mkldnn_reuse.h 57.2 KB
Newer Older
J
Jacek Czaja 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once

16
#include <memory>
17
#include <sstream>
J
Jacek Czaja 已提交
18 19
#include <string>
#include <vector>
20
#include "boost/optional.hpp"
X
xiaoli.liu@intel.com 已提交
21
#include "paddle/fluid/framework/data_layout_transform.h"
J
Jacek Czaja 已提交
22 23 24 25 26 27 28 29
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/platform/mkldnn_helper.h"
#include "paddle/fluid/platform/place.h"

namespace paddle {
namespace platform {

using user_function = std::function<std::shared_ptr<float>(const float*)>;
30
using memory = mkldnn::memory;
J
Jacek Czaja 已提交
31 32 33 34 35

class MKLDNNHandler {
 public:
  MKLDNNHandler(const MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
                const std::string& base_key)
36
      : dev_ctx_(dev_ctx), engine_(engine), key_common_(base_key) {
37 38
    if (platform::get_cur_mkldnn_session_id() !=
        platform::kMKLDNNSessionID_Default) {
39
      key_ = key_common_;
40 41
    } else {
      key_ = key_common_ + "-t:" + MKLDNNHandler::ThreadIDasStr();
42
    }
43
  }
J
Jacek Czaja 已提交
44 45 46 47 48 49

  std::shared_ptr<mkldnn::memory> AcquireSrcMemory(
      const mkldnn::memory::desc& md, void* ptr) {
    return this->AcquireMemory(md, ptr, "@user_src_mem_p");
  }

50 51 52 53 54
  std::shared_ptr<mkldnn::memory> AcquireSecondSrcMemory(
      const mkldnn::memory::desc& md, void* ptr) {
    return this->AcquireMemory(md, ptr, "@user_src2_mem_p");
  }

J
Jacek Czaja 已提交
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
  std::shared_ptr<mkldnn::memory> AcquireWeightsMemory(
      const mkldnn::memory::desc& md, void* ptr,
      user_function custom_func = {}) {
    return this->AcquireMemory(md, ptr, "@user_weights_mem_p", custom_func);
  }

  std::shared_ptr<mkldnn::memory> AcquireBiasMemory(
      const mkldnn::memory::desc& md, void* ptr) {
    return this->AcquireMemory(md, ptr, "@user_bias_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireDstMemory(
      const mkldnn::memory::desc& md, void* ptr) {
    return this->AcquireMemory(md, ptr, "@user_dst_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemory(
      const mkldnn::memory::desc& md, void* ptr) {
    return this->AcquireMemory(md, ptr, "@user_diff_dst_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffSrcMemory(
      const mkldnn::memory::desc& md, void* ptr) {
    return this->AcquireMemory(md, ptr, "@user_diff_src_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireMemoryFromPrimitive(
      mkldnn::memory::primitive_desc mdp, void* ptr,
      const std::string& suffix) {
    auto local_key = key_ + suffix;
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
      mem_p = std::make_shared<mkldnn::memory>(mdp, ptr);
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
      mem_p->set_data_handle(ptr);
    }
    return mem_p;
  }

  // This incarnation of AcquireMemory can call user function eg. custom reorder
  // or preprocessing routine if needed
  std::shared_ptr<mkldnn::memory> AcquireMemory(
      const mkldnn::memory::desc& md, void* ptr, const std::string& suffix,
      user_function custom_func = {}) {
    /*Generate key*/
    auto local_key = key_ + suffix;
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
      // Call custom reorder/preprocessing func if available
      if (custom_func) {
        auto reordered_data = custom_func(reinterpret_cast<const float*>(ptr));
        dev_ctx_.SetBlob(local_key + "-custom_reorder", reordered_data);
        ptr = reinterpret_cast<void*>(reordered_data.get());
      }

      mem_p = std::make_shared<mkldnn::memory>(
          mkldnn::memory::primitive_desc{md, engine_}, ptr);
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
      mem_p->set_data_handle(ptr);
    }
    return mem_p;
  }

122 123 124 125 126 127 128 129 130 131 132 133
  std::shared_ptr<mkldnn::memory> AcquireMemory(
      const mkldnn::memory::primitive_desc& mpd, const std::string& suffix) {
    auto local_key = key_ + suffix;
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
      mem_p = std::make_shared<mkldnn::memory>(mpd);
      dev_ctx_.SetBlob(local_key, mem_p);
    }
    return mem_p;
  }

J
Jacek Czaja 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
  std::shared_ptr<mkldnn::memory> AcquireMemory(
      const std::shared_ptr<mkldnn::memory>& user_memory_p,
      const std::shared_ptr<mkldnn::memory>& target_memory_p,
      const std::string& suffix,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
    auto local_key = key_ + suffix;
    auto key_reorder_p = key_ + suffix + "reorder_p";

    auto stored_reorder_p = std::static_pointer_cast<mkldnn::reorder>(
        dev_ctx_.GetBlob(key_reorder_p));

    if (stored_reorder_p) {
      pipeline.push_back(*stored_reorder_p);
    } else {
      auto reorder_p =
          std::make_shared<mkldnn::reorder>(*user_memory_p, *target_memory_p);
      dev_ctx_.SetBlob(key_reorder_p, reorder_p);
      pipeline.push_back(*reorder_p);
    }

    return target_memory_p;
  }

  std::shared_ptr<mkldnn::memory> AcquireMemory(
      mkldnn::memory::primitive_desc& mpd,       // NOLINT
      mkldnn::memory::primitive_desc& user_mpd,  // NOLINT
      const std::shared_ptr<mkldnn::memory> user_memory_p,
      const std::string& suffix,
      std::vector<mkldnn::primitive>& pipeline,  // NOLINT
163 164
      bool is_persistent = false, bool is_INT8 = false,
      std::vector<float> scale_data = {1.0f}, int mask = 0) {
J
Jacek Czaja 已提交
165 166 167 168 169 170 171 172 173 174 175
    // create reorder primitive if the input format is not the preferred one
    auto local_key = key_ + suffix;
    auto key_reorder_p = key_ + suffix + "reorder_p";

    auto target_memory_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (target_memory_p == nullptr) {
      target_memory_p = user_memory_p;
      std::shared_ptr<mkldnn::primitive> reorder_p;
      if (mpd != user_mpd) {
        target_memory_p = std::make_shared<mkldnn::memory>(mpd);
176 177 178 179 180 181 182 183 184 185 186 187 188 189
        std::shared_ptr<mkldnn::reorder> reorder_p;
        if (is_INT8) {
          mkldnn::primitive_attr
              attri;  // attribute for int8 weights and bias data reorder.
          attri.set_output_scales(mask, scale_data);

          auto reorder_pd = std::shared_ptr<mkldnn::reorder::primitive_desc>(
              new mkldnn::reorder::primitive_desc(user_mpd, mpd, attri));
          reorder_p = std::shared_ptr<mkldnn::reorder>(new mkldnn::reorder(
              *reorder_pd, *user_memory_p, *target_memory_p));
        } else {
          reorder_p = std::make_shared<mkldnn::reorder>(*user_memory_p,
                                                        *target_memory_p);
        }
J
Jacek Czaja 已提交
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
        dev_ctx_.SetBlob(key_reorder_p, reorder_p);
        pipeline.push_back(*reorder_p);
      }
      dev_ctx_.SetBlob(local_key, target_memory_p);
    } else if (!is_persistent) {
      // Make reorder if needed
      auto reorder_p = std::static_pointer_cast<mkldnn::reorder>(
          dev_ctx_.GetBlob(key_reorder_p));
      if (reorder_p != nullptr) {
        pipeline.push_back(*reorder_p);
      }
    }
    return target_memory_p;
  }

205 206 207 208 209
  static std::string ThreadIDasStr(void) {
    return std::to_string(
        std::hash<std::thread::id>()(std::this_thread::get_id()));
  }

J
Jacek Czaja 已提交
210 211 212 213 214
  static std::string GetHash(mkldnn::memory::dims& operand_dims,  // NOLINT
                             const std::string& suffix) {
    return dims2str(operand_dims) + suffix;
  }

