mkldnn_reuse.h 27.1 KB
Newer Older
J
Jacek Czaja 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once

#include <string>
#include <vector>
X
xiaoli.liu@intel.com 已提交
18
#include "paddle/fluid/framework/data_layout_transform.h"
J
Jacek Czaja 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/platform/mkldnn_helper.h"
#include "paddle/fluid/platform/place.h"

namespace paddle {
namespace platform {

using user_function = std::function<std::shared_ptr<float>(const float*)>;

class MKLDNNHandler {
 public:
  MKLDNNHandler(const MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
                const std::string& base_key)
      : dev_ctx_(dev_ctx),
        engine_(engine),
        key_(base_key),
        is_reusing_(false) {}

  std::shared_ptr<mkldnn::memory> AcquireSrcMemory(
      const mkldnn::memory::desc& md, void* ptr) {
    return this->AcquireMemory(md, ptr, "@user_src_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireWeightsMemory(
      const mkldnn::memory::desc& md, void* ptr,
      user_function custom_func = {}) {
    return this->AcquireMemory(md, ptr, "@user_weights_mem_p", custom_func);
  }

  std::shared_ptr<mkldnn::memory> AcquireBiasMemory(
      const mkldnn::memory::desc& md, void* ptr) {
    return this->AcquireMemory(md, ptr, "@user_bias_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireDstMemory(
      const mkldnn::memory::desc& md, void* ptr) {
    return this->AcquireMemory(md, ptr, "@user_dst_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemory(
      const mkldnn::memory::desc& md, void* ptr) {
    return this->AcquireMemory(md, ptr, "@user_diff_dst_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffSrcMemory(
      const mkldnn::memory::desc& md, void* ptr) {
    return this->AcquireMemory(md, ptr, "@user_diff_src_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireMemoryFromPrimitive(
      mkldnn::memory::primitive_desc mdp, void* ptr,
      const std::string& suffix) {
    auto local_key = key_ + suffix;
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    PADDLE_ENFORCE((mem_p != nullptr) || (is_reusing_ == false),
                   "Fail to find mem primitive in device context");
    if (mem_p == nullptr) {
      mem_p = std::make_shared<mkldnn::memory>(mdp, ptr);
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
      mem_p->set_data_handle(ptr);
      // Mark that reusing happenned. All primitives from operator instance
      // should be reused or none of them. So we check consistency
      is_reusing_ = true;
    }
    return mem_p;
  }

  // This incarnation of AcquireMemory can call user function eg. custom reorder
  // or preprocessing routine if needed
  std::shared_ptr<mkldnn::memory> AcquireMemory(
      const mkldnn::memory::desc& md, void* ptr, const std::string& suffix,
      user_function custom_func = {}) {
    /*Generate key*/
    auto local_key = key_ + suffix;
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    PADDLE_ENFORCE((mem_p != nullptr) || (is_reusing_ == false),
                   "Fail to find mem primitive in device context");
    if (mem_p == nullptr) {
      // Call custom reorder/preprocessing func if available
      if (custom_func) {
        auto reordered_data = custom_func(reinterpret_cast<const float*>(ptr));
        dev_ctx_.SetBlob(local_key + "-custom_reorder", reordered_data);
        ptr = reinterpret_cast<void*>(reordered_data.get());
      }

      mem_p = std::make_shared<mkldnn::memory>(
          mkldnn::memory::primitive_desc{md, engine_}, ptr);
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
      mem_p->set_data_handle(ptr);
      // Mark that reusing happenned. All primitives from operator instance
      // should be reused or none of them. So we check consistency
      is_reusing_ = true;
    }
    return mem_p;
  }

  std::shared_ptr<mkldnn::memory> AcquireMemory(
      const std::shared_ptr<mkldnn::memory>& user_memory_p,
      const std::shared_ptr<mkldnn::memory>& target_memory_p,
      const std::string& suffix,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
    auto local_key = key_ + suffix;
    auto key_reorder_p = key_ + suffix + "reorder_p";

    auto stored_reorder_p = std::static_pointer_cast<mkldnn::reorder>(
        dev_ctx_.GetBlob(key_reorder_p));

