    return img.size
                elif F._is_numpy_image(img):
                    return img.shape[:2][::-1]
                else:
                    raise TypeError("Unexpected type {}".format(type(img)))

            class CustomRandomFlip(BaseTransform):
                def __init__(self, prob=0.5, keys=None):
                    super(CustomRandomFlip, self).__init__(keys)
                    self.prob = prob

                def _get_params(self, inputs):
                    image = inputs[self.keys.index('image')]
                    params = {}
                    params['flip'] = np.random.random() < self.prob
                    params['size'] = _get_image_size(image)
                    return params

                def _apply_image(self, image):
                    if self.params['flip']:
                        return F.hflip(image)
                    return image

                # if you only want to transform image, do not need to rewrite this function
                def _apply_coords(self, coords):
                    if self.params['flip']:
                        w = self.params['size'][0]
                        coords[:, 0] = w - coords[:, 0]
                    return coords

                # if you only want to transform image, do not need to rewrite this function
                def _apply_boxes(self, boxes):
                    idxs = np.array([(0, 1), (2, 1), (0, 3), (2, 3)]).flatten()
                    coords = np.asarray(boxes).reshape(-1, 4)[:, idxs].reshape(-1, 2)
                    coords = self._apply_coords(coords).reshape((-1, 4, 2))
                    minxy = coords.min(axis=1)
                    maxxy = coords.max(axis=1)
                    trans_boxes = np.concatenate((minxy, maxxy), axis=1)
                    return trans_boxes
                    
                # if you only want to transform image, do not need to rewrite this function
                def _apply_mask(self, mask):
                    if self.params['flip']:
                        return F.hflip(mask)
                    return mask

            # create fake inputs
            fake_img = Image.fromarray((np.random.rand(400, 500, 3) * 255.).astype('uint8'))
            fake_boxes = np.array([[2, 3, 200, 300], [50, 60, 80, 100]])
            fake_mask = fake_img.convert('L')

            # only transform for image:
            flip_transform = CustomRandomFlip(1.0)
            converted_img = flip_transform(fake_img)

            # transform for image, boxes and mask
            flip_transform = CustomRandomFlip(1.0, keys=('image', 'boxes', 'mask'))
            (converted_img, converted_boxes, converted_mask) = flip_transform((fake_img, fake_boxes, fake_mask))
            print('converted boxes', converted_boxes)
L
LielinJiang 已提交
235 236 237

    """

238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
    def __init__(self, keys=None):
        if keys is None:
            keys = ("image", )
        elif not isinstance(keys, Sequence):
            raise ValueError(
                "keys should be a sequence, but got keys={}".format(keys))
        for k in keys:
            if self._get_apply(k) is None:
                raise NotImplementedError(
                    "{} is unsupported data structure".format(k))
        self.keys = keys

        # storage some params get from function get_params()
        self.params = None

    def _get_params(self, inputs):
        pass

    def __call__(self, inputs):
        """Apply transform on single input data"""
        if not isinstance(inputs, tuple):
            inputs = (inputs, )

        self.params = self._get_params(inputs)

        outputs = []
        for i in range(min(len(inputs), len(self.keys))):
            apply_func = self._get_apply(self.keys[i])
            if apply_func is None:
                outputs.append(inputs[i])
            else:
                outputs.append(apply_func(inputs[i]))
        if len(inputs) > len(self.keys):
271
            outputs.extend(inputs[len(self.keys):])
272 273 274 275 276 277

        if len(outputs) == 1:
            outputs = outputs[0]
        else:
            outputs = tuple(outputs)
        return outputs
L
LielinJiang 已提交
278

279 280
    def _get_apply(self, key):
        return getattr(self, "_apply_{}".format(key), None)
L
LielinJiang 已提交
281

282 283
    def _apply_image(self, image):
        raise NotImplementedError
L
LielinJiang 已提交
284

285 286
    def _apply_boxes(self, boxes):
        raise NotImplementedError
L
LielinJiang 已提交
287

288 289
    def _apply_mask(self, mask):
        raise NotImplementedError
L
LielinJiang 已提交
290

291 292 293 294

class ToTensor(BaseTransform):
    """Convert a ``PIL.Image`` or ``numpy.ndarray`` to ``paddle.Tensor``.

L
LielinJiang 已提交
295 296 297 298 299 300 301 302 303 304
    Converts a PIL.Image or numpy.ndarray (H x W x C) to a paddle.Tensor of shape (C x H x W).

    If input is a grayscale image (H x W), it will be converted to a image of shape (H x W x 1). 
    And the shape of output tensor will be (1 x H x W).

    If you want to keep the shape of output tensor as (H x W x C), you can set data_format = ``HWC`` .

    Converts a PIL.Image or numpy.ndarray in the range [0, 255] to a paddle.Tensor in the 
    range [0.0, 1.0] if the PIL Image belongs to one of the modes (L, LA, P, I, F, RGB, YCbCr, 
    RGBA, CMYK, 1) or if the numpy.ndarray has dtype = np.uint8. 
305 306 307 308

    In the other cases, tensors are returned without scaling.

    Args:
L
LielinJiang 已提交
309
        data_format (str, optional): Data format of output tensor, should be 'HWC' or 
310 311
            'CHW'. Default: 'CHW'.
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
312 313 314 315 316 317 318 319
    
    Shape:
        - img(PIL.Image|np.ndarray): The input image with shape (H x W x C).
        - output(np.ndarray): A tensor with shape (C x H x W) or (H x W x C) according option data_format.