215 216 217 218 219 220 221
  static void AppendKey(
      std::string* key, const mkldnn::memory::dims& input_dims,
      const mkldnn::memory::dims& weights_dims, const std::vector<int>& strides,
      const std::vector<int>& paddings, const std::vector<int>& dilations,
      const int& groups, const mkldnn::memory::data_type& srcdt,
      const mkldnn::memory::format& format, const bool& relu,
      const bool& residual, const bool& brelu, const std::string& suffix) {
222
    AppendKeyDims(key, input_dims);
223

224
    AppendKeyDims(key, weights_dims);
225

226
    AppendKeyVec(key, strides);
227

228
    AppendKeyVec(key, paddings);
229

230
    AppendKeyVec(key, dilations);
231

232
    AppendKey(key, std::to_string(groups));
X
xiaolil1 已提交
233
    AppendKey(key, std::to_string(srcdt));
234
    AppendKey(key, std::to_string(format));
X
xiaolil1 已提交
235 236
    AppendKey(key, std::to_string(relu));
    AppendKey(key, std::to_string(residual));
237
    AppendKey(key, std::to_string(brelu));
238
    AppendKey(key, suffix);
X
xiaoli.liu@intel.com 已提交
239 240
  }

241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
  static void AppendKeyDims(std::string* key,
                            const mkldnn::memory::dims& dims) {
    for (unsigned int i = 0; i < dims.size(); i++) {
      AppendKey(key, std::to_string(dims[i]));
    }
  }

  static void AppendKeyVec(std::string* key, const std::vector<int>& dims) {
    for (unsigned int i = 0; i < dims.size(); i++) {
      AppendKey(key, std::to_string(dims[i]));
    }
  }

  static void AppendKey(std::string* key, const std::string& s) {
    key->append(s);
  }

258
 protected:
J
Jacek Czaja 已提交
259 260 261 262 263 264 265 266 267 268 269 270
  static std::string dims2str(const mkldnn::memory::dims& operand_dims) {
    std::string dstr = "";
    for (size_t i = 0; i < operand_dims.size(); ++i) {
      dstr += std::to_string(operand_dims[i]) + "-";
    }
    return dstr;
  }

 protected:
  const MKLDNNDeviceContext& dev_ctx_;
  mkldnn::engine engine_;
  std::string key_;
271
  std::string key_common_;
272 273 274

 public:
  static constexpr int MaxKeyLength = 256;
J
Jacek Czaja 已提交
275 276
};

277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
class SumMKLDNNHandler : public MKLDNNHandler {
 public:
  SumMKLDNNHandler(const platform::MKLDNNDeviceContext& dev_ctx,
                   mkldnn::engine engine, const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key) {}

  std::shared_ptr<mkldnn::sum::primitive_desc> AcquireSumPrimitiveDescriptor(
      const std::vector<std::shared_ptr<mkldnn::memory>>& src_mems,
      const std::vector<float>& scales, const mkldnn::memory::desc& dst_md) {
    const std::string key_sum_pd = key_ + "@sum_pd";

    sum_pd_ = std::static_pointer_cast<mkldnn::sum::primitive_desc>(
        dev_ctx_.GetBlob(key_sum_pd));
    if (sum_pd_ == nullptr) {
      // Get vector of inputs primitive descriptors
      std::vector<mkldnn::memory::primitive_desc> src_pds;
      for (auto& input_mem : src_mems) {
        src_pds.push_back(input_mem->get_primitive_desc());
      }

      sum_pd_.reset(new mkldnn::sum::primitive_desc(dst_md, scales, src_pds));
      dev_ctx_.SetBlob(key_sum_pd, sum_pd_);
    }

    return sum_pd_;
  }

  std::shared_ptr<mkldnn::memory> AcquireDstMemoryFromPrimitive(void* ptr) {
    return this->AcquireMemoryFromPrimitive(sum_pd_->dst_primitive_desc(), ptr,
                                            "@dst_mem_p");
  }

  std::shared_ptr<mkldnn::sum> AcquireSum(
      std::shared_ptr<mkldnn::memory> dst_memory,
      std::vector<mkldnn::primitive::at>* inputs) {
    auto prim_key = key_ + "@sum_p";
    auto sum_p =
        std::static_pointer_cast<mkldnn::sum>(dev_ctx_.GetBlob(prim_key));
    if (sum_p == nullptr) {
      sum_p = std::make_shared<mkldnn::sum>(*(sum_pd_), *inputs, *(dst_memory));
      dev_ctx_.SetBlob(prim_key, sum_p);
    }
    return sum_p;
  }

 private:
  std::shared_ptr<mkldnn::sum::primitive_desc> sum_pd_;
};

326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
class ActivationMKLDNNHandler : public MKLDNNHandler {
 public:
  ActivationMKLDNNHandler(const platform::MKLDNNDeviceContext& dev_ctx,
                          mkldnn::engine engine, const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key) {}

  std::shared_ptr<mkldnn::eltwise_forward::primitive_desc>
  AcquireActivationPrimitiveDescriptor(mkldnn::prop_kind prop_kind,
                                       mkldnn::algorithm algorithm,
                                       const mkldnn::memory::desc& md,
                                       float alpha, float beta) {
    // Activation PD has to be passed to Grad op that
    // may be executed by diffrent thread, hence
    // for that one we use key that does not contain TID
    const std::string key_activation_pd = key_common_ + "@activation_pd";
    activation_pd_ =
        std::static_pointer_cast<mkldnn::eltwise_forward::primitive_desc>(
            dev_ctx_.GetBlob(key_activation_pd));
    if (activation_pd_ == nullptr) {
      static std::mutex acquire_barrier;
      std::lock_guard<std::mutex> block_threads_until_finish_this_job(
          acquire_barrier);

      activation_pd_ =
          std::static_pointer_cast<mkldnn::eltwise_forward::primitive_desc>(
              dev_ctx_.GetBlob(key_activation_pd));
      if (activation_pd_ == nullptr) {
        auto activation_desc = mkldnn::eltwise_forward::desc(
            prop_kind, algorithm, md, alpha, beta);

        activation_pd_.reset(new mkldnn::eltwise_forward::primitive_desc(
            activation_desc, engine_));
        dev_ctx_.SetBlob(key_activation_pd, activation_pd_);
      }
    }
    return activation_pd_;
  }

  std::shared_ptr<mkldnn::eltwise_backward::primitive_desc>
  AcquireActivationBackwardPrimitiveDescriptor(
      mkldnn::algorithm algorithm, const mkldnn::memory::desc& diff_dst_md,
      const mkldnn::memory::desc& src_md, float alpha, float beta) {
    const std::string key_activation_pd = key_common_ + "@activation_pd";
    const std::string key_activation_bwd_pd = key_ + "@activation_bwd_pd";
    activation_bwd_pd_ =
        std::static_pointer_cast<mkldnn::eltwise_backward::primitive_desc>(
            dev_ctx_.GetBlob(key_activation_bwd_pd));
    if (activation_bwd_pd_ == nullptr) {
      activation_pd_ =
          std::static_pointer_cast<mkldnn::eltwise_forward::primitive_desc>(
              dev_ctx_.GetBlob(key_activation_pd));
      // PD from FWD op has to exist.
      PADDLE_ENFORCE(activation_pd_ != nullptr,
                     "Eltwise MKL-DNN not found in cache!");
      auto backward_desc = mkldnn::eltwise_backward::desc(
          algorithm, diff_dst_md, src_md, alpha, beta);
      activation_bwd_pd_.reset(new mkldnn::eltwise_backward::primitive_desc(
          backward_desc, engine_, *activation_pd_));
      dev_ctx_.SetBlob(key_activation_bwd_pd, activation_bwd_pd_);
    }
    return activation_bwd_pd_;
  }

  std::shared_ptr<mkldnn::eltwise_forward> AcquireActivation(
      std::shared_ptr<mkldnn::memory> dst_memory_p,
      std::shared_ptr<mkldnn::memory> src_memory_p) {
    /*Generate key*/
    auto prim_key = key_ + "@eltwise_p";