    if (stored_reorder_p) {
      pipeline.push_back(*stored_reorder_p);
    } else {
      auto reorder_p =
          std::make_shared<mkldnn::reorder>(*user_memory_p, *target_memory_p);
      dev_ctx_.SetBlob(key_reorder_p, reorder_p);
      pipeline.push_back(*reorder_p);
    }

    return target_memory_p;
  }

  std::shared_ptr<mkldnn::memory> AcquireMemory(
      mkldnn::memory::primitive_desc& mpd,       // NOLINT
      mkldnn::memory::primitive_desc& user_mpd,  // NOLINT
      const std::shared_ptr<mkldnn::memory> user_memory_p,
      const std::string& suffix,
      std::vector<mkldnn::primitive>& pipeline,  // NOLINT
148 149
      bool is_persistent = false, bool is_INT8 = false,
      std::vector<float> scale_data = {1.0f}, int mask = 0) {
J
Jacek Czaja 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162
    // create reorder primitive if the input format is not the preferred one
    auto local_key = key_ + suffix;
    auto key_reorder_p = key_ + suffix + "reorder_p";

    auto target_memory_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    PADDLE_ENFORCE((target_memory_p != nullptr) || (is_reusing_ == false),
                   "Fail to find mem primitive in device context");
    if (target_memory_p == nullptr) {
      target_memory_p = user_memory_p;
      std::shared_ptr<mkldnn::primitive> reorder_p;
      if (mpd != user_mpd) {
        target_memory_p = std::make_shared<mkldnn::memory>(mpd);
163 164 165 166 167 168 169 170 171 172 173 174 175 176
        std::shared_ptr<mkldnn::reorder> reorder_p;
        if (is_INT8) {
          mkldnn::primitive_attr
              attri;  // attribute for int8 weights and bias data reorder.
          attri.set_output_scales(mask, scale_data);

          auto reorder_pd = std::shared_ptr<mkldnn::reorder::primitive_desc>(
              new mkldnn::reorder::primitive_desc(user_mpd, mpd, attri));
          reorder_p = std::shared_ptr<mkldnn::reorder>(new mkldnn::reorder(
              *reorder_pd, *user_memory_p, *target_memory_p));
        } else {
          reorder_p = std::make_shared<mkldnn::reorder>(*user_memory_p,
                                                        *target_memory_p);
        }
J
Jacek Czaja 已提交
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
        dev_ctx_.SetBlob(key_reorder_p, reorder_p);
        pipeline.push_back(*reorder_p);
      }
      dev_ctx_.SetBlob(local_key, target_memory_p);
    } else if (!is_persistent) {
      // Make reorder if needed
      auto reorder_p = std::static_pointer_cast<mkldnn::reorder>(
          dev_ctx_.GetBlob(key_reorder_p));
      if (reorder_p != nullptr) {
        pipeline.push_back(*reorder_p);
      }
      is_reusing_ = true;
    }
    return target_memory_p;
  }

  static std::string GetHash(mkldnn::memory::dims& operand_dims,  // NOLINT
                             const std::string& suffix) {
    return dims2str(operand_dims) + suffix;
  }

198
  template <typename T>
X
xiaoli.liu@intel.com 已提交
199 200 201 202 203
  static void SetDstMemory(
      const framework::ExecutionContext& ctx, framework::Tensor* output,
      std::vector<int> dst_tz, const mkldnn::engine& engine,
      std::shared_ptr<mkldnn::memory::primitive_desc>& dst_pd,  // NOLINT
      std::shared_ptr<mkldnn::memory>& dst_memory) {            // NOLINT
204
    T* output_data = output->mutable_data<T>(ctx.GetPlace());
X
xiaoli.liu@intel.com 已提交
205 206
    auto dst_md = platform::MKLDNNMemDesc(
        {dst_tz}, paddle::framework::ToMKLDNNDataType(
207
                      framework::DataTypeTrait<T>::DataType),
X
xiaoli.liu@intel.com 已提交
208 209
        mkldnn::memory::format::nhwc);
    dst_pd.reset(new mkldnn::memory::primitive_desc(dst_md, engine));
210 211 212 213 214 215 216
    dst_memory.reset(new mkldnn::memory(*dst_pd, to_void_cast<T>(output_data)));
  }