    Returns:
        A callable object of ToTensor.

320 321 322 323 324 325 326 327 328 329
    Examples:
    
        .. code-block:: python

            import numpy as np
            from PIL import Image

            import paddle.vision.transforms as T
            import paddle.vision.transforms.functional as F

L
Liyulingyue 已提交
330
            fake_img = Image.fromarray((np.random.rand(4, 5, 3) * 255.).astype(np.uint8))
331 332 333 334

            transform = T.ToTensor()

            tensor = transform(fake_img)
L
Liyulingyue 已提交
335 336 337 338 339 340
            
            print(tensor.shape)
            # [3, 4, 5]
    
            print(tensor.dtype)
            # paddle.float32
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
    """

    def __init__(self, data_format='CHW', keys=None):
        super(ToTensor, self).__init__(keys)
        self.data_format = data_format

    def _apply_image(self, img):
        """
        Args:
            img (PIL.Image|np.ndarray): Image to be converted to tensor.

        Returns:
            Tensor: Converted image.
        """
        return F.to_tensor(img, self.data_format)


class Resize(BaseTransform):
L
LielinJiang 已提交
359 360 361 362 363 364 365 366
    """Resize the input Image to the given size.

    Args:
        size (int|list|tuple): Desired output size. If size is a sequence like
            (h, w), output size will be matched to this. If size is an int,
            smaller edge of the image will be matched to this number.
            i.e, if height > width, then image will be rescaled to
            (size * height / width, size)
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
        interpolation (int|str, optional): Interpolation method. Default: 'bilinear'. 
            when use pil backend, support method are as following: 
            - "nearest": Image.NEAREST, 
            - "bilinear": Image.BILINEAR, 
            - "bicubic": Image.BICUBIC, 
            - "box": Image.BOX, 
            - "lanczos": Image.LANCZOS, 
            - "hamming": Image.HAMMING
            when use cv2 backend, support method are as following: 
            - "nearest": cv2.INTER_NEAREST, 
            - "bilinear": cv2.INTER_LINEAR, 
            - "area": cv2.INTER_AREA, 
            - "bicubic": cv2.INTER_CUBIC, 
            - "lanczos": cv2.INTER_LANCZOS4
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
382

383 384 385 386 387 388 389
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): A resized image.

    Returns:
        A callable object of Resize.

L
LielinJiang 已提交
390 391 392 393 394
    Examples:
    
        .. code-block:: python

            import numpy as np
395
            from PIL import Image
396
            from paddle.vision.transforms import Resize
L
LielinJiang 已提交
397

398
            fake_img = Image.fromarray((np.random.rand(256, 300, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
399

400 401 402 403 404 405 406 407 408
            transform = Resize(size=224)
            converted_img = transform(fake_img)
            print(converted_img.size)
            # (262, 224)

            transform = Resize(size=(200,150))
            converted_img = transform(fake_img)
            print(converted_img.size)
            # (150, 200)
L
LielinJiang 已提交
409 410
    """

411 412
    def __init__(self, size, interpolation='bilinear', keys=None):
        super(Resize, self).__init__(keys)
L
LielinJiang 已提交
413 414 415 416 417
        assert isinstance(size, int) or (isinstance(size, Iterable) and
                                         len(size) == 2)
        self.size = size
        self.interpolation = interpolation

418
    def _apply_image(self, img):
L
LielinJiang 已提交
419 420 421
        return F.resize(img, self.size, self.interpolation)


422
class RandomResizedCrop(BaseTransform):
L
LielinJiang 已提交
423 424 425 426 427 428
    """Crop the input data to random size and aspect ratio.
    A crop of random size (default: of 0.08 to 1.0) of the original size and a random
    aspect ratio (default: of 3/4 to 1.33) of the original aspect ratio is made.
    After applying crop transfrom, the input data will be resized to given size.

    Args:
429
        size (int|list|tuple): Target size of output image, with (height, width) shape.
430 431
        scale (list|tuple): Scale range of the cropped image before resizing, relatively to the origin 
            image. Default: (0.08, 1.0)
L
LielinJiang 已提交
432
        ratio (list|tuple): Range of aspect ratio of the origin aspect ratio cropped. Default: (0.75, 1.33)
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
        interpolation (int|str, optional): Interpolation method. Default: 'bilinear'. when use pil backend, 
            support method are as following: 
            - "nearest": Image.NEAREST, 
            - "bilinear": Image.BILINEAR, 
            - "bicubic": Image.BICUBIC, 
            - "box": Image.BOX, 
            - "lanczos": Image.LANCZOS, 
            - "hamming": Image.HAMMING
            when use cv2 backend, support method are as following: 
            - "nearest": cv2.INTER_NEAREST, 
            - "bilinear": cv2.INTER_LINEAR, 
            - "area": cv2.INTER_AREA, 
            - "bicubic": cv2.INTER_CUBIC, 
            - "lanczos": cv2.INTER_LANCZOS4
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
448

449 450 451 452 453 454 455
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): A cropped image.

    Returns:
        A callable object of RandomResizedCrop.

