test_elementwise_min_op.py 7.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

F
fengjiayi 已提交
17 18
import unittest
import numpy as np
19
from op_test import OpTest, skip_check_grad_ci
S
sneaxiy 已提交
20 21 22 23 24
import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core

paddle.enable_static()
F
fengjiayi 已提交
25 26 27 28 29


class TestElementwiseOp(OpTest):
    def setUp(self):
        self.op_type = "elementwise_min"
F
fengjiayi 已提交
30
        # If x and y have the same value, the min() is not differentiable.
F
fengjiayi 已提交
31 32
        # So we generate test data by the following method
        # to avoid them being too close to each other.
33 34 35
        x = np.random.uniform(0.1, 1, [13, 17]).astype("float64")
        sgn = np.random.choice([-1, 1], [13, 17]).astype("float64")
        y = x + sgn * np.random.uniform(0.1, 1, [13, 17]).astype("float64")
F
fengjiayi 已提交
36 37 38 39 40 41 42
        self.inputs = {'X': x, 'Y': y}
        self.outputs = {'Out': np.minimum(self.inputs['X'], self.inputs['Y'])}

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
43
        self.check_grad(['X', 'Y'], 'Out')
F
fengjiayi 已提交
44 45 46 47 48 49 50 51 52 53

    def test_check_grad_ingore_x(self):
        self.check_grad(
            ['Y'], 'Out', max_relative_error=0.005, no_grad_set=set("X"))

    def test_check_grad_ingore_y(self):
        self.check_grad(
            ['X'], 'Out', max_relative_error=0.005, no_grad_set=set('Y'))


54 55
@skip_check_grad_ci(
    reason="[skip shape check] Use y_shape(1) to test broadcast.")
56 57 58
class TestElementwiseMinOp_scalar(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_min"
59 60
        x = np.random.random_integers(-5, 5, [10, 3, 4]).astype("float64")
        y = np.array([0.5]).astype("float64")
61 62 63 64
        self.inputs = {'X': x, 'Y': y}
        self.outputs = {'Out': np.minimum(self.inputs['X'], self.inputs['Y'])}


65
class TestElementwiseMinOp_Vector(TestElementwiseOp):
F
fengjiayi 已提交
66 67
    def setUp(self):
        self.op_type = "elementwise_min"
68 69 70
        x = np.random.random((100, )).astype("float64")
        sgn = np.random.choice([-1, 1], (100, )).astype("float64")
        y = x + sgn * np.random.uniform(0.1, 1, (100, )).astype("float64")
F
fengjiayi 已提交
71 72 73 74
        self.inputs = {'X': x, 'Y': y}
        self.outputs = {'Out': np.minimum(self.inputs['X'], self.inputs['Y'])}


75
class TestElementwiseMinOp_broadcast_0(TestElementwiseOp):
F
fengjiayi 已提交
76 77
    def setUp(self):
        self.op_type = "elementwise_min"
78 79
        x = np.random.uniform(0.5, 1, (100, 3, 2)).astype(np.float64)
        sgn = np.random.choice([-1, 1], (100, )).astype(np.float64)
F
fengjiayi 已提交
80
        y = x[:, 0, 0] + sgn * \
81
            np.random.uniform(1, 2, (100, )).astype(np.float64)
F
fengjiayi 已提交
82 83 84 85 86
        self.inputs = {'X': x, 'Y': y}

        self.attrs = {'axis': 0}
        self.outputs = {
            'Out':
87
            np.minimum(self.inputs['X'], self.inputs['Y'].reshape(100, 1, 1))
F
fengjiayi 已提交
88 89 90
        }


91
class TestElementwiseMinOp_broadcast_1(TestElementwiseOp):
F
fengjiayi 已提交
92 93
    def setUp(self):
        self.op_type = "elementwise_min"
94 95
        x = np.random.uniform(0.5, 1, (2, 100, 3)).astype(np.float64)
        sgn = np.random.choice([-1, 1], (100, )).astype(np.float64)
F
fengjiayi 已提交
96
        y = x[0, :, 0] + sgn * \
97
            np.random.uniform(1, 2, (100, )).astype(np.float64)
F
fengjiayi 已提交
98 99 100 101 102
        self.inputs = {'X': x, 'Y': y}

        self.attrs = {'axis': 1}
        self.outputs = {
            'Out':
103
            np.minimum(self.inputs['X'], self.inputs['Y'].reshape(1, 100, 1))
F
fengjiayi 已提交
104 105 106
        }