  static void AppendKey(
      std::string* key, const mkldnn::memory::dims& input_dims,
      const mkldnn::memory::dims& weights_dims, const std::vector<int>& strides,
      const std::vector<int>& paddings, const std::vector<int>& dilations,
X
xiaolil1 已提交
217 218 219
      const int& groups, const mkldnn::memory::data_type& srcdt,
      const mkldnn::memory::format& format,
      const mkldnn::memory::data_type& dstdt, const std::string& suffix) {
220 221 222 223 224 225
    AppendKeyDims(key, input_dims);
    AppendKeyDims(key, weights_dims);
    AppendKeyVec(key, strides);
    AppendKeyVec(key, paddings);
    AppendKeyVec(key, dilations);
    AppendKey(key, std::to_string(groups));
X
xiaolil1 已提交
226
    AppendKey(key, std::to_string(srcdt));
227
    AppendKey(key, std::to_string(format));
X
xiaolil1 已提交
228
    AppendKey(key, std::to_string(dstdt));
229
    AppendKey(key, suffix);
X
xiaoli.liu@intel.com 已提交
230 231
  }

J
Jacek Czaja 已提交
232
 protected:
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
  static void AppendKeyDims(std::string* key,
                            const mkldnn::memory::dims& dims) {
    for (unsigned int i = 0; i < dims.size(); i++) {
      AppendKey(key, std::to_string(dims[i]));
    }
  }

  static void AppendKeyVec(std::string* key, const std::vector<int>& dims) {
    for (unsigned int i = 0; i < dims.size(); i++) {
      AppendKey(key, std::to_string(dims[i]));
    }
  }

  static void AppendKey(std::string* key, const std::string& s) {
    key->append(s);
  }

J
Jacek Czaja 已提交
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
  static std::string dims2str(const mkldnn::memory::dims& operand_dims) {
    std::string dstr = "";
    for (size_t i = 0; i < operand_dims.size(); ++i) {
      dstr += std::to_string(operand_dims[i]) + "-";
    }
    return dstr;
  }

 protected:
  const MKLDNNDeviceContext& dev_ctx_;
  mkldnn::engine engine_;
  std::string key_;
  bool is_reusing_;
};

265 266
class TransposeMKLDNNHandler : public MKLDNNHandler {
 public:
267 268
  TransposeMKLDNNHandler(std::vector<int>& dims,  // NOLINT
                         std::vector<int>& axis,  // NOLINT
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
                         const platform::MKLDNNDeviceContext& dev_ctx,
                         mkldnn::engine engine, const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key),
        dims_(dims),
        axis_(axis),
        logical_axis_(dims.size(), 0) {}

  std::shared_ptr<mkldnn::memory> AcquireSrcMemory(
      const mkldnn::memory::format& fmt, void* ptr) {
    auto local_key = key_ + "@user_src_mem_p";
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    PADDLE_ENFORCE((mem_p != nullptr) || (is_reusing_ == false),
                   " find mem primitive in device context");
    if (mem_p == nullptr) {
      // Make memory descriptor using input format, unless it
      // cannot be trusted (nchw) then make up memory fmt manually
      for (size_t i = 0; i < logical_axis_.size(); ++i) {
        logical_axis_[i] = i;
      }
      auto src_md = fmt != mkldnn::memory::format::nchw
                        ? platform::MKLDNNMemDesc(
                              dims_, platform::MKLDNNGetDataType<float>(), fmt)
                        : Axis2MemoryDesc(dims_, logical_axis_);
      mem_p = std::make_shared<mkldnn::memory>(
          mkldnn::memory::primitive_desc{src_md, engine_}, ptr);
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
      mem_p->set_data_handle(ptr);
      // Mark that reusing happenned. All primitives from operator instance
      // should be reused or none of them. So we check consistency
      is_reusing_ = true;
    }
    return mem_p;
  }

