“7da7881c0ee80e8bbf3f59a1db5a2636f2dcea25”上不存在“paddle/git@gitcode.net:RobotFutures/Paddle.git”
test_recognize_digits.py 10.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Y
Yang Yu 已提交
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

15 16
from __future__ import print_function

17
import paddle.fluid.core as core
18
import math
武毅 已提交
19
import os
20 21 22 23 24 25 26 27
import sys
import unittest

import numpy

import paddle
import paddle.fluid as fluid
from paddle.fluid.layers.device import get_places
Y
Yang Yu 已提交
28 29 30 31 32 33 34

BATCH_SIZE = 64


def loss_net(hidden, label):
    prediction = fluid.layers.fc(input=hidden, size=10, act='softmax')
    loss = fluid.layers.cross_entropy(input=prediction, label=label)
Y
Yu Yang 已提交
35
    avg_loss = fluid.layers.mean(loss)
L
Liu Yiqun 已提交
36 37
    acc = fluid.layers.accuracy(input=prediction, label=label)
    return prediction, avg_loss, acc
Y
Yang Yu 已提交
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53


def mlp(img, label):
    hidden = fluid.layers.fc(input=img, size=200, act='tanh')
    hidden = fluid.layers.fc(input=hidden, size=200, act='tanh')
    return loss_net(hidden, label)


def conv_net(img, label):
    conv_pool_1 = fluid.nets.simple_img_conv_pool(
        input=img,
        filter_size=5,
        num_filters=20,
        pool_size=2,
        pool_stride=2,
        act="relu")
Y
Yang Yang(Tony) 已提交
54
    conv_pool_1 = fluid.layers.batch_norm(conv_pool_1)
Y
Yang Yu 已提交
55 56 57 58 59 60 61 62 63 64
    conv_pool_2 = fluid.nets.simple_img_conv_pool(
        input=conv_pool_1,
        filter_size=5,
        num_filters=50,
        pool_size=2,
        pool_stride=2,
        act="relu")
    return loss_net(conv_pool_2, label)


65 66 67 68
def train(nn_type,
          use_cuda,
          parallel,
          save_dirname=None,
X
Xin Pan 已提交
69
          save_full_dirname=None,
70
          model_filename=None,
武毅 已提交
71 72
          params_filename=None,
          is_local=True):
73 74
    if use_cuda and not fluid.core.is_compiled_with_cuda():
        return
Y
Yang Yu 已提交
75 76 77
    img = fluid.layers.data(name='img', shape=[1, 28, 28], dtype='float32')
    label = fluid.layers.data(name='label', shape=[1], dtype='int64')

78
    if nn_type == 'mlp':
Y
Yang Yu 已提交
79 80 81 82
        net_conf = mlp
    else:
        net_conf = conv_net

83
    if parallel:
X
Xin Pan 已提交
84
        raise NotImplementedError()
Y
Yang Yu 已提交
85
    else:
L
Liu Yiqun 已提交
86
        prediction, avg_loss, acc = net_conf(img, label)
Y
Yang Yu 已提交
87

88
    test_program = fluid.default_main_program().clone(for_test=True)
Y
Yang Yu 已提交
89

X
Xin Pan 已提交
90
    optimizer = fluid.optimizer.Adam(learning_rate=0.001)
W
Wu Yi 已提交
91
    optimizer.minimize(avg_loss)
Y
Yang Yu 已提交
92

93
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
Y
Yang Yu 已提交
94 95 96 97 98 99 100

    exe = fluid.Executor(place)

    train_reader = paddle.batch(
        paddle.reader.shuffle(
            paddle.dataset.mnist.train(), buf_size=500),
        batch_size=BATCH_SIZE)
Y
Yang Yu 已提交
101 102
    test_reader = paddle.batch(
        paddle.dataset.mnist.test(), batch_size=BATCH_SIZE)
Y
Yang Yu 已提交
103 104
    feeder = fluid.DataFeeder(feed_list=[img, label], place=place)