L
LielinJiang 已提交
456 457 458 459 460
    Examples:
    
        .. code-block:: python

            import numpy as np
461
            from PIL import Image
462
            from paddle.vision.transforms import RandomResizedCrop
L
LielinJiang 已提交
463 464 465

            transform = RandomResizedCrop(224)

466
            fake_img = Image.fromarray((np.random.rand(300, 320, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
467 468

            fake_img = transform(fake_img)
469 470
            print(fake_img.size)

L
LielinJiang 已提交
471 472 473
    """

    def __init__(self,
474
                 size,
L
LielinJiang 已提交
475 476
                 scale=(0.08, 1.0),
                 ratio=(3. / 4, 4. / 3),
477 478 479 480 481
                 interpolation='bilinear',
                 keys=None):
        super(RandomResizedCrop, self).__init__(keys)
        if isinstance(size, int):
            self.size = (size, size)
L
LielinJiang 已提交
482
        else:
483
            self.size = size
L
LielinJiang 已提交
484 485 486 487 488 489
        assert (scale[0] <= scale[1]), "scale should be of kind (min, max)"
        assert (ratio[0] <= ratio[1]), "ratio should be of kind (min, max)"
        self.scale = scale
        self.ratio = ratio
        self.interpolation = interpolation

490 491
    def _get_param(self, image, attempts=10):
        width, height = _get_image_size(image)
L
LielinJiang 已提交
492 493 494 495 496 497 498 499 500 501 502
        area = height * width

        for _ in range(attempts):
            target_area = np.random.uniform(*self.scale) * area
            log_ratio = tuple(math.log(x) for x in self.ratio)
            aspect_ratio = math.exp(np.random.uniform(*log_ratio))

            w = int(round(math.sqrt(target_area * aspect_ratio)))
            h = int(round(math.sqrt(target_area / aspect_ratio)))

            if 0 < w <= width and 0 < h <= height:
503 504 505
                i = random.randint(0, height - h)
                j = random.randint(0, width - w)
                return i, j, h, w
L
LielinJiang 已提交
506 507 508 509 510 511 512 513 514

        # Fallback to central crop
        in_ratio = float(width) / float(height)
        if in_ratio < min(self.ratio):
            w = width
            h = int(round(w / min(self.ratio)))
        elif in_ratio > max(self.ratio):
            h = height
            w = int(round(h * max(self.ratio)))
515 516
        else:
            # return whole image
L
LielinJiang 已提交
517 518
            w = width
            h = height
519 520 521
        i = (height - h) // 2
        j = (width - w) // 2
        return i, j, h, w
L
LielinJiang 已提交
522

523 524
    def _apply_image(self, img):
        i, j, h, w = self._get_param(img)
L
LielinJiang 已提交
525

526
        cropped_img = F.crop(img, i, j, h, w)
L
LielinJiang 已提交
527 528 529
        return F.resize(cropped_img, self.size, self.interpolation)


530
class CenterCrop(BaseTransform):
L
LielinJiang 已提交
531 532 533
    """Crops the given the input data at the center.

    Args:
534 535 536
        size (int|list|tuple): Target size of output image, with (height, width) shape.
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.

537 538 539 540 541 542 543
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): A cropped image.

    Returns:
        A callable object of CenterCrop.

L
LielinJiang 已提交
544 545 546 547 548
    Examples:
    
        .. code-block:: python

            import numpy as np
549
            from PIL import Image
550
            from paddle.vision.transforms import CenterCrop
L
LielinJiang 已提交
551 552 553

            transform = CenterCrop(224)

554
            fake_img = Image.fromarray((np.random.rand(300, 320, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
555 556

            fake_img = transform(fake_img)
557
            print(fake_img.size)
L
LielinJiang 已提交
558 559
    """

560 561 562 563
    def __init__(self, size, keys=None):
        super(CenterCrop, self).__init__(keys)
        if isinstance(size, numbers.Number):
            self.size = (int(size), int(size))
L
LielinJiang 已提交
564
        else:
565
            self.size = size
L
LielinJiang 已提交
566

567 568
    def _apply_image(self, img):
        return F.center_crop(img, self.size)
L
LielinJiang 已提交
569 570


571
class RandomHorizontalFlip(BaseTransform):
L
LielinJiang 已提交
572 573 574
    """Horizontally flip the input data randomly with a given probability.

    Args:
B
Bin Lu 已提交
575
        prob (float, optional): Probability of the input data being flipped. Should be in [0, 1]. Default: 0.5
576
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
577

578 579 580 581 582 583 584
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): A horiziotal flipped image.

    Returns:
        A callable object of RandomHorizontalFlip.

L
LielinJiang 已提交
585 586 587 588 589
    Examples:
    
        .. code-block:: python

            import numpy as np
590
            from PIL import Image
591
            from paddle.vision.transforms import RandomHorizontalFlip
L
LielinJiang 已提交
592

B
Bin Lu 已提交
593
            transform = RandomHorizontalFlip(0.5)
L
LielinJiang 已提交
594

595
            fake_img = Image.fromarray((np.random.rand(300, 320, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
596 597

            fake_img = transform(fake_img)
598
            print(fake_img.size)
L
LielinJiang 已提交
599 600
    """

601 602
    def __init__(self, prob=0.5, keys=None):
        super(RandomHorizontalFlip, self).__init__(keys)
I
IMMORTAL 已提交
603
        assert 0 <= prob <= 1, "probability must be between 0 and 1"
L
LielinJiang 已提交
604 605
        self.prob = prob

606 607 608
    def _apply_image(self, img):
        if random.random() < self.prob:
            return F.hflip(img)
L
LielinJiang 已提交
609 610 611
        return img


612
class RandomVerticalFlip(BaseTransform):
L
LielinJiang 已提交
613 614 615
    """Vertically flip the input data randomly with a given probability.