  std::shared_ptr<mkldnn::memory> AcquireDstMemory(framework::Tensor* output,
                                                   platform::Place place) {
    auto local_key = key_ + "@user_dst_mem_p";
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    PADDLE_ENFORCE((mem_p != nullptr) || (is_reusing_ == false),
                   " find mem primitive in device context");
    if (mem_p == nullptr) {
      auto dst_mdp = mkldnn::memory::primitive_desc{
          Axis2MemoryDesc(dims_, axis_), engine_};

      auto dst_data = output->mutable_data<float>(
          place, paddle::memory::Allocator::kDefault, dst_mdp.get_size());

      mem_p = std::make_shared<mkldnn::memory>(dst_mdp, dst_data);
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
      auto dst_data = output->mutable_data<float>(place);
      mem_p->set_data_handle(dst_data);
      // Mark that reusing happenned. All primitives from operator instance
      // should be reused or none of them. So we check consistency
      is_reusing_ = true;
    }
    return mem_p;
  }

  std::shared_ptr<mkldnn::reorder> AcquireTranspose(
      std::shared_ptr<mkldnn::memory> dst_memory_p,
      std::shared_ptr<mkldnn::memory> src_memory_p) {
    auto prim_key = key_ + "@transpose_p";
    auto transpose_p =
        std::static_pointer_cast<mkldnn::reorder>(dev_ctx_.GetBlob(prim_key));
    PADDLE_ENFORCE((transpose_p != nullptr) || (is_reusing_ == false),
                   "Fail to find convolution primitive in device context");
    if (transpose_p == nullptr) {
      transpose_p =
          std::make_shared<mkldnn::reorder>(*(src_memory_p), *(dst_memory_p));
      dev_ctx_.SetBlob(prim_key, transpose_p);
    } else {
      is_reusing_ = true;
    }
    return transpose_p;
  }

  static std::string GetHash(std::vector<int>& shape,  // NOLINT
                             std::vector<int>& axis,   // NOLINT
                             const std::string& suffix) {
    return dims2str(shape) + dims2str(axis) + suffix;
  }

 protected:
356 357 358
  mkldnn_memory_desc_t Axis2MemoryDesc(std::vector<int>& nchw_tz,  // NOLINT
                                       std::vector<int>& axis      // NOLINT
                                       ) {
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
    mkldnn_memory_desc_t mem_fmt;

    mem_fmt.primitive_kind = mkldnn_memory;
    mem_fmt.ndims = axis.size();
    for (unsigned int i = 0; i < nchw_tz.size(); ++i) {
      mem_fmt.dims[i] = nchw_tz[i];  // logical dimensions (nchw format,
                                     // regardless physical layout)
    }
    mem_fmt.data_type = mkldnn_f32;
    mem_fmt.format = mkldnn_blocked;

    unsigned int total_stride = 1;
    for (int i = nchw_tz.size() - 1; i >= 0; --i) {
      mem_fmt.layout_desc.blocking.padding_dims[i] =
          nchw_tz[i];  // logical dimensions (nchw format, regardless physical
                       // layout)
      mem_fmt.layout_desc.blocking.block_dims[i] = 1;
      mem_fmt.layout_desc.blocking.offset_padding_to_data[i] = 0;  // no offset
      mem_fmt.layout_desc.blocking.strides[0][axis[i]] = total_stride;
      mem_fmt.layout_desc.blocking.strides[1][axis[i]] = 1;
      total_stride *= nchw_tz[axis[i]];
    }
    mem_fmt.layout_desc.blocking.offset_padding = 0;  // no initial offset
    return mem_fmt;
  }

 private:
  std::vector<int> dims_;
  std::vector<int> axis_;
  std::vector<int> logical_axis_;
};

J
Jacek Czaja 已提交
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
template <class forward_t, class backward_data_t, class backward_weights_t>
class ConvMKLDNNTemplateHandler : public MKLDNNHandler {
 public:
  ConvMKLDNNTemplateHandler(
      std::shared_ptr<typename forward_t::primitive_desc> conv_pd,
      const platform::MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
      const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key) {
    conv_pd_ = conv_pd;
  }