    auto eltwise_p = std::static_pointer_cast<mkldnn::eltwise_forward>(
        dev_ctx_.GetBlob(prim_key));
    if (eltwise_p == nullptr) {
      eltwise_p = std::make_shared<mkldnn::eltwise_forward>(
          *activation_pd_, *(src_memory_p), *(dst_memory_p));
      dev_ctx_.SetBlob(prim_key, eltwise_p);
    }

    return eltwise_p;
  }

  // TODO(jczaja): Merge all AcquireDstMemoryFromPrimitive into one
  std::shared_ptr<mkldnn::memory> AcquireDstMemoryFromPrimitive(void* ptr) {
    return this->AcquireMemoryFromPrimitive(
        activation_pd_->dst_primitive_desc(), ptr, "@dst_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffSrcMemoryFromPrimitive(void* ptr) {
    return this->AcquireMemoryFromPrimitive(
        activation_bwd_pd_->diff_src_primitive_desc(), ptr, "@diff_src_mem_p");
  }

  std::shared_ptr<mkldnn::eltwise_backward> AcquireActivationBackward(
      std::shared_ptr<mkldnn::memory> diff_src_memory_p,
      std::shared_ptr<mkldnn::memory> diff_dst_memory_p,
      std::shared_ptr<mkldnn::memory> src_memory_p) {
    /*Generate key*/
    auto prim_key = key_ + "@eltwise_bwd_p";

    auto eltwise_bwd_p = std::static_pointer_cast<mkldnn::eltwise_backward>(
        dev_ctx_.GetBlob(prim_key));
    if (eltwise_bwd_p == nullptr) {
      eltwise_bwd_p = std::make_shared<mkldnn::eltwise_backward>(
          *activation_bwd_pd_, *(src_memory_p), *(diff_dst_memory_p),
          *(diff_src_memory_p));
      dev_ctx_.SetBlob(prim_key, eltwise_bwd_p);
    }

    return eltwise_bwd_p;
  }

 private:
  std::shared_ptr<mkldnn::eltwise_forward::primitive_desc> activation_pd_;
  std::shared_ptr<mkldnn::eltwise_backward::primitive_desc> activation_bwd_pd_;
};

441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
class LRNMKLDNNHandler : public MKLDNNHandler {
 public:
  LRNMKLDNNHandler(bool is_test, const platform::MKLDNNDeviceContext& dev_ctx,
                   mkldnn::engine engine, const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key), is_test_(is_test) {}

  std::shared_ptr<mkldnn::lrn_forward::primitive_desc>
  AcquireLRNPrimitiveDescriptor(const mkldnn::memory::desc& src_md, const int n,
                                const float alpha, const float beta,
                                const float k) {
    // LRN PD has to be passed to Grad op that
    // may be executed by diffrent thread, hence
    // for that one we use key that does not contain TID
    const std::string key_lrn_pd = key_common_ + "@lrn_pd";
    fwd_pd_ = std::static_pointer_cast<mkldnn::lrn_forward::primitive_desc>(
        dev_ctx_.GetBlob(key_lrn_pd));
    if (fwd_pd_ == nullptr) {
      static std::mutex acquire_barrier;
      std::lock_guard<std::mutex> block_threads_until_finish_this_job(
          acquire_barrier);
      fwd_pd_ = std::static_pointer_cast<mkldnn::lrn_forward::primitive_desc>(
          dev_ctx_.GetBlob(key_lrn_pd));
      if (fwd_pd_ == nullptr) {
        auto forward_desc = mkldnn::lrn_forward::desc{
            is_test_ ? mkldnn::prop_kind::forward_inference
                     : mkldnn::prop_kind::forward_training,
            mkldnn::lrn_across_channels, src_md, n, alpha, beta, k};
        fwd_pd_.reset(
            new mkldnn::lrn_forward::primitive_desc(forward_desc, engine_));
        dev_ctx_.SetBlob(key_lrn_pd, fwd_pd_);
      }
    }
    return fwd_pd_;
  }

  std::shared_ptr<mkldnn::memory> AcquireWorkspaceMemory(void) {
    // workspace has to be passed to Grad op that
    // may be executed by diffrent thread, hence
    // for that one we use key that does not contain TID
    auto local_key = key_common_ + "@workspace";
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
      static std::mutex acquire_barrier;
      std::lock_guard<std::mutex> block_threads_until_finish_this_job(
          acquire_barrier);
      mem_p =
          std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
      if (mem_p == nullptr) {
        const std::string key_lrn_pd = key_common_ + "@lrn_pd";
        fwd_pd_ = std::static_pointer_cast<mkldnn::lrn_forward::primitive_desc>(
            dev_ctx_.GetBlob(key_lrn_pd));
        // PD from FWD op has to exist.
        PADDLE_ENFORCE(fwd_pd_ != nullptr,
                       "LRN PD MKL-DNN not found in cache!");
        mkldnn::memory::primitive_desc workspace_mpd =
            fwd_pd_->workspace_primitive_desc();
        mem_p = std::make_shared<mkldnn::memory>(workspace_mpd);
        dev_ctx_.SetBlob(local_key, mem_p);
      }
    }
    return mem_p;
  }

  std::shared_ptr<mkldnn::lrn_forward> AcquireLRN(
      std::shared_ptr<mkldnn::memory> dst_memory,
      std::shared_ptr<mkldnn::memory> src_memory) {
    auto prim_key = key_ + "@lrn_p";

    auto lrn_p = std::static_pointer_cast<mkldnn::lrn_forward>(
        dev_ctx_.GetBlob(prim_key));
    if (lrn_p == nullptr) {
      if (is_test_) {
        lrn_p = std::make_shared<mkldnn::lrn_forward>(*fwd_pd_, *(src_memory),
                                                      *(dst_memory));
      } else {
        // For training we need to create workspace
        // to store indices from backward
        auto workspace_memory = this->AcquireWorkspaceMemory();

        lrn_p = std::make_shared<mkldnn::lrn_forward>(
            *fwd_pd_, *src_memory, *workspace_memory, *dst_memory);
      }
      dev_ctx_.SetBlob(prim_key, lrn_p);
    }
    return lrn_p;
  }

  std::shared_ptr<mkldnn::lrn_backward::primitive_desc>
  AcquireLRNBackwardPrimitiveDescriptor(const mkldnn::memory::desc& src_md,
                                        const mkldnn::memory::desc& diff_md,
                                        const int n, const float alpha,
                                        const float beta, const float k) {
    const std::string key_lrn_pd = key_common_ + "@lrn_pd";
    const std::string key_lrn_bwd_pd = key_ + "@lrn_bwd_pd";
    bwd_pd_ = std::static_pointer_cast<mkldnn::lrn_backward::primitive_desc>(
        dev_ctx_.GetBlob(key_lrn_bwd_pd));
    if (bwd_pd_ == nullptr) {
      fwd_pd_ = std::static_pointer_cast<mkldnn::lrn_forward::primitive_desc>(
          dev_ctx_.GetBlob(key_lrn_pd));
      // PD from FWD op has to exist.
      PADDLE_ENFORCE(fwd_pd_ != nullptr, "LRN MKL-DNN not found in cache!");

      auto backward_desc = mkldnn::lrn_backward::desc{
          mkldnn::lrn_across_channels, src_md, diff_md, n, alpha, beta, k};
      bwd_pd_.reset(new mkldnn::lrn_backward::primitive_desc(
          backward_desc, engine_, *fwd_pd_));
      dev_ctx_.SetBlob(key_lrn_bwd_pd, bwd_pd_);
    }
    return bwd_pd_;
  }

  std::shared_ptr<mkldnn::lrn_backward> AcquireLRNBackward(
      std::shared_ptr<mkldnn::memory> src_memory,
      std::shared_ptr<mkldnn::memory> diff_dst_memory,
      std::shared_ptr<mkldnn::memory> workspace,
      std::shared_ptr<mkldnn::memory> diff_src_memory) {
    auto prim_key = key_ + "@lrn_bwd_p";