    Args:
616 617
        prob (float, optional): Probability of the input data being flipped. Default: 0.5
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
618

619 620 621 622 623 624 625
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): A vertical flipped image.

    Returns:
        A callable object of RandomVerticalFlip.

L
LielinJiang 已提交
626 627 628 629 630
    Examples:
    
        .. code-block:: python

            import numpy as np
631
            from PIL import Image
632
            from paddle.vision.transforms import RandomVerticalFlip
L
LielinJiang 已提交
633

634
            transform = RandomVerticalFlip()
L
LielinJiang 已提交
635

636
            fake_img = Image.fromarray((np.random.rand(300, 320, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
637 638

            fake_img = transform(fake_img)
639 640
            print(fake_img.size)

L
LielinJiang 已提交
641 642
    """

643 644
    def __init__(self, prob=0.5, keys=None):
        super(RandomVerticalFlip, self).__init__(keys)
I
IMMORTAL 已提交
645
        assert 0 <= prob <= 1, "probability must be between 0 and 1"
L
LielinJiang 已提交
646 647
        self.prob = prob

648 649 650
    def _apply_image(self, img):
        if random.random() < self.prob:
            return F.vflip(img)
L
LielinJiang 已提交
651 652 653
        return img


654
class Normalize(BaseTransform):
L
LielinJiang 已提交
655 656 657 658 659 660
    """Normalize the input data with mean and standard deviation.
    Given mean: ``(M1,...,Mn)`` and std: ``(S1,..,Sn)`` for ``n`` channels,
    this transform will normalize each channel of the input data.
    ``output[channel] = (input[channel] - mean[channel]) / std[channel]``

    Args:
661 662
        mean (int|float|list|tuple): Sequence of means for each channel.
        std (int|float|list|tuple): Sequence of standard deviations for each channel.
663 664 665 666
        data_format (str, optional): Data format of img, should be 'HWC' or 
            'CHW'. Default: 'CHW'.
        to_rgb (bool, optional): Whether to convert to rgb. Default: False.
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
667 668 669 670 671 672 673 674

    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): A normalized array or tensor.

    Returns:
        A callable object of Normalize.

L
LielinJiang 已提交
675 676 677 678 679
    Examples:
    
        .. code-block:: python

            import numpy as np
680
            from PIL import Image
681
            from paddle.vision.transforms import Normalize
L
LielinJiang 已提交
682

683 684 685
            normalize = Normalize(mean=[127.5, 127.5, 127.5], 
                                  std=[127.5, 127.5, 127.5],
                                  data_format='HWC')
L
LielinJiang 已提交
686

687
            fake_img = Image.fromarray((np.random.rand(300, 320, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
688 689 690

            fake_img = normalize(fake_img)
            print(fake_img.shape)
691
            print(fake_img.max, fake_img.max)
L
LielinJiang 已提交
692 693 694
    
    """

695 696 697 698 699 700 701
    def __init__(self,
                 mean=0.0,
                 std=1.0,
                 data_format='CHW',
                 to_rgb=False,
                 keys=None):
        super(Normalize, self).__init__(keys)
L
LielinJiang 已提交
702 703 704 705
        if isinstance(mean, numbers.Number):
            mean = [mean, mean, mean]

        if isinstance(std, numbers.Number):
L
LielinJiang 已提交
706
            std = [std, std, std]
L
LielinJiang 已提交
707

708 709 710 711
        self.mean = mean
        self.std = std
        self.data_format = data_format
        self.to_rgb = to_rgb
L
LielinJiang 已提交
712

713 714 715
    def _apply_image(self, img):
        return F.normalize(img, self.mean, self.std, self.data_format,
                           self.to_rgb)
L
LielinJiang 已提交
716 717


718 719
class Transpose(BaseTransform):
    """Transpose input data to a target format.
L
LielinJiang 已提交
720 721
    For example, most transforms use HWC mode image,
    while the Neural Network might use CHW mode input tensor.
722
    output image will be an instance of numpy.ndarray. 
L
LielinJiang 已提交
723 724

    Args:
725 726
        order (list|tuple, optional): Target order of input data. Default: (2, 0, 1).
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
727 728 729 730 731 732 733 734 735
    
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(np.ndarray|Paddle.Tensor): A transposed array or tensor. If input 
            is a PIL.Image, output will be converted to np.ndarray automatically.

    Returns:
        A callable object of Transpose.

L
LielinJiang 已提交
736 737 738 739 740
    Examples:
    
        .. code-block:: python

            import numpy as np
741 742
            from PIL import Image
            from paddle.vision.transforms import Transpose
L
LielinJiang 已提交
743

744
            transform = Transpose()
L
LielinJiang 已提交
745

746
            fake_img = Image.fromarray((np.random.rand(300, 320, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
747 748 749 750 751 752

            fake_img = transform(fake_img)
            print(fake_img.shape)
    
    """

753 754 755 756 757
    def __init__(self, order=(2, 0, 1), keys=None):
        super(Transpose, self).__init__(keys)
        self.order = order

    def _apply_image(self, img):
758 759 760
        if F._is_tensor_image(img):
            return img.transpose(self.order)

761 762
        if F._is_pil_image(img):
            img = np.asarray(img)
L
LielinJiang 已提交
763

764 765
        if len(img.shape) == 2:
            img = img[..., np.newaxis]
766
        return img.transpose(self.order)
L
LielinJiang 已提交
767 768


769
class BrightnessTransform(BaseTransform):
L
LielinJiang 已提交
770 771 772 773 774
    """Adjust brightness of the image.