  ConvMKLDNNTemplateHandler(
      std::shared_ptr<typename forward_t::primitive_desc> conv_pd,
      std::shared_ptr<typename backward_data_t::primitive_desc>
          conv_bwd_data_pd,
      std::shared_ptr<typename backward_weights_t::primitive_desc>
          conv_bwd_weights_pd,
      const platform::MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
      const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key),
        conv_pd_(conv_pd),
        conv_bwd_weights_pd_(conv_bwd_weights_pd),
        conv_bwd_data_pd_(conv_bwd_data_pd) {
    // If we are in Grad operatgor then update a key with BWD suffix to
    // distinguish from FWD memory primitives
    key_ += "-BWD";
  }

  size_t GetDstMemorySize() const {
    return conv_pd_->dst_primitive_desc().get_size();
  }

  mkldnn::memory::format GetDstFormat() const {
    return static_cast<mkldnn::memory::format>(
        conv_pd_->dst_primitive_desc().desc().data.format);
  }

  size_t GetDiffWeightsMemorySize() const {
    return conv_bwd_weights_pd_->diff_weights_primitive_desc().get_size();
  }

  size_t GetDiffSourceMemorySize() const {
    return conv_bwd_data_pd_->diff_src_primitive_desc().get_size();
  }

  std::shared_ptr<mkldnn::memory> AcquireSrcMemoryFromWeightsPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
    auto src_pd = conv_bwd_weights_pd_->src_primitive_desc();
    auto user_pd = user_memory_p->get_primitive_desc();
    return this->AcquireMemory(src_pd, user_pd, user_memory_p,
                               "@weights-src_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemoryFromWeightsPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
    auto diff_dst_pd = conv_bwd_weights_pd_->diff_dst_primitive_desc();
    auto user_pd = user_memory_p->get_primitive_desc();
    return this->AcquireMemory(diff_dst_pd, user_pd, user_memory_p,
                               "@weights-diff_dst_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffWeightsMemoryFromWeightsPrimitive(
      void* ptr) {
    return this->AcquireMemoryFromPrimitive(
        conv_bwd_weights_pd_->diff_weights_primitive_desc(), ptr,
        "@diff_weights_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemoryFromDataPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
    auto diff_dst_pd = conv_bwd_data_pd_->diff_dst_primitive_desc();
    auto user_pd = user_memory_p->get_primitive_desc();
    return this->AcquireMemory(diff_dst_pd, user_pd, user_memory_p,
                               "@data-diff_dst_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireWeightsMemoryFromDataPrimitive(
      const std::shared_ptr<mkldnn::memory> user_weights_memory_p,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
    auto weights_pd = conv_bwd_data_pd_->weights_primitive_desc();
    auto user_pd = user_weights_memory_p->get_primitive_desc();
    return this->AcquireMemory(weights_pd, user_pd, user_weights_memory_p,
                               "@data-weights_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireResidualDataMemory(
      const mkldnn::memory::desc& md, void* ptr) {
    return this->AcquireMemory(md, ptr, "@user_residual_data_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireDstMemoryFromResidualDataMemory(
      const std::shared_ptr<mkldnn::memory>& user_residual_memory_p,
      void* dst_ptr,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
    return this->AcquireMemory(user_residual_memory_p,
                               this->AcquireDstMemoryFromPrimitive(dst_ptr),
                               "@residual_data_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffSrcMemoryFromDataPrimitive(
      void* ptr) {
    return this->AcquireMemoryFromPrimitive(
        conv_bwd_data_pd_->diff_src_primitive_desc(), ptr, "@diff_src_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireDstMemoryFromPrimitive(void* ptr) {
    return this->AcquireMemoryFromPrimitive(conv_pd_->dst_primitive_desc(), ptr,
                                            "@dst_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireSrcMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
    auto src_pd = conv_pd_->src_primitive_desc();
    auto user_pd = user_memory_p->get_primitive_desc();
    return this->AcquireMemory(src_pd, user_pd, user_memory_p, "@src_mem_p",
                               pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireWeightsMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_weights_memory_p,
      std::vector<mkldnn::primitive>& pipeline,  // NOLINT
516 517
      bool is_persistent = false, bool is_INT8 = false,
      std::vector<float> scale_data = {1.0f}, int mask = 0) {
J
Jacek Czaja 已提交
518 519
    auto user_weights_pd = user_weights_memory_p->get_primitive_desc();
    auto weights_pd = conv_pd_->weights_primitive_desc();
520 521 522
    return this->AcquireMemory(
        weights_pd, user_weights_pd, user_weights_memory_p, "@weights_mem_p",
        pipeline, is_persistent, is_INT8, scale_data, mask);
J
Jacek Czaja 已提交
523 524 525 526
  }