武毅 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
    def train_loop(main_program):
        exe.run(fluid.default_startup_program())

        PASS_NUM = 100
        for pass_id in range(PASS_NUM):
            for batch_id, data in enumerate(train_reader()):
                # train a mini-batch, fetch nothing
                exe.run(main_program, feed=feeder.feed(data))
                if (batch_id + 1) % 10 == 0:
                    acc_set = []
                    avg_loss_set = []
                    for test_data in test_reader():
                        acc_np, avg_loss_np = exe.run(
                            program=test_program,
                            feed=feeder.feed(test_data),
                            fetch_list=[acc, avg_loss])
                        acc_set.append(float(acc_np))
                        avg_loss_set.append(float(avg_loss_np))
                    # get test acc and loss
                    acc_val = numpy.array(acc_set).mean()
                    avg_loss_val = numpy.array(avg_loss_set).mean()
                    if float(acc_val
                             ) > 0.2:  # Smaller value to increase CI speed
                        if save_dirname is not None:
                            fluid.io.save_inference_model(
                                save_dirname, ["img"], [prediction],
                                exe,
                                model_filename=model_filename,
                                params_filename=params_filename)
X
Xin Pan 已提交
134 135
                        if save_full_dirname is not None:
                            fluid.io.save_inference_model(
X
Xin Pan 已提交
136
                                save_full_dirname, [], [],
X
Xin Pan 已提交
137 138 139 140
                                exe,
                                model_filename=model_filename,
                                params_filename=params_filename,
                                export_for_deployment=False)
武毅 已提交
141 142
                        return
                    else:
143
                        print(
武毅 已提交
144 145
                            'PassID {0:1}, BatchID {1:04}, Test Loss {2:2.2}, Acc {3:2.2}'.
                            format(pass_id, batch_id + 1,
146
                                   float(avg_loss_val), float(acc_val)))
武毅 已提交
147 148 149 150 151 152 153
                        if math.isnan(float(avg_loss_val)):
                            sys.exit("got NaN loss, training failed.")
        raise AssertionError("Loss of recognize digits is too large")

    if is_local:
        train_loop(fluid.default_main_program())
    else:
G
gongweibao 已提交
154 155
        port = os.getenv("PADDLE_PSERVER_PORT", "6174")
        pserver_ips = os.getenv("PADDLE_PSERVER_IPS")  # ip,ip...
武毅 已提交
156 157 158 159
        eplist = []
        for ip in pserver_ips.split(","):
            eplist.append(':'.join([ip, port]))
        pserver_endpoints = ",".join(eplist)  # ip:port,ip:port...
G
gongweibao 已提交
160
        trainers = int(os.getenv("PADDLE_TRAINERS"))
武毅 已提交
161
        current_endpoint = os.getenv("POD_IP") + ":" + port
G
gongweibao 已提交
162 163
        trainer_id = int(os.getenv("PADDLE_TRAINER_ID"))
        training_role = os.getenv("PADDLE_TRAINING_ROLE", "TRAINER")
武毅 已提交
164
        t = fluid.DistributeTranspiler()
Y
Yancey1989 已提交
165
        t.transpile(trainer_id, pservers=pserver_endpoints, trainers=trainers)
武毅 已提交
166 167 168 169 170 171 172 173
        if training_role == "PSERVER":
            pserver_prog = t.get_pserver_program(current_endpoint)
            pserver_startup = t.get_startup_program(current_endpoint,
                                                    pserver_prog)
            exe.run(pserver_startup)
            exe.run(pserver_prog)
        elif training_role == "TRAINER":
            train_loop(t.get_trainer_program())
Y
Yang Yu 已提交
174 175


176 177 178 179
def infer(use_cuda,
          save_dirname=None,
          model_filename=None,
          params_filename=None):
L
Liu Yiqun 已提交
180 181 182
    if save_dirname is None:
        return