    Args:
        value (float): How much to adjust the brightness. Can be any
            non negative number. 0 gives the original image
775
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
776

777 778 779 780 781 782 783
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): An image with a transform in brghtness.

    Returns:
        A callable object of BrightnessTransform.

L
LielinJiang 已提交
784 785 786 787 788
    Examples:
    
        .. code-block:: python

            import numpy as np
789
            from PIL import Image
790
            from paddle.vision.transforms import BrightnessTransform
L
LielinJiang 已提交
791 792 793

            transform = BrightnessTransform(0.4)

794
            fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
795 796

            fake_img = transform(fake_img)
797
            
L
LielinJiang 已提交
798 799
    """

800 801 802
    def __init__(self, value, keys=None):
        super(BrightnessTransform, self).__init__(keys)
        self.value = _check_input(value, 'brightness')
L
LielinJiang 已提交
803

804 805
    def _apply_image(self, img):
        if self.value is None:
L
LielinJiang 已提交
806 807
            return img

808 809
        brightness_factor = random.uniform(self.value[0], self.value[1])
        return F.adjust_brightness(img, brightness_factor)
L
LielinJiang 已提交
810 811


812
class ContrastTransform(BaseTransform):
L
LielinJiang 已提交
813 814 815 816 817
    """Adjust contrast of the image.

    Args:
        value (float): How much to adjust the contrast. Can be any
            non negative number. 0 gives the original image
818
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
819

820 821 822 823 824 825 826
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): An image with a transform in contrast.

    Returns:
        A callable object of ContrastTransform.

L
LielinJiang 已提交
827 828 829 830 831
    Examples:
    
        .. code-block:: python

            import numpy as np
832
            from PIL import Image
833
            from paddle.vision.transforms import ContrastTransform
L
LielinJiang 已提交
834 835 836

            transform = ContrastTransform(0.4)

837
            fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
838 839

            fake_img = transform(fake_img)
840

L
LielinJiang 已提交
841 842
    """

843 844
    def __init__(self, value, keys=None):
        super(ContrastTransform, self).__init__(keys)
L
LielinJiang 已提交
845 846
        if value < 0:
            raise ValueError("contrast value should be non-negative")
847
        self.value = _check_input(value, 'contrast')
L
LielinJiang 已提交
848

849 850
    def _apply_image(self, img):
        if self.value is None:
L
LielinJiang 已提交
851 852
            return img

853 854
        contrast_factor = random.uniform(self.value[0], self.value[1])
        return F.adjust_contrast(img, contrast_factor)
L
LielinJiang 已提交
855 856


857
class SaturationTransform(BaseTransform):
L
LielinJiang 已提交
858 859 860 861 862
    """Adjust saturation of the image.

    Args:
        value (float): How much to adjust the saturation. Can be any
            non negative number. 0 gives the original image
863
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
864

865 866 867 868 869 870 871
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): An image with a transform in saturation.

    Returns:
        A callable object of SaturationTransform.

L
LielinJiang 已提交
872 873 874 875 876
    Examples:
    
        .. code-block:: python

            import numpy as np
877
            from PIL import Image
878
            from paddle.vision.transforms import SaturationTransform
L
LielinJiang 已提交
879 880 881

            transform = SaturationTransform(0.4)

882
            fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
883 884
        
            fake_img = transform(fake_img)
885

L
LielinJiang 已提交
886 887
    """

888 889 890
    def __init__(self, value, keys=None):
        super(SaturationTransform, self).__init__(keys)
        self.value = _check_input(value, 'saturation')
L
LielinJiang 已提交
891

892 893
    def _apply_image(self, img):
        if self.value is None:
L
LielinJiang 已提交
894 895
            return img

896 897
        saturation_factor = random.uniform(self.value[0], self.value[1])
        return F.adjust_saturation(img, saturation_factor)
L
LielinJiang 已提交
898

L
LielinJiang 已提交
899

900
class HueTransform(BaseTransform):
L
LielinJiang 已提交
901 902 903 904 905
    """Adjust hue of the image.

    Args:
        value (float): How much to adjust the hue. Can be any number
            between 0 and 0.5, 0 gives the original image
906
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
907

908 909 910 911 912 913 914
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): An image with a transform in hue.

    Returns:
        A callable object of HueTransform.

L
LielinJiang 已提交
915 916 917 918 919
    Examples:
    
        .. code-block:: python

            import numpy as np
920
            from PIL import Image
921
            from paddle.vision.transforms import HueTransform
L
LielinJiang 已提交
922 923 924

            transform = HueTransform(0.4)

925
            fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
926 927

            fake_img = transform(fake_img)
928

L
LielinJiang 已提交
929 930
    """

931 932 933 934
    def __init__(self, value, keys=None):
        super(HueTransform, self).__init__(keys)
        self.value = _check_input(
            value, 'hue', center=0, bound=(-0.5, 0.5), clip_first_on_zero=False)
L
LielinJiang 已提交
935

936 937
    def _apply_image(self, img):
        if self.value is None:
L
LielinJiang 已提交
938 939
            return img

940 941
        hue_factor = random.uniform(self.value[0], self.value[1])
        return F.adjust_hue(img, hue_factor)
L
LielinJiang 已提交
942 943


944
class ColorJitter(BaseTransform):
L
LielinJiang 已提交
945 946 947
    """Randomly change the brightness, contrast, saturation and hue of an image.