  std::shared_ptr<mkldnn::memory> AcquireBiasMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_bias_memory_p,
527 528 529 530
      std::vector<mkldnn::primitive>& pipeline,  // NOLINT
      bool is_persistent = false, bool is_INT8 = false,
      std::vector<float> scale_data = {1.0f},
      int mask = 0) {  // NOLINT
J
Jacek Czaja 已提交
531 532 533
    auto user_bias_pd = user_bias_memory_p->get_primitive_desc();
    auto bias_pd = conv_pd_->bias_primitive_desc();
    return this->AcquireMemory(bias_pd, user_bias_pd, user_bias_memory_p,
534 535
                               "@bias_mem_p", pipeline, is_persistent, is_INT8,
                               scale_data, mask);
J
Jacek Czaja 已提交
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
  }

  std::shared_ptr<forward_t> AcquireConvolution(
      std::shared_ptr<mkldnn::memory> src_memory_p,
      std::shared_ptr<mkldnn::memory> weights_memory_p,
      std::shared_ptr<mkldnn::memory> dst_memory_p) {
    auto prim_key = key_ + "@conv_p";
    auto conv_p =
        std::static_pointer_cast<forward_t>(dev_ctx_.GetBlob(prim_key));
    PADDLE_ENFORCE((conv_p != nullptr) || (is_reusing_ == false),
                   "Fail to find convolution primitive in device context");
    if (conv_p == nullptr) {
      conv_p = std::make_shared<forward_t>(*conv_pd_, *(src_memory_p),
                                           *(weights_memory_p.get()),
                                           *(dst_memory_p.get()));

      dev_ctx_.SetBlob(prim_key, conv_p);
    } else {
      is_reusing_ = true;
    }
    return conv_p;
  }

  std::shared_ptr<forward_t> AcquireConvolution(
      std::shared_ptr<mkldnn::memory> src_memory_p,
      std::shared_ptr<mkldnn::memory> weights_memory_p,
      std::shared_ptr<mkldnn::memory> bias_memory_p,
      std::shared_ptr<mkldnn::memory> dst_memory_p) {
    auto prim_key = key_ + "@conv_p";
    auto conv_p =
        std::static_pointer_cast<forward_t>(dev_ctx_.GetBlob(prim_key));
    PADDLE_ENFORCE((conv_p != nullptr) || (is_reusing_ == false),
                   "Fail to find convolution primitive in device context");
    if (conv_p == nullptr) {
      conv_p = std::make_shared<forward_t>(
          *conv_pd_, *(src_memory_p), *(weights_memory_p.get()),
          *(bias_memory_p.get()), *(dst_memory_p.get()));

      dev_ctx_.SetBlob(prim_key, conv_p);
    } else {
      is_reusing_ = true;
    }
    return conv_p;
  }

  std::shared_ptr<backward_weights_t> AcquireConvolutionBackwardWeights(
      std::shared_ptr<mkldnn::memory> src_memory_p,
      std::shared_ptr<mkldnn::memory> diff_dst_memory_p,
      std::shared_ptr<mkldnn::memory> diff_weights_memory_p) {
    auto prim_key = key_ + "@conv_bwd_weights_p";
    auto conv_bwd_weights_p = std::static_pointer_cast<backward_weights_t>(
        dev_ctx_.GetBlob(prim_key));
    PADDLE_ENFORCE(
        (conv_bwd_weights_p != nullptr) || (is_reusing_ == false),
        "Fail to find convolution bwd weights primitive in device context");
    if (conv_bwd_weights_p == nullptr) {
      // create backward conv primitive for weights
      conv_bwd_weights_p = std::make_shared<backward_weights_t>(
          *conv_bwd_weights_pd_, *src_memory_p, *diff_dst_memory_p,
          *diff_weights_memory_p);
      dev_ctx_.SetBlob(prim_key, conv_bwd_weights_p);
    } else {
      is_reusing_ = true;
    }
    return conv_bwd_weights_p;
  }

