sequence_pool_op.cc 4.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/operators/sequence_pool_op.h"
16 17 18 19

namespace paddle {
namespace operators {

20
class SequencePoolOp : public framework::OperatorWithKernel {
21 22 23
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

24
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
25
    PADDLE_ENFORCE(ctx->HasInput("X"),
26
                   "Input(X) of SequencePoolOp should not be null.");
Q
Qiao Longfei 已提交
27
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
28
                   "Output(Out) of SequencePoolOp should not be null.");
Q
Qiao Longfei 已提交
29
    ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
30 31 32
  }
};

33
class SequencePoolOpMaker : public framework::OpProtoAndCheckerMaker {
34
 public:
35 36
  SequencePoolOpMaker(framework::OpProto* proto,
                      framework::OpAttrChecker* op_checker)
37
      : OpProtoAndCheckerMaker(proto, op_checker) {
L
Luo Tao 已提交
38
    AddInput("X", "(LoDTensor), the variable-length input of SequencePoolOp");
L
Luo Tao 已提交
39
    AddOutput("Out",
L
Luo Tao 已提交
40 41
              "(Tensor), output of SequencePoolOp, which does not contain LoD "
              "infomation.");
42 43 44 45 46
    AddAttr<int>(
        "strategy",
        "(int, default AVERAGE) the pooling strategy of SequencePoolOp.")
        .SetDefault(AVERAGE)
        .InEnum({AVERAGE, SUM, SQRT, MAX, LAST, FIRST});
47
    AddComment(R"DOC(
48 49
    SequencePoolOp pools features