    Args:
948
        brightness (float): How much to jitter brightness.
L
LielinJiang 已提交
949
            Chosen uniformly from [max(0, 1 - brightness), 1 + brightness]. Should be non negative numbers.
950
        contrast (float): How much to jitter contrast.
L
LielinJiang 已提交
951
            Chosen uniformly from [max(0, 1 - contrast), 1 + contrast]. Should be non negative numbers.
952
        saturation (float): How much to jitter saturation.
L
LielinJiang 已提交
953
            Chosen uniformly from [max(0, 1 - saturation), 1 + saturation]. Should be non negative numbers.
954
        hue (float): How much to jitter hue.
L
LielinJiang 已提交
955
            Chosen uniformly from [-hue, hue]. Should have 0<= hue <= 0.5.
956
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
957

958 959 960 961 962 963 964
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): A color jittered image.

    Returns:
        A callable object of ColorJitter.

L
LielinJiang 已提交
965 966 967 968 969
    Examples:
    
        .. code-block:: python

            import numpy as np
970
            from PIL import Image
971
            from paddle.vision.transforms import ColorJitter
L
LielinJiang 已提交
972

973
            transform = ColorJitter(0.4, 0.4, 0.4, 0.4)
L
LielinJiang 已提交
974

975
            fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
976 977

            fake_img = transform(fake_img)
978

L
LielinJiang 已提交
979 980
    """

981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997
    def __init__(self, brightness=0, contrast=0, saturation=0, hue=0,
                 keys=None):
        super(ColorJitter, self).__init__(keys)
        self.brightness = brightness
        self.contrast = contrast
        self.saturation = saturation
        self.hue = hue

    def _get_param(self, brightness, contrast, saturation, hue):
        """Get a randomized transform to be applied on image.

        Arguments are same as that of __init__.

        Returns:
            Transform which randomly adjusts brightness, contrast and
            saturation in a random order.
        """
L
LielinJiang 已提交
998
        transforms = []
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010

        if brightness is not None:
            transforms.append(BrightnessTransform(brightness, self.keys))

        if contrast is not None:
            transforms.append(ContrastTransform(contrast, self.keys))

        if saturation is not None:
            transforms.append(SaturationTransform(saturation, self.keys))

        if hue is not None:
            transforms.append(HueTransform(hue, self.keys))
L
LielinJiang 已提交
1011 1012

        random.shuffle(transforms)
1013
        transform = Compose(transforms)
L
LielinJiang 已提交
1014

1015
        return transform
L
LielinJiang 已提交
1016

1017 1018 1019 1020
    def _apply_image(self, img):
        """
        Args:
            img (PIL Image): Input image.
L
LielinJiang 已提交
1021

1022 1023 1024 1025 1026 1027 1028 1029 1030
        Returns:
            PIL Image: Color jittered image.
        """
        transform = self._get_param(self.brightness, self.contrast,
                                    self.saturation, self.hue)
        return transform(img)


class RandomCrop(BaseTransform):
L
LielinJiang 已提交
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
    """Crops the given CV Image at a random location.

    Args:
        size (sequence|int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
            made.
        padding (int|sequence|optional): Optional padding on each border
            of the image. If a sequence of length 4 is provided, it is used to pad left, 
            top, right, bottom borders respectively. Default: 0.
        pad_if_needed (boolean|optional): It will pad the image if smaller than the
            desired size to avoid raising an exception. Default: False.
1042
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
1043 1044 1045 1046 1047 1048 1049 1050
    
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): A random cropped image.

    Returns:
        A callable object of RandomCrop.

L
LielinJiang 已提交
1051 1052 1053 1054 1055
    Examples:
    
        .. code-block:: python

            import numpy as np
1056
            from PIL import Image
1057
            from paddle.vision.transforms import RandomCrop
L
LielinJiang 已提交
1058 1059 1060

            transform = RandomCrop(224)

1061
            fake_img = Image.fromarray((np.random.rand(324, 300, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
1062 1063

            fake_img = transform(fake_img)
1064
            print(fake_img.size)
L
LielinJiang 已提交
1065 1066
    """

1067 1068 1069 1070 1071 1072 1073 1074
    def __init__(self,
                 size,
                 padding=None,
                 pad_if_needed=False,
                 fill=0,
                 padding_mode='constant',
                 keys=None):
        super(RandomCrop, self).__init__(keys)
L
LielinJiang 已提交
1075 1076 1077 1078 1079 1080
        if isinstance(size, numbers.Number):
            self.size = (int(size), int(size))
        else:
            self.size = size
        self.padding = padding
        self.pad_if_needed = pad_if_needed
1081 1082
        self.fill = fill
        self.padding_mode = padding_mode
L
LielinJiang 已提交
1083

1084
    def _get_param(self, img, output_size):
L
LielinJiang 已提交
1085 1086 1087
        """Get parameters for ``crop`` for a random crop.

