sequence_pool_op.cc 5.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/operators/sequence_pool_op.h"
16 17 18 19

namespace paddle {
namespace operators {

20
class SequencePoolOp : public framework::OperatorWithKernel {
21 22 23
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

24
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
25
    PADDLE_ENFORCE(ctx->HasInput("X"),
26
                   "Input(X) of SequencePoolOp should not be null.");
Q
Qiao Longfei 已提交
27
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
28
                   "Output(Out) of SequencePoolOp should not be null.");
Q
Qiao Longfei 已提交
29
    ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
30 31 32 33 34
    if (ctx->Attrs().Get<std::string>("pooltype") == "MAX") {
      PADDLE_ENFORCE(ctx->HasOutput("MaxIndex"),
                     "Output(MaxIndex) of SequencePoolOp should not be null.");
      ctx->SetOutputDim("MaxIndex", ctx->GetInputDim("X"));
    }
35 36 37
  }
};

38
class SequencePoolOpMaker : public framework::OpProtoAndCheckerMaker {
39
 public:
40 41
  SequencePoolOpMaker(framework::OpProto* proto,
                      framework::OpAttrChecker* op_checker)
42
      : OpProtoAndCheckerMaker(proto, op_checker) {
43
    AddInput("X", "(LoDTensor) The variable-length input of SequencePoolOp");
L
Luo Tao 已提交
44
    AddOutput("Out",
45
              "(Tensor) The output of SequencePoolOp does not contain LoD "
L
Luo Tao 已提交
46
              "infomation.");
47
    AddOutput("MaxIndex",
D
dangqingqing 已提交
48 49
              "(Tensor<int>) This tensor is used for the sequence max-pooling "
              "to record the max indexes.")
50
        .AsIntermediate();
D
dzhwinter 已提交
51 52 53
    AddAttr<std::string>(
        "pooltype",
        "(int, default AVERAGE) the pooling pooltype of SequencePoolOp.")
54 55
        .SetDefault("AVERAGE")
        .InEnum({"AVERAGE", "SUM", "SQRT", "LAST", "FIRST", "MAX"});
56
    AddComment(R"DOC(
57 58
    SequencePoolOp pools features of all time-steps of each instance.

D
dzhwinter 已提交
59
    It supports six pooling pooltype:
60 61 62 63 64 65 66 67
    - AVERAGE: Out[i] = average_{for each instance in i-th sequence}{X[i]}
    - SUM:     Out[i] = sum_{for each instance in i-th sequence}{X[i]}
    - SQRT:    Out[i] = sum_{for each instance in i-th sequence}{X[i]} 
                        / sqrt(i-th sequence length)
    - LAST:    Out[i] = last instance in i-th sequence X[i]
    - FIRST:   Out[i] = first instance in i-th sequence X[i]
    - MAX:     Out[i] = max_{for each instance in i-th sequence}{X[i]}

L
Luo Tao 已提交
68
    For a mini-batch of 3 variable-length sentences, containing 2, 3, and 2 time-steps:
Q
Qiao Longfei 已提交
69

L
Luo Tao 已提交
70
    Assume X is a [7,M,N] LoDTensor, and X->lod()[0] = [0, 2, 5, 7], 7=2+3+2.
Q
Qiao Longfei 已提交
71
    Besides, for the sake of simplicity, we assume M=1 and N=1,
L
Luo Tao 已提交
72 73
    and the value of X = [[1, 3], [2, 4, 6], [5, 1]].

L
Luo Tao 已提交
74
    Thus, Out is a [3,1,1] Tensor without LoD infomation.
D
dzhwinter 已提交
75
    And for different pooltype, the value of Out is as follows:
L
Luo Tao 已提交
76 77 78

    - AVERAGE: [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
    - SUM: [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
Q
Qiao Longfei 已提交
79
    - SQRT: [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
L
Luo Tao 已提交
80 81 82 83
           6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
    - MAX: [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
    - LAST: [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
    - FIRST: [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
84 85 86 87
    )DOC");
  }
};

88
class SequencePoolGradOp : public framework::OperatorWithKernel {
89 90 91
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

92
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
93 94 95 96 97
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Gradient of Out should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("X"), "The input X should not be null.");
    auto og_dims = ctx->GetInputDim(framework::GradVarName("Out"));
    auto x_dims = ctx->GetInputDim("X");
98 99
    PADDLE_ENFORCE_EQ(og_dims.size(), x_dims.size(),
                      "The rank of output grad must equal to Input(X).");
100
    for (int64_t i = 1; i < og_dims.size(); ++i) {
101 102
      PADDLE_ENFORCE_EQ(og_dims[i], x_dims[i], "The dimension mismatch.");
    }
Q
Qiao Longfei 已提交
103
    ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
104
  }
105 106 107 108 109 110

 protected:
  framework::DataType IndicateDataType(
      const framework::ExecutionContext& ctx) const override {
    return framework::ToDataType(ctx.Input<Tensor>("X")->type());
  }
111 112 113 114 115 116
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
117 118
REGISTER_OP(sequence_pool, ops::SequencePoolOp, ops::SequencePoolOpMaker,
            sequence_pool_grad, ops::SequencePoolGradOp);
119
REGISTER_OP_CPU_KERNEL(
120
    sequence_pool, ops::SequencePoolKernel<paddle::platform::CPUPlace, float>);
121
REGISTER_OP_CPU_KERNEL(
122 123
    sequence_pool_grad,
    ops::SequencePoolGradKernel<paddle::platform::CPUPlace, float>);