  std::shared_ptr<backward_data_t> AcquireConvolutionBackwardData(
      std::shared_ptr<mkldnn::memory> diff_dst_memory_p,
      std::shared_ptr<mkldnn::memory> weights_memory_p,
      std::shared_ptr<mkldnn::memory> diff_src_memory_p) {
    auto prim_key = key_ + "@conv_bwd_data_p";
    auto conv_bwd_data_p =
        std::static_pointer_cast<backward_data_t>(dev_ctx_.GetBlob(prim_key));
    PADDLE_ENFORCE(
        (conv_bwd_data_p != nullptr) || (is_reusing_ == false),
        "Fail to find convolution bwd data primitive in device context");
    if (conv_bwd_data_p == nullptr) {
      conv_bwd_data_p = std::make_shared<backward_data_t>(
          *conv_bwd_data_pd_, *diff_dst_memory_p, *weights_memory_p,
          *diff_src_memory_p);
      dev_ctx_.SetBlob(prim_key, conv_bwd_data_p);
    } else {
      is_reusing_ = true;
    }
    return conv_bwd_data_p;
  }

  // Generate keys for storing/retriving primitives for this operator
  // TODO(jczaja): Make hashing function more optimial
  static std::string GetHash(mkldnn::memory::dims& input_dims,    // NOLINT
                             mkldnn::memory::dims& weights_dims,  // NOLINT
                             std::vector<int>& strides,           // NOLINT
                             std::vector<int>& paddings,          // NOLINT
                             std::vector<int>& dilations,         // NOLINT
                             int groups, const std::string& suffix) {
    return dims2str(input_dims) + dims2str(weights_dims) + dims2str(strides) +
           dims2str(paddings) + dims2str(dilations) + std::to_string(groups) +
           suffix;
  }

 private:
  std::shared_ptr<typename forward_t::primitive_desc> conv_pd_;
  std::shared_ptr<typename backward_weights_t::primitive_desc>
      conv_bwd_weights_pd_;
  std::shared_ptr<typename backward_data_t::primitive_desc> conv_bwd_data_pd_;
};

using ConvMKLDNNHandler =
    ConvMKLDNNTemplateHandler<mkldnn::convolution_forward,
                              mkldnn::convolution_backward_data,
                              mkldnn::convolution_backward_weights>;

using ConvTransposeMKLDNNHandler =
    ConvMKLDNNTemplateHandler<mkldnn::deconvolution_forward,
                              mkldnn::deconvolution_backward_data,
                              mkldnn::deconvolution_backward_weights>;
653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676

template <typename T>
static std::shared_ptr<mkldnn::memory> SetDstMemory(
    const framework::ExecutionContext& ctx, framework::Tensor* output,
    const std::shared_ptr<ConvMKLDNNHandler>& handler) {
  T* output_data = output->mutable_data<T>(
      ctx.GetPlace(), ::paddle::memory::Allocator::kDefault,
      handler->GetDstMemorySize());
  std::shared_ptr<mkldnn::memory> dst_memory_p =
      handler->AcquireDstMemoryFromPrimitive(to_void_cast<T>(output_data));
  return dst_memory_p;
}

template <typename T>
static std::shared_ptr<mkldnn::memory> SetDstMemoryHandler(
    const framework::ExecutionContext& ctx, framework::Tensor* output,
    const std::shared_ptr<ConvMKLDNNHandler>& handler) {
  T* output_data = output->mutable_data<T>(
      ctx.GetPlace(), ::paddle::memory::Allocator::kDefault,
      handler->GetDstMemorySize());
  std::shared_ptr<mkldnn::memory> dst_memory_p;
  dst_memory_p->set_data_handle(to_void_cast<T>(output_data));
  return dst_memory_p;
}
J
Jacek Czaja 已提交
677 678
}  // namespace platform
}  // namespace paddle