        Args:
1088
            img (PIL Image): Image to be cropped.
L
LielinJiang 已提交
1089 1090 1091 1092 1093
            output_size (tuple): Expected output size of the crop.

        Returns:
            tuple: params (i, j, h, w) to be passed to ``crop`` for random crop.
        """
1094
        w, h = _get_image_size(img)
L
LielinJiang 已提交
1095 1096 1097 1098
        th, tw = output_size
        if w == tw and h == th:
            return 0, 0, h, w

1099 1100
        i = random.randint(0, h - th)
        j = random.randint(0, w - tw)
L
LielinJiang 已提交
1101 1102
        return i, j, th, tw

1103
    def _apply_image(self, img):
L
LielinJiang 已提交
1104 1105
        """
        Args:
1106
            img (PIL Image): Image to be cropped.
L
LielinJiang 已提交
1107

1108 1109
        Returns:
            PIL Image: Cropped image.
L
LielinJiang 已提交
1110
        """
1111 1112 1113 1114
        if self.padding is not None:
            img = F.pad(img, self.padding, self.fill, self.padding_mode)

        w, h = _get_image_size(img)
L
LielinJiang 已提交
1115 1116

        # pad the width if needed
1117 1118 1119
        if self.pad_if_needed and w < self.size[1]:
            img = F.pad(img, (self.size[1] - w, 0), self.fill,
                        self.padding_mode)
L
LielinJiang 已提交
1120
        # pad the height if needed
1121 1122 1123
        if self.pad_if_needed and h < self.size[0]:
            img = F.pad(img, (0, self.size[0] - h), self.fill,
                        self.padding_mode)
L
LielinJiang 已提交
1124

1125
        i, j, h, w = self._get_param(img, self.size)
L
LielinJiang 已提交
1126

1127
        return F.crop(img, i, j, h, w)
L
LielinJiang 已提交
1128 1129


1130
class Pad(BaseTransform):
L
LielinJiang 已提交
1131 1132 1133 1134
    """Pads the given CV Image on all sides with the given "pad" value.

    Args:
        padding (int|list|tuple): Padding on each border. If a single int is provided this
1135 1136
            is used to pad all borders. If list/tuple of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a list/tuple of length 4 is provided
L
LielinJiang 已提交
1137 1138
            this is the padding for the left, top, right and bottom borders
            respectively.
1139
        fill (int|list|tuple): Pixel fill value for constant fill. Default is 0. If a list/tuple of
L
LielinJiang 已提交
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
            length 3, it is used to fill R, G, B channels respectively.
            This value is only used when the padding_mode is constant
        padding_mode (str): Type of padding. Should be: constant, edge, reflect or symmetric. Default is constant.
            ``constant`` means pads with a constant value, this value is specified with fill. 
            ``edge`` means pads with the last value at the edge of the image. 
            ``reflect`` means pads with reflection of image (without repeating the last value on the edge) 
            padding ``[1, 2, 3, 4]`` with 2 elements on both sides in reflect mode 
            will result in ``[3, 2, 1, 2, 3, 4, 3, 2]``.
            ``symmetric`` menas pads with reflection of image (repeating the last value on the edge)
            padding ``[1, 2, 3, 4]`` with 2 elements on both sides in symmetric mode 
            will result in ``[2, 1, 1, 2, 3, 4, 4, 3]``.
1151
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
1152 1153 1154 1155 1156 1157 1158 1159
    
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): A paded image.

    Returns:
        A callable object of Pad.

L
LielinJiang 已提交
1160 1161 1162 1163 1164
    Examples:
    
        .. code-block:: python

            import numpy as np
1165
            from PIL import Image
1166
            from paddle.vision.transforms import Pad
L
LielinJiang 已提交
1167 1168 1169

            transform = Pad(2)

1170
            fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
1171 1172

            fake_img = transform(fake_img)
1173
            print(fake_img.size)
L
LielinJiang 已提交
1174 1175
    """

1176
    def __init__(self, padding, fill=0, padding_mode='constant', keys=None):
L
LielinJiang 已提交
1177 1178 1179
        assert isinstance(padding, (numbers.Number, list, tuple))
        assert isinstance(fill, (numbers.Number, str, list, tuple))
        assert padding_mode in ['constant', 'edge', 'reflect', 'symmetric']
1180 1181 1182 1183 1184 1185 1186

        if isinstance(padding, list):
            padding = tuple(padding)
        if isinstance(fill, list):
            fill = tuple(fill)

        if isinstance(padding, Sequence) and len(padding) not in [2, 4]:
L
LielinJiang 已提交
1187 1188 1189 1190
            raise ValueError(
                "Padding must be an int or a 2, or 4 element tuple, not a " +
                "{} element tuple".format(len(padding)))

1191
        super(Pad, self).__init__(keys)
L
LielinJiang 已提交
1192 1193 1194 1195
        self.padding = padding
        self.fill = fill
        self.padding_mode = padding_mode

1196
    def _apply_image(self, img):
L
LielinJiang 已提交
1197 1198
        """
        Args:
1199 1200
            img (PIL Image): Image to be padded.

L
LielinJiang 已提交
1201
        Returns:
1202
            PIL Image: Padded image.
L
LielinJiang 已提交
1203 1204 1205 1206
        """
        return F.pad(img, self.padding, self.fill, self.padding_mode)


1207
class RandomRotation(BaseTransform):
L
LielinJiang 已提交
1208 1209 1210 1211 1212 1213
    """Rotates the image by angle.