    auto lrn_bwd_p = std::static_pointer_cast<mkldnn::lrn_backward>(
        dev_ctx_.GetBlob(prim_key));
    if (lrn_bwd_p == nullptr) {
      lrn_bwd_p = std::make_shared<mkldnn::lrn_backward>(
          *bwd_pd_, *src_memory, *diff_dst_memory, *workspace,
          *diff_src_memory);
      dev_ctx_.SetBlob(prim_key, lrn_bwd_p);
    }

    return lrn_bwd_p;
  }

  static std::string GetHash(const memory::dims& input_dims, const int n,
                             const float alpha, const float beta, const float k,
                             const memory::format& fmt,
                             const std::string& suffix) {
    std::string key;
    key.reserve(platform::MKLDNNHandler::MaxKeyLength);
    platform::MKLDNNHandler::AppendKeyDims(&key, input_dims);
    platform::MKLDNNHandler::AppendKey(&key, std::to_string(n));
    platform::MKLDNNHandler::AppendKey(&key, std::to_string(alpha));
    platform::MKLDNNHandler::AppendKey(&key, std::to_string(beta));
    platform::MKLDNNHandler::AppendKey(&key, std::to_string(k));
    platform::MKLDNNHandler::AppendKey(&key, std::to_string(fmt));
    platform::MKLDNNHandler::AppendKey(&key, suffix);
    return key;
  }

 private:
  bool is_test_;
  std::shared_ptr<mkldnn::lrn_forward::primitive_desc> fwd_pd_;
  std::shared_ptr<mkldnn::lrn_backward::primitive_desc> bwd_pd_;
};

594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
class PoolingMKLDNNHandler : public MKLDNNHandler {
 public:
  PoolingMKLDNNHandler(const std::string& pooling_type,
                       mkldnn::memory::data_type dt, bool is_test,
                       const platform::MKLDNNDeviceContext& dev_ctx,
                       mkldnn::engine engine, const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key),
        dt_(dt),
        pooling_type_(pooling_type),
        is_test_(is_test) {}

  std::shared_ptr<mkldnn::pooling_forward::primitive_desc>
  AcquirePoolingPrimitiveDescriptor(
      const std::vector<int>& src_tz, const std::vector<int>& dst_tz,
      const mkldnn::memory::desc& src_md, const mkldnn::memory::desc& dst_md,
      const std::vector<int>& ksize, const std::vector<int>& strides,
      const std::vector<int>& paddings, bool ceil_mode) {
    // Pooling PD has to be passed to Grad op that
    // may be executed by diffrent thread, hence
    // for that one we use key that does not contain TID
    const std::string key_pooling_pd = key_common_ + "@pooling_pd";
    fwd_pd_ = std::static_pointer_cast<mkldnn::pooling_forward::primitive_desc>(
        dev_ctx_.GetBlob(key_pooling_pd));
    if (fwd_pd_ == nullptr) {
      static std::mutex acquire_barrier;
      std::lock_guard<std::mutex> block_threads_until_finish_this_job(
          acquire_barrier);
      fwd_pd_ =
          std::static_pointer_cast<mkldnn::pooling_forward::primitive_desc>(
              dev_ctx_.GetBlob(key_pooling_pd));
      if (fwd_pd_ == nullptr) {
        std::vector<int> padding_left_top(paddings);
        std::vector<int> padding_right_bottom(paddings);
        if (ceil_mode) {
          CorrectOutputSize(src_tz, dst_tz, ksize, paddings, strides,
                            padding_right_bottom);
        }
        auto mkldnn_forward_prop_kind =
            is_test_ ? mkldnn::prop_kind::forward_inference
                     : mkldnn::prop_kind::forward_training;
        auto pooling_desc = mkldnn::pooling_forward::desc(
            mkldnn_forward_prop_kind,
            pooling_type_ == "max" ? mkldnn::algorithm::pooling_max
                                   : mkldnn::algorithm::pooling_avg,
            src_md, dst_md, strides, ksize, padding_left_top,
            padding_right_bottom, mkldnn::padding_kind::zero);

        fwd_pd_.reset(
            new mkldnn::pooling_forward::primitive_desc(pooling_desc, engine_));
        dev_ctx_.SetBlob(key_pooling_pd, fwd_pd_);
      }
    }
    return fwd_pd_;
  }

  std::shared_ptr<mkldnn::memory> AcquireDstMemoryFromPrimitive(void* ptr) {
    return this->AcquireMemoryFromPrimitive(fwd_pd_->dst_primitive_desc(), ptr,
                                            "@dst_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireWorkspaceMemory(void) {
    mkldnn::memory::primitive_desc workspace_mpd =
        pooling_type_ == "max"
            ? fwd_pd_->workspace_primitive_desc()
            : mkldnn::memory::primitive_desc(
                  {{}, dt_, mkldnn::memory::format::nchw}, engine_);
    // Pooling PD has to be passed to Grad op that
    // may be executed by diffrent thread, hence
    // for that one we use key that does not contain TID
    auto local_key = key_common_ + "@workspace";
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
      static std::mutex acquire_barrier;
      std::lock_guard<std::mutex> block_threads_until_finish_this_job(
          acquire_barrier);
      mem_p =
          std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
      if (mem_p == nullptr) {
        mem_p = std::make_shared<mkldnn::memory>(workspace_mpd);
        dev_ctx_.SetBlob(local_key, mem_p);
      }
    }
    return mem_p;
  }

  std::shared_ptr<mkldnn::pooling_forward> AcquirePooling(
      std::shared_ptr<mkldnn::memory> dst_memory,
      std::shared_ptr<mkldnn::memory> src_memory) {
    auto prim_key = key_ + "@pooling_p";

    auto pooling_p = std::static_pointer_cast<mkldnn::pooling_forward>(
        dev_ctx_.GetBlob(prim_key));
    if (pooling_p == nullptr) {
      if (is_test_) {
        pooling_p = std::make_shared<mkldnn::pooling_forward>(
            *fwd_pd_, *(src_memory), *(dst_memory));
      } else {
        // For training we need to create workspace
        // to store indices from backward
        auto workspace_memory = this->AcquireWorkspaceMemory();

        pooling_p = std::make_shared<mkldnn::pooling_forward>(
            *fwd_pd_, *src_memory, *dst_memory, *workspace_memory);
      }
      dev_ctx_.SetBlob(prim_key, pooling_p);
    }
    return pooling_p;
  }

  std::shared_ptr<mkldnn::pooling_backward::primitive_desc>
  AcquirePoolingBackwardPrimitiveDescriptor(
      const mkldnn::memory::desc& diff_dst_md,
      const mkldnn::memory::desc& diff_src_md, const std::vector<int>& ksize,
      const std::vector<int>& strides, const std::vector<int>& paddings) {
    const std::string key_pooling_pd = key_common_ + "@pooling_pd";
    const std::string key_pooling_bwd_pd = key_ + "@pooling_bwd_pd";
    bwd_pd_ =
        std::static_pointer_cast<mkldnn::pooling_backward::primitive_desc>(
            dev_ctx_.GetBlob(key_pooling_bwd_pd));
    if (bwd_pd_ == nullptr) {
      fwd_pd_ =
          std::static_pointer_cast<mkldnn::pooling_forward::primitive_desc>(
              dev_ctx_.GetBlob(key_pooling_pd));
      // PD from FWD op has to exist.
      PADDLE_ENFORCE(fwd_pd_ != nullptr, "Pooling MKL-DNN not found in cache!");

      auto backward_desc = mkldnn::pooling_backward::desc(
          pooling_type_ == "max" ? mkldnn::algorithm::pooling_max
                                 : mkldnn::algorithm::pooling_avg,
          diff_src_md, diff_dst_md, strides, ksize, paddings, paddings,
          mkldnn::padding_kind::zero);
      bwd_pd_.reset(new mkldnn::pooling_backward::primitive_desc(
          backward_desc, engine_, *fwd_pd_));