107
class TestElementwiseMinOp_broadcast_2(TestElementwiseOp):
F
fengjiayi 已提交
108 109
    def setUp(self):
        self.op_type = "elementwise_min"
110 111
        x = np.random.uniform(0.5, 1, (2, 3, 100)).astype(np.float64)
        sgn = np.random.choice([-1, 1], (100, )).astype(np.float64)
F
fengjiayi 已提交
112
        y = x[0, 0, :] + sgn * \
113
            np.random.uniform(1, 2, (100, )).astype(np.float64)
F
fengjiayi 已提交
114 115 116 117
        self.inputs = {'X': x, 'Y': y}

        self.outputs = {
            'Out':
118
            np.minimum(self.inputs['X'], self.inputs['Y'].reshape(1, 1, 100))
F
fengjiayi 已提交
119 120 121
        }


122
class TestElementwiseMinOp_broadcast_3(TestElementwiseOp):
F
fengjiayi 已提交
123 124
    def setUp(self):
        self.op_type = "elementwise_min"
125 126
        x = np.random.uniform(0.5, 1, (2, 25, 4, 1)).astype(np.float64)
        sgn = np.random.choice([-1, 1], (25, 4)).astype(np.float64)
F
fengjiayi 已提交
127
        y = x[0, :, :, 0] + sgn * \
128
            np.random.uniform(1, 2, (25, 4)).astype(np.float64)
F
fengjiayi 已提交
129 130 131 132 133
        self.inputs = {'X': x, 'Y': y}

        self.attrs = {'axis': 1}
        self.outputs = {
            'Out':
134
            np.minimum(self.inputs['X'], self.inputs['Y'].reshape(1, 25, 4, 1))
F
fengjiayi 已提交
135 136 137
        }


138 139 140
class TestElementwiseMinOp_broadcast_4(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_min"
141 142
        x = np.random.uniform(0.5, 1, (2, 10, 2, 5)).astype(np.float64)
        sgn = np.random.choice([-1, 1], (2, 10, 1, 5)).astype(np.float64)
143
        y = x + sgn * \
144
            np.random.uniform(1, 2, (2, 10, 1, 5)).astype(np.float64)
145 146 147 148 149
        self.inputs = {'X': x, 'Y': y}

        self.outputs = {'Out': np.minimum(self.inputs['X'], self.inputs['Y'])}


S
sneaxiy 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
class TestElementwiseMinOpFP16(unittest.TestCase):
    def get_out_and_grad(self, x_np, y_np, axis, place, use_fp32=False):
        assert x_np.dtype == np.float16
        assert y_np.dtype == np.float16
        if use_fp32:
            x_np = x_np.astype(np.float32)
            y_np = y_np.astype(np.float32)
        dtype = np.float16

        with fluid.dygraph.guard(place):
            x = paddle.to_tensor(x_np)
            y = paddle.to_tensor(y_np)
            x.stop_gradient = False
            y.stop_gradient = False
            z = fluid.layers.elementwise_min(x, y, axis)
            x_g, y_g = paddle.grad([z], [x, y])
            return z.numpy().astype(dtype), x_g.numpy().astype(
                dtype), y_g.numpy().astype(dtype)

    def check_main(self, x_shape, y_shape, axis=-1):
        if not paddle.is_compiled_with_cuda():
            return
        place = paddle.CUDAPlace(0)
        if not core.is_float16_supported(place):
            return

        x_np = np.random.random(size=x_shape).astype(np.float16)
        y_np = np.random.random(size=y_shape).astype(np.float16)

        z_1, x_g_1, y_g_1 = self.get_out_and_grad(x_np, y_np, axis, place,
                                                  False)
        z_2, x_g_2, y_g_2 = self.get_out_and_grad(x_np, y_np, axis, place, True)
        self.assertTrue(np.array_equal(z_1, z_2), "{} vs {}".format(z_1, z_2))
        self.assertTrue(
            np.array_equal(x_g_1, x_g_2), "{} vs {}".format(x_g_1, x_g_2))
        self.assertTrue(
            np.array_equal(y_g_1, y_g_2), "{} vs {}".format(y_g_1, y_g_2))

    def test_main(self):
        self.check_main((13, 17), (13, 17))
        self.check_main((10, 3, 4), (1, ))
        self.check_main((100, ), (100, ))
        self.check_main((100, 3, 2), (100, ), 0)
        self.check_main((2, 100, 3), (100, ), 1)
        self.check_main((2, 3, 100), (100, ))
        self.check_main((2, 25, 4, 1), (25, 4), 1)
        self.check_main((2, 10, 2, 5), (2, 10, 1, 5))


F
fengjiayi 已提交
199 200
if __name__ == '__main__':
    unittest.main()