    Args:
        degrees (sequence or float or int): Range of degrees to select from.
            If degrees is a number instead of sequence like (min, max), the range of degrees
            will be (-degrees, +degrees) clockwise order.
1214
        interpolation (str, optional): Interpolation method. If omitted, or if the 
1215 1216 1217 1218 1219 1220 1221 1222 1223
            image has only one channel, it is set to PIL.Image.NEAREST or cv2.INTER_NEAREST 
            according the backend. when use pil backend, support method are as following: 
            - "nearest": Image.NEAREST, 
            - "bilinear": Image.BILINEAR, 
            - "bicubic": Image.BICUBIC
            when use cv2 backend, support method are as following: 
            - "nearest": cv2.INTER_NEAREST, 
            - "bilinear": cv2.INTER_LINEAR, 
            - "bicubic": cv2.INTER_CUBIC
L
LielinJiang 已提交
1224 1225 1226 1227 1228 1229 1230
        expand (bool|optional): Optional expansion flag. Default: False.
            If true, expands the output to make it large enough to hold the entire rotated image.
            If false or omitted, make the output image the same size as the input image.
            Note that the expand flag assumes rotation around the center and no translation.
        center (2-tuple|optional): Optional center of rotation.
            Origin is the upper left corner.
            Default is the center of the image.
1231
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
1232 1233 1234 1235 1236 1237 1238 1239
    
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): A rotated image.

    Returns:
        A callable object of RandomRotation.

L
LielinJiang 已提交
1240 1241 1242 1243 1244
    Examples:
    
        .. code-block:: python

            import numpy as np
1245 1246
            from PIL import Image
            from paddle.vision.transforms import RandomRotation
L
LielinJiang 已提交
1247

1248
            transform = RandomRotation(90)
L
LielinJiang 已提交
1249

1250
            fake_img = Image.fromarray((np.random.rand(200, 150, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
1251 1252

            fake_img = transform(fake_img)
1253
            print(fake_img.size)
L
LielinJiang 已提交
1254 1255
    """

1256 1257
    def __init__(self,
                 degrees,
1258
                 interpolation='nearest',
1259 1260 1261 1262
                 expand=False,
                 center=None,
                 fill=0,
                 keys=None):
L
LielinJiang 已提交
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
        if isinstance(degrees, numbers.Number):
            if degrees < 0:
                raise ValueError(
                    "If degrees is a single number, it must be positive.")
            self.degrees = (-degrees, degrees)
        else:
            if len(degrees) != 2:
                raise ValueError(
                    "If degrees is a sequence, it must be of len 2.")
            self.degrees = degrees

1274
        super(RandomRotation, self).__init__(keys)
1275
        self.interpolation = interpolation
L
LielinJiang 已提交
1276 1277
        self.expand = expand
        self.center = center
1278
        self.fill = fill
L
LielinJiang 已提交
1279

1280
    def _get_param(self, degrees):
L
LielinJiang 已提交
1281 1282 1283 1284
        angle = random.uniform(degrees[0], degrees[1])

        return angle

1285
    def _apply_image(self, img):
L
LielinJiang 已提交
1286
        """
1287 1288 1289
        Args:
            img (PIL.Image|np.array): Image to be rotated.

L
LielinJiang 已提交
1290
        Returns:
1291
            PIL.Image or np.array: Rotated image.
L
LielinJiang 已提交
1292 1293
        """

1294
        angle = self._get_param(self.degrees)
L
LielinJiang 已提交
1295

1296 1297
        return F.rotate(img, angle, self.interpolation, self.expand,
                        self.center, self.fill)
L
LielinJiang 已提交
1298 1299


1300
class Grayscale(BaseTransform):
L
LielinJiang 已提交
1301 1302 1303
    """Converts image to grayscale.

    Args:
1304 1305
        num_output_channels (int): (1 or 3) number of channels desired for output image
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
1306 1307 1308 1309 1310 1311 1312

    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): Grayscale version of the input image. 
            - If output_channels == 1 : returned image is single channel
            - If output_channels == 3 : returned image is 3 channel with r == g == b

L
LielinJiang 已提交
1313
    Returns:
1314
        A callable object of Grayscale.
L
LielinJiang 已提交
1315 1316 1317 1318 1319 1320

    Examples:
    
        .. code-block:: python

            import numpy as np
1321
            from PIL import Image
1322
            from paddle.vision.transforms import Grayscale
L
LielinJiang 已提交
1323 1324 1325

            transform = Grayscale()

1326
            fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
1327 1328

            fake_img = transform(fake_img)
1329
            print(np.array(fake_img).shape)
L
LielinJiang 已提交
1330 1331
    """

1332 1333 1334
    def __init__(self, num_output_channels=1, keys=None):
        super(Grayscale, self).__init__(keys)
        self.num_output_channels = num_output_channels
L
LielinJiang 已提交
1335

1336
    def _apply_image(self, img):
L
LielinJiang 已提交
1337 1338
        """
        Args:
1339 1340
            img (PIL Image): Image to be converted to grayscale.

L
LielinJiang 已提交
1341
        Returns:
1342
            PIL Image: Randomly grayscaled image.
L
LielinJiang 已提交
1343
        """
1344
        return F.to_grayscale(img, self.num_output_channels)