      dev_ctx_.SetBlob(key_pooling_bwd_pd, bwd_pd_);
    }
    return bwd_pd_;
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemoryFromDataPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
    auto diff_dst_pd = bwd_pd_->diff_dst_primitive_desc();
    auto user_pd = user_memory_p->get_primitive_desc();
    return this->AcquireMemory(diff_dst_pd, user_pd, user_memory_p,
                               "@diff_dst_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffSrcMemoryFromPrimitive(void* ptr) {
    return this->AcquireMemoryFromPrimitive(bwd_pd_->diff_src_primitive_desc(),
                                            ptr, "@diff_src_mem_p");
  }

  std::shared_ptr<mkldnn::pooling_backward> AcquirePoolingBackward(
      std::shared_ptr<mkldnn::memory> diff_dst_memory,
      std::shared_ptr<mkldnn::memory> workspace,
      std::shared_ptr<mkldnn::memory> diff_src_memory) {
    auto prim_key = key_ + "@pooling_bwd_p";

    auto pooling_bwd_p = std::static_pointer_cast<mkldnn::pooling_backward>(
        dev_ctx_.GetBlob(prim_key));
    if (pooling_bwd_p == nullptr) {
      pooling_bwd_p = std::make_shared<mkldnn::pooling_backward>(
          *bwd_pd_, *diff_dst_memory, *workspace, *diff_src_memory);
      dev_ctx_.SetBlob(prim_key, pooling_bwd_p);
    }

    return pooling_bwd_p;
  }

  static std::string GetHash(
      const memory::dims& input_dims, const std::string& pooling_type,
      const std::vector<int>& ksize, const std::vector<int>& strides,
      const std::vector<int>& paddings, const memory::data_type& dt,
      const memory::format& fmt, const std::string& suffix) {
    std::string key;
    key.reserve(platform::MKLDNNHandler::MaxKeyLength);
    platform::MKLDNNHandler::AppendKeyDims(&key, input_dims);
    platform::MKLDNNHandler::AppendKey(&key, pooling_type);
    platform::MKLDNNHandler::AppendKeyVec(&key, ksize);
    platform::MKLDNNHandler::AppendKeyVec(&key, strides);
    platform::MKLDNNHandler::AppendKeyVec(&key, paddings);
    platform::MKLDNNHandler::AppendKey(&key, std::to_string(dt));
    platform::MKLDNNHandler::AppendKey(&key, std::to_string(fmt));
    platform::MKLDNNHandler::AppendKey(&key, suffix);
    return key;
  }

 private:
  static inline int ComputeCeiledOutput(int input_size, int kernel_size,
                                        int padding, int stride) {
    return (input_size - kernel_size + 2 * padding) / stride + 1;
  }

  static inline void CorrectOutputSize(
      const std::vector<int>& src_tz, const std::vector<int>& dst_tz,
      const std::vector<int>& kernel_size, const std::vector<int>& paddings,
      const std::vector<int>& strides,
      std::vector<int>& right_bot_padding) {  // NOLINT
    for (size_t i = 0; i < right_bot_padding.size(); i++) {
      int desired_size = ComputeCeiledOutput(src_tz[i + 2], kernel_size[i],
                                             paddings[i], strides[i]);
      if (desired_size != dst_tz[i + 2]) {
J
Jacek Czaja 已提交
798
        right_bot_padding[i] += strides[i] - 1;
799 800 801 802 803 804 805 806 807 808 809 810
      }
    }
  }

 private:
  mkldnn::memory::data_type dt_;
  std::string pooling_type_;
  bool is_test_;
  std::shared_ptr<mkldnn::pooling_forward::primitive_desc> fwd_pd_;
  std::shared_ptr<mkldnn::pooling_backward::primitive_desc> bwd_pd_;
};

811 812
class TransposeMKLDNNHandler : public MKLDNNHandler {
 public:
813 814
  TransposeMKLDNNHandler(std::vector<int>& dims,  // NOLINT
                         std::vector<int>& axis,  // NOLINT
815 816 817 818
                         const platform::MKLDNNDeviceContext& dev_ctx,
                         mkldnn::engine engine, const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key),
        dims_(dims),
819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844
        axis_(axis),
        logical_axis_(dims.size(), 0) {}

  std::shared_ptr<mkldnn::memory> AcquireSrcMemory(
      const mkldnn::memory::format& fmt, void* ptr) {
    auto local_key = key_ + "@user_src_mem_p";
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
      // Make memory descriptor using input format, unless it
      // cannot be trusted (nchw) then make up memory fmt manually
      for (size_t i = 0; i < logical_axis_.size(); ++i) {
        logical_axis_[i] = i;
      }
      auto src_md = fmt != mkldnn::memory::format::nchw
                        ? platform::MKLDNNMemDesc(
                              dims_, platform::MKLDNNGetDataType<float>(), fmt)
                        : Axis2MemoryDesc(dims_, logical_axis_);
      mem_p = std::make_shared<mkldnn::memory>(
          mkldnn::memory::primitive_desc{src_md, engine_}, ptr);
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
      mem_p->set_data_handle(ptr);
    }
    return mem_p;
  }
845 846 847 848 849 850 851 852 853 854

  std::shared_ptr<mkldnn::memory> AcquireDstMemory(framework::Tensor* output,
                                                   platform::Place place) {
    auto local_key = key_ + "@user_dst_mem_p";
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
      auto dst_mdp = mkldnn::memory::primitive_desc{
          Axis2MemoryDesc(dims_, axis_), engine_};

855
      auto dst_data = output->mutable_data<float>(place, dst_mdp.get_size());
856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886

      mem_p = std::make_shared<mkldnn::memory>(dst_mdp, dst_data);
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
      auto dst_data = output->mutable_data<float>(place);
      mem_p->set_data_handle(dst_data);
    }
    return mem_p;
  }

  std::shared_ptr<mkldnn::reorder> AcquireTranspose(
      std::shared_ptr<mkldnn::memory> dst_memory_p,
      std::shared_ptr<mkldnn::memory> src_memory_p) {
    auto prim_key = key_ + "@transpose_p";
    auto transpose_p =
        std::static_pointer_cast<mkldnn::reorder>(dev_ctx_.GetBlob(prim_key));
    if (transpose_p == nullptr) {
      transpose_p =
          std::make_shared<mkldnn::reorder>(*(src_memory_p), *(dst_memory_p));
      dev_ctx_.SetBlob(prim_key, transpose_p);
    }
    return transpose_p;
  }

  static std::string GetHash(std::vector<int>& shape,  // NOLINT
                             std::vector<int>& axis,   // NOLINT
                             const std::string& suffix) {
    return dims2str(shape) + dims2str(axis) + suffix;
  }

 protected:
887 888 889
  mkldnn_memory_desc_t Axis2MemoryDesc(std::vector<int>& nchw_tz,  // NOLINT
                                       std::vector<int>& axis      // NOLINT
                                       ) {
890 891 892 893 894 895
    mkldnn_memory_desc_t mem_fmt;

    mem_fmt.primitive_kind = mkldnn_memory;
    mem_fmt.ndims = axis.size();
    for (unsigned int i = 0; i < nchw_tz.size(); ++i) {
      mem_fmt.dims[i] = nchw_tz[i];  // logical dimensions (nchw format,
896
      // regardless physical layout)
897 898 899 900 901 902 903 904
    }
    mem_fmt.data_type = mkldnn_f32;
    mem_fmt.format = mkldnn_blocked;

    unsigned int total_stride = 1;
    for (int i = nchw_tz.size() - 1; i >= 0; --i) {
      mem_fmt.layout_desc.blocking.padding_dims[i] =
          nchw_tz[i];  // logical dimensions (nchw format, regardless physical
905
      // layout)
906 907 908 909 910 911 912 913 914 915 916 917 918
      mem_fmt.layout_desc.blocking.block_dims[i] = 1;
      mem_fmt.layout_desc.blocking.offset_padding_to_data[i] = 0;  // no offset
      mem_fmt.layout_desc.blocking.strides[0][axis[i]] = total_stride;
      mem_fmt.layout_desc.blocking.strides[1][axis[i]] = 1;
      total_stride *= nchw_tz[axis[i]];
    }
    mem_fmt.layout_desc.blocking.offset_padding = 0;  // no initial offset
    return mem_fmt;
  }

 private:
  std::vector<int> dims_;
  std::vector<int> axis_;
919
  std::vector<int> logical_axis_;
920 921
};

922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998
class ReorderMKLDNNHandler : public MKLDNNHandler {
 public:
  ReorderMKLDNNHandler(std::vector<int>& dims,  // NOLINT
                       framework::proto::VarType::Type vtype,
                       mkldnn::memory::data_type dtype,
                       const platform::MKLDNNDeviceContext& dev_ctx,
                       mkldnn::engine engine, const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key),
        dims_(dims),
        vtype_(vtype),
        dtype_(dtype) {}

  std::shared_ptr<mkldnn::memory> AcquireSrcMemory(
      const mkldnn::memory::format& fmt, void* ptr) {
    auto local_key = key_ + "@user_src_mem_p";
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
      auto src_md = platform::MKLDNNMemDesc(dims_, dtype_, fmt);
      mem_p = std::make_shared<mkldnn::memory>(
          mkldnn::memory::primitive_desc{src_md, engine_}, ptr);
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
      mem_p->set_data_handle(ptr);
    }
    return mem_p;
  }

  std::shared_ptr<mkldnn::memory> AcquireDstMemory(
      framework::Tensor* output, const mkldnn::memory::format& fmt,
      platform::Place place) {
    auto local_key = key_ + "@user_dst_mem_p";
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
      auto dst_md = platform::MKLDNNMemDesc(dims_, dtype_, fmt);
      auto dst_mdp = mkldnn::memory::primitive_desc{dst_md, engine_};

      auto dst_data = output->mutable_data(place, vtype_);

      mem_p = std::make_shared<mkldnn::memory>(dst_mdp, dst_data);
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
      auto dst_data = output->mutable_data(place, vtype_);
      mem_p->set_data_handle(dst_data);
    }
    return mem_p;
  }

  std::shared_ptr<mkldnn::reorder> AcquireReorder(
      std::shared_ptr<mkldnn::memory> dst_memory_p,
      std::shared_ptr<mkldnn::memory> src_memory_p) {
    auto prim_key = key_ + "@reorder_p";
    auto reorder_p =
        std::static_pointer_cast<mkldnn::reorder>(dev_ctx_.GetBlob(prim_key));
    if (reorder_p == nullptr) {
      reorder_p =
          std::make_shared<mkldnn::reorder>(*(src_memory_p), *(dst_memory_p));
      dev_ctx_.SetBlob(prim_key, reorder_p);
    }
    return reorder_p;
  }

  static std::string GetHash(std::vector<int>& shape,  // NOLINT
                             mkldnn::memory::format in_fmt,
                             mkldnn::memory::format out_fmt,
                             const std::string& suffix) {
    return dims2str(shape) + std::to_string(in_fmt) + "->" +
           std::to_string(out_fmt) + "#" + suffix;
  }

 private:
  std::vector<int> dims_;
  framework::proto::VarType::Type vtype_;
  mkldnn::memory::data_type dtype_;
};

999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
template <typename T>
struct convolutional_algorithm;

template <>
struct convolutional_algorithm<mkldnn::convolution_forward> {
  static constexpr mkldnn::algorithm T = mkldnn::algorithm::convolution_direct;
};

template <>
struct convolutional_algorithm<mkldnn::deconvolution_forward> {
  static constexpr mkldnn::algorithm T =
      mkldnn::algorithm::deconvolution_direct;
};

J
Jacek Czaja 已提交
1013 1014 1015
template <class forward_t, class backward_data_t, class backward_weights_t>
class ConvMKLDNNTemplateHandler : public MKLDNNHandler {
 public:
1016 1017 1018 1019 1020
  ConvMKLDNNTemplateHandler(const platform::MKLDNNDeviceContext& dev_ctx,
                            mkldnn::engine engine, const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key) {}

  // TODO(jczaja): remove after conv int8 is adapted
J
Jacek Czaja 已提交
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
  ConvMKLDNNTemplateHandler(
      std::shared_ptr<typename forward_t::primitive_desc> conv_pd,
      const platform::MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
      const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key) {
    conv_pd_ = conv_pd;
  }

  ConvMKLDNNTemplateHandler(
      std::shared_ptr<typename forward_t::primitive_desc> conv_pd,
      std::shared_ptr<typename backward_data_t::primitive_desc>
          conv_bwd_data_pd,
      std::shared_ptr<typename backward_weights_t::primitive_desc>
          conv_bwd_weights_pd,
      const platform::MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
      const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key),
        conv_pd_(conv_pd),
        conv_bwd_weights_pd_(conv_bwd_weights_pd),
        conv_bwd_data_pd_(conv_bwd_data_pd) {
    // If we are in Grad operatgor then update a key with BWD suffix to
    // distinguish from FWD memory primitives
    key_ += "-BWD";
  }

  size_t GetDstMemorySize() const {
    return conv_pd_->dst_primitive_desc().get_size();
  }

  mkldnn::memory::format GetDstFormat() const {
    return static_cast<mkldnn::memory::format>(
        conv_pd_->dst_primitive_desc().desc().data.format);
  }

  size_t GetDiffWeightsMemorySize() const {
    return conv_bwd_weights_pd_->diff_weights_primitive_desc().get_size();
  }

  size_t GetDiffSourceMemorySize() const {
    return conv_bwd_data_pd_->diff_src_primitive_desc().get_size();
  }

  std::shared_ptr<mkldnn::memory> AcquireSrcMemoryFromWeightsPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
    auto src_pd = conv_bwd_weights_pd_->src_primitive_desc();
    auto user_pd = user_memory_p->get_primitive_desc();
    return this->AcquireMemory(src_pd, user_pd, user_memory_p,
                               "@weights-src_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemoryFromWeightsPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
    auto diff_dst_pd = conv_bwd_weights_pd_->diff_dst_primitive_desc();
    auto user_pd = user_memory_p->get_primitive_desc();
    return this->AcquireMemory(diff_dst_pd, user_pd, user_memory_p,
                               "@weights-diff_dst_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffWeightsMemoryFromWeightsPrimitive(
      void* ptr) {
    return this->AcquireMemoryFromPrimitive(
        conv_bwd_weights_pd_->diff_weights_primitive_desc(), ptr,
        "@diff_weights_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemoryFromDataPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
    auto diff_dst_pd = conv_bwd_data_pd_->diff_dst_primitive_desc();
    auto user_pd = user_memory_p->get_primitive_desc();
    return this->AcquireMemory(diff_dst_pd, user_pd, user_memory_p,
                               "@data-diff_dst_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireWeightsMemoryFromDataPrimitive(
      const std::shared_ptr<mkldnn::memory> user_weights_memory_p,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
    auto weights_pd = conv_bwd_data_pd_->weights_primitive_desc();
    auto user_pd = user_weights_memory_p->get_primitive_desc();
    return this->AcquireMemory(weights_pd, user_pd, user_weights_memory_p,
                               "@data-weights_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireResidualDataMemory(
      const mkldnn::memory::desc& md, void* ptr) {
    return this->AcquireMemory(md, ptr, "@user_residual_data_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireDstMemoryFromResidualDataMemory(
      const std::shared_ptr<mkldnn::memory>& user_residual_memory_p,
      void* dst_ptr,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
    return this->AcquireMemory(user_residual_memory_p,
                               this->AcquireDstMemoryFromPrimitive(dst_ptr),
                               "@residual_data_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffSrcMemoryFromDataPrimitive(
      void* ptr) {
    return this->AcquireMemoryFromPrimitive(
        conv_bwd_data_pd_->diff_src_primitive_desc(), ptr, "@diff_src_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireDstMemoryFromPrimitive(void* ptr) {
    return this->AcquireMemoryFromPrimitive(conv_pd_->dst_primitive_desc(), ptr,
                                            "@dst_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireSrcMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
    auto src_pd = conv_pd_->src_primitive_desc();
    auto user_pd = user_memory_p->get_primitive_desc();
    return this->AcquireMemory(src_pd, user_pd, user_memory_p, "@src_mem_p",
                               pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireWeightsMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_weights_memory_p,
      std::vector<mkldnn::primitive>& pipeline,  // NOLINT
1143 1144
      bool is_persistent = false, bool is_INT8 = false,
      std::vector<float> scale_data = {1.0f}, int mask = 0) {
J
Jacek Czaja 已提交
1145 1146
    auto user_weights_pd = user_weights_memory_p->get_primitive_desc();
    auto weights_pd = conv_pd_->weights_primitive_desc();
1147 1148 1149
    return this->AcquireMemory(
        weights_pd, user_weights_pd, user_weights_memory_p, "@weights_mem_p",
        pipeline, is_persistent, is_INT8, scale_data, mask);
J
Jacek Czaja 已提交
1150 1151 1152 1153
  }

  std::shared_ptr<mkldnn::memory> AcquireBiasMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_bias_memory_p,
1154 1155 1156 1157
      std::vector<mkldnn::primitive>& pipeline,  // NOLINT
      bool is_persistent = false, bool is_INT8 = false,
      std::vector<float> scale_data = {1.0f},
      int mask = 0) {  // NOLINT
J
Jacek Czaja 已提交
1158 1159 1160
    auto user_bias_pd = user_bias_memory_p->get_primitive_desc();
    auto bias_pd = conv_pd_->bias_primitive_desc();
    return this->AcquireMemory(bias_pd, user_bias_pd, user_bias_memory_p,
1161 1162
                               "@bias_mem_p", pipeline, is_persistent, is_INT8,
                               scale_data, mask);
J
Jacek Czaja 已提交
1163 1164
  }

1165 1166 1167 1168 1169
  mkldnn::primitive_attr CreatePostOps(
      bool fuse_relu, bool fuse_residual_conn, bool fuse_brelu,
      float fuse_brelu_threshold,
      const std::vector<float> output_shift_scale = {},
      float sum_scale = 1.0f) const {
1170 1171
    mkldnn::primitive_attr conv_attr;
    mkldnn::post_ops post_operations;
1172 1173 1174 1175
    if (output_shift_scale.size() > 0) {
      int mask = output_shift_scale.size() > 1 ? 1 << 1 : 0;
      conv_attr.set_output_scales(mask, output_shift_scale);
    }
1176 1177 1178 1179 1180 1181
    // Fusion with Elementwise layer relies on adding a sum post-operation with
    // the scale parameter. It is assumed that when fuse_residual_connection is
    // true, the output tensor contains the data coming from residual
    // connection. The result of this post_op is:
    // Output = scale * Output + Conv_Out.
    if (fuse_residual_conn) {
1182
      post_operations.append_sum(sum_scale);
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
    }
    // Fusion with ReLU layer is executed through the PostOps feature. Create a
    // PostOps object and configure it to execute an eltwise relu operation.
    if (fuse_relu) {
      constexpr float scale = 1.0f;
      constexpr float negative_slope = 0.0f;
      constexpr float placeholder = 0.0f;
      post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_relu,
                                     negative_slope, placeholder);
    }
1193 1194 1195 1196 1197 1198 1199 1200

    if (fuse_brelu) {
      constexpr float scale = 1.0f;
      constexpr float placeholder = 0.0f;
      post_operations.append_eltwise(scale,
                                     mkldnn::algorithm::eltwise_bounded_relu,
                                     fuse_brelu_threshold, placeholder);
    }
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
    conv_attr.set_post_ops(post_operations);
    return conv_attr;
  }

  std::shared_ptr<typename forward_t::primitive_desc>
  AcquireConvolutionPrimitiveDescriptor(
      const mkldnn::memory::desc& src, const mkldnn::memory::desc& weights,
      boost::optional<const mkldnn::memory::desc&> bias,
      const mkldnn::memory::desc& dst, const std::vector<int>& strides,
      const std::vector<int>& paddings, const mkldnn::engine& engine,
      const bool fuse_relu, const bool fuse_residual_conn,
1212
      const bool fuse_brelu, const float fuse_brelu_threshold,
1213 1214 1215
      mkldnn::prop_kind fwd_prop_kind,
      const std::vector<float> output_shift_scale = {},
      const float sum_scale = 1.0f) {
1216 1217 1218 1219
    // Conv PD has to be passed to Grad op that
    // may be exxecuted by diffrent thread, hence
    // for that one we use key that does not contain TID
    const std::string key_conv_pd = key_common_ + "@conv_pd";
1220

1221
    conv_pd_ = std::static_pointer_cast<typename forward_t::primitive_desc>(
1222 1223
        dev_ctx_.GetBlob(key_conv_pd));

1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
    if (conv_pd_ == nullptr) {
      static std::mutex acquire_barrier;
      std::lock_guard<std::mutex> block_threads_until_finish_this_job(
          acquire_barrier);

      conv_pd_ = std::static_pointer_cast<typename forward_t::primitive_desc>(
          dev_ctx_.GetBlob(key_conv_pd));
      if (conv_pd_ == nullptr) {
        mkldnn::memory::dims stride_dims = strides;
        mkldnn::memory::dims padding_dims = paddings;

        auto conv_desc =
            bias ? typename forward_t::desc(
                       fwd_prop_kind, convolutional_algorithm<forward_t>::T,
                       src, weights, *bias, dst, stride_dims, padding_dims,
                       padding_dims, mkldnn::padding_kind::zero)
                 : typename forward_t::desc(
                       fwd_prop_kind, convolutional_algorithm<forward_t>::T,
                       src, weights, dst, stride_dims, padding_dims,
                       padding_dims, mkldnn::padding_kind::zero);

1245 1246 1247
        mkldnn::primitive_attr conv_attr =
            CreatePostOps(fuse_relu, fuse_residual_conn, fuse_brelu,
                          fuse_brelu_threshold, output_shift_scale, sum_scale);
1248 1249 1250 1251 1252 1253

        conv_pd_.reset(new typename forward_t::primitive_desc(
            conv_desc, conv_attr, engine));
        // Save conv_pd/src_memory/weights_memory for backward pass
        dev_ctx_.SetBlob(key_conv_pd, conv_pd_);
      }
1254 1255 1256 1257 1258
    }

    return conv_pd_;
  }

J
Jacek Czaja 已提交
1259 1260 1261 1262 1263 1264 1265 1266
  std::shared_ptr<forward_t> AcquireConvolution(
      std::shared_ptr<mkldnn::memory> src_memory_p,
      std::shared_ptr<mkldnn::memory> weights_memory_p,
      std::shared_ptr<mkldnn::memory> dst_memory_p) {
    auto prim_key = key_ + "@conv_p";
    auto conv_p =
        std::static_pointer_cast<forward_t>(dev_ctx_.GetBlob(prim_key));
    if (conv_p == nullptr) {
1267 1268
      conv_p = std::make_shared<forward_t>(*conv_pd_, *src_memory_p,
                                           *weights_memory_p, *dst_memory_p);
J
Jacek Czaja 已提交
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283

      dev_ctx_.SetBlob(prim_key, conv_p);
    }
    return conv_p;
  }

  std::shared_ptr<forward_t> AcquireConvolution(
      std::shared_ptr<mkldnn::memory> src_memory_p,
      std::shared_ptr<mkldnn::memory> weights_memory_p,
      std::shared_ptr<mkldnn::memory> bias_memory_p,
      std::shared_ptr<mkldnn::memory> dst_memory_p) {
    auto prim_key = key_ + "@conv_p";
    auto conv_p =
        std::static_pointer_cast<forward_t>(dev_ctx_.GetBlob(prim_key));
    if (conv_p == nullptr) {
1284 1285 1286
      conv_p = std::make_shared<forward_t>(*conv_pd_, *src_memory_p,
                                           *weights_memory_p, *bias_memory_p,
                                           *dst_memory_p);
J
Jacek Czaja 已提交
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325

      dev_ctx_.SetBlob(prim_key, conv_p);
    }
    return conv_p;
  }

  std::shared_ptr<backward_weights_t> AcquireConvolutionBackwardWeights(
      std::shared_ptr<mkldnn::memory> src_memory_p,
      std::shared_ptr<mkldnn::memory> diff_dst_memory_p,
      std::shared_ptr<mkldnn::memory> diff_weights_memory_p) {
    auto prim_key = key_ + "@conv_bwd_weights_p";
    auto conv_bwd_weights_p = std::static_pointer_cast<backward_weights_t>(
        dev_ctx_.GetBlob(prim_key));
    if (conv_bwd_weights_p == nullptr) {
      // create backward conv primitive for weights
      conv_bwd_weights_p = std::make_shared<backward_weights_t>(
          *conv_bwd_weights_pd_, *src_memory_p, *diff_dst_memory_p,
          *diff_weights_memory_p);
      dev_ctx_.SetBlob(prim_key, conv_bwd_weights_p);
    }
    return conv_bwd_weights_p;
  }

  std::shared_ptr<backward_data_t> AcquireConvolutionBackwardData(
      std::shared_ptr<mkldnn::memory> diff_dst_memory_p,
      std::shared_ptr<mkldnn::memory> weights_memory_p,
      std::shared_ptr<mkldnn::memory> diff_src_memory_p) {
    auto prim_key = key_ + "@conv_bwd_data_p";
    auto conv_bwd_data_p =
        std::static_pointer_cast<backward_data_t>(dev_ctx_.GetBlob(prim_key));
    if (conv_bwd_data_p == nullptr) {
      conv_bwd_data_p = std::make_shared<backward_data_t>(
          *conv_bwd_data_pd_, *diff_dst_memory_p, *weights_memory_p,
          *diff_src_memory_p);
      dev_ctx_.SetBlob(prim_key, conv_bwd_data_p);
    }
    return conv_bwd_data_p;
  }

1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
  // Generate keys for storing/retriving primitives for this operator
  // TODO(jczaja): Make hashing function more optimial
  static std::string GetHash(mkldnn::memory::dims& input_dims,    // NOLINT
                             mkldnn::memory::dims& weights_dims,  // NOLINT
                             const bool& fuse_relu,               // NOLINT
                             const bool& fuse_brelu,              // NOLINT
                             std::vector<int>& strides,           // NOLINT
                             std::vector<int>& paddings,          // NOLINT
                             std::vector<int>& dilations,         // NOLINT
                             int groups, const std::string& suffix) {
    return dims2str(input_dims) + dims2str(weights_dims) +
           std::to_string(fuse_relu) + std::to_string(fuse_brelu) +
           dims2str(strides) + dims2str(paddings) + dims2str(dilations) +
           std::to_string(groups) + suffix;
  }

J
Jacek Czaja 已提交
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
  // Generate keys for storing/retriving primitives for this operator
  // TODO(jczaja): Make hashing function more optimial
  static std::string GetHash(mkldnn::memory::dims& input_dims,    // NOLINT
                             mkldnn::memory::dims& weights_dims,  // NOLINT
                             std::vector<int>& strides,           // NOLINT
                             std::vector<int>& paddings,          // NOLINT
                             std::vector<int>& dilations,         // NOLINT
                             int groups, const std::string& suffix) {
    return dims2str(input_dims) + dims2str(weights_dims) + dims2str(strides) +
           dims2str(paddings) + dims2str(dilations) + std::to_string(groups) +
           suffix;
  }

 private:
  std::shared_ptr<typename forward_t::primitive_desc> conv_pd_;
  std::shared_ptr<typename backward_weights_t::primitive_desc>
      conv_bwd_weights_pd_;
  std::shared_ptr<typename backward_data_t::primitive_desc> conv_bwd_data_pd_;
};

using ConvMKLDNNHandler =
    ConvMKLDNNTemplateHandler<mkldnn::convolution_forward,
                              mkldnn::convolution_backward_data,
                              mkldnn::convolution_backward_weights>;

using ConvTransposeMKLDNNHandler =
    ConvMKLDNNTemplateHandler<mkldnn::deconvolution_forward,
                              mkldnn::deconvolution_backward_data,
                              mkldnn::deconvolution_backward_weights>;
1371 1372 1373 1374 1375

template <typename T>
static std::shared_ptr<mkldnn::memory> SetDstMemory(
    const framework::ExecutionContext& ctx, framework::Tensor* output,
    const std::shared_ptr<ConvMKLDNNHandler>& handler) {
1376 1377
  T* output_data =
      output->mutable_data<T>(ctx.GetPlace(), handler->GetDstMemorySize());
1378 1379 1380 1381 1382 1383
  std::shared_ptr<mkldnn::memory> dst_memory_p =
      handler->AcquireDstMemoryFromPrimitive(to_void_cast<T>(output_data));
  return dst_memory_p;
}

template <typename T>
X
xiaolil1 已提交
1384
static std::shared_ptr<mkldnn::memory> SetDstMemory(
1385
    const framework::ExecutionContext& ctx, framework::Tensor* output,
X
xiaolil1 已提交
1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
    const framework::Tensor* residual_param,
    const mkldnn::memory::desc& user_residual_md,
    const std::shared_ptr<ConvMKLDNNHandler>& handler,
    std::vector<mkldnn::primitive>* pipeline) {
  const T* residual_param_data = residual_param->data<T>();
  PADDLE_ENFORCE(residual_param_data != nullptr,
                 "Provide data if you want MKLDNN conv+elementwise_add fusion");
  std::shared_ptr<mkldnn::memory> user_residual_memory_p =
      handler->AcquireResidualDataMemory(user_residual_md,
                                         to_void_cast<T>(residual_param_data));
  T* output_data = output->mutable_data<T>(ctx.GetPlace());
  std::shared_ptr<mkldnn::memory> dst_memory_p =
      handler->AcquireDstMemoryFromResidualDataMemory(
          user_residual_memory_p, to_void_cast<T>(output_data), *pipeline);
  return dst_memory_p;
}

template <typename T>
static void SetDstMemoryHandler(
    const framework::ExecutionContext& ctx, framework::Tensor* output,
    const std::shared_ptr<ConvMKLDNNHandler>& handler,
1407
    std::shared_ptr<mkldnn::memory> dst_memory_p) {
1408 1409
  T* output_data =
      output->mutable_data<T>(ctx.GetPlace(), handler->GetDstMemorySize());
1410
  dst_memory_p->set_data_handle(to_void_cast<T>(output_data));
1411
}
X
xiaolil1 已提交
1412

1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
template <typename T>
static void SetDstMemoryQuantized(
    const framework::ExecutionContext& ctx, framework::Tensor* output,
    std::vector<int> dst_tz, const mkldnn::engine& engine,
    std::shared_ptr<mkldnn::memory::primitive_desc>& dst_pd,  // NOLINT
    std::shared_ptr<mkldnn::memory>& dst_memory) {            // NOLINT
  T* output_data = output->mutable_data<T>(ctx.GetPlace());
  const size_t dst_dims = dst_tz.size();
  memory::format dst_fmt;
  PADDLE_ENFORCE(dst_dims <= 5,
                 "Dst memory for quantization can not have dims > 5");
  dst_fmt = platform::MKLDNNFormatForSize(dst_dims, memory::format::nhwc);

  auto dst_md = platform::MKLDNNMemDesc(
      {dst_tz}, paddle::framework::ToMKLDNNDataType(
1428
                    framework::DataTypeTrait<T>::DataType()),
1429 1430 1431 1432 1433
      dst_fmt);
  dst_pd.reset(new mkldnn::memory::primitive_desc(dst_md, engine));
  dst_memory.reset(new mkldnn::memory(*dst_pd, to_void_cast<T>(output_data)));
}

J
Jacek Czaja 已提交
1434 1435
}  // namespace platform
}  // namespace paddle