183
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
L
Liu Yiqun 已提交
184 185
    exe = fluid.Executor(place)

186 187 188 189 190 191
    inference_scope = fluid.core.Scope()
    with fluid.scope_guard(inference_scope):
        # Use fluid.io.load_inference_model to obtain the inference program desc,
        # the feed_target_names (the names of variables that will be feeded
        # data using feed operators), and the fetch_targets (variables that
        # we want to obtain data from using fetch operators).
192 193 194
        [inference_program, feed_target_names,
         fetch_targets] = fluid.io.load_inference_model(
             save_dirname, exe, model_filename, params_filename)
195 196 197 198 199 200 201 202 203 204 205 206

        # The input's dimension of conv should be 4-D or 5-D.
        # Use normilized image pixels as input data, which should be in the range [-1.0, 1.0].
        batch_size = 1
        tensor_img = numpy.random.uniform(
            -1.0, 1.0, [batch_size, 1, 28, 28]).astype("float32")

        # Construct feed as a dictionary of {feed_target_name: feed_target_data}
        # and results will contain a list of data corresponding to fetch_targets.
        results = exe.run(inference_program,
                          feed={feed_target_names[0]: tensor_img},
                          fetch_list=fetch_targets)
207
        print("infer results: ", results[0])
L
Liu Yiqun 已提交
208 209


210
def main(use_cuda, parallel, nn_type, combine):
211
    save_dirname = None
X
Xin Pan 已提交
212
    save_full_dirname = None
213 214
    model_filename = None
    params_filename = None
215 216
    if not use_cuda and not parallel:
        save_dirname = "recognize_digits_" + nn_type + ".inference.model"
X
Xin Pan 已提交
217
        save_full_dirname = "recognize_digits_" + nn_type + ".train.model"
218
        if combine == True:
219 220
            model_filename = "__model_combined__"
            params_filename = "__params_combined__"
221

武毅 已提交
222
    # call train() with is_local argument to run distributed train
223 224 225 226
    train(
        nn_type=nn_type,
        use_cuda=use_cuda,
        parallel=parallel,
227
        save_dirname=save_dirname,
X
Xin Pan 已提交
228
        save_full_dirname=save_full_dirname,
229 230
        model_filename=model_filename,
        params_filename=params_filename)
231 232 233
    infer(
        use_cuda=use_cuda,
        save_dirname=save_dirname,
234 235
        model_filename=model_filename,
        params_filename=params_filename)
236 237 238 239 240 241


class TestRecognizeDigits(unittest.TestCase):
    pass


242
def inject_test_method(use_cuda, parallel, nn_type, combine):
243 244 245 246 247 248
    def __impl__(self):
        prog = fluid.Program()
        startup_prog = fluid.Program()
        scope = fluid.core.Scope()
        with fluid.scope_guard(scope):
            with fluid.program_guard(prog, startup_prog):
249
                main(use_cuda, parallel, nn_type, combine)
250

251 252 253 254
    fn = 'test_{0}_{1}_{2}_{3}'.format(nn_type, 'cuda'
                                       if use_cuda else 'cpu', 'parallel'
                                       if parallel else 'normal', 'combine'
                                       if combine else 'separate')
255 256 257 258 259 260

    setattr(TestRecognizeDigits, fn, __impl__)


def inject_all_tests():
    for use_cuda in (False, True):
261 262
        if use_cuda and not core.is_compiled_with_cuda():
            continue
X
fix  
Xin Pan 已提交
263
        for parallel in (False, ):
264
            for nn_type in ('mlp', 'conv'):
265 266
                inject_test_method(use_cuda, parallel, nn_type, True)

267
    # Two unit-test for saving parameters as separate files
268
    inject_test_method(False, False, 'mlp', False)
269
    inject_test_method(False, False, 'conv', False)
270 271 272 273 274 275


inject_all_tests()

if __name__ == '__main__':
    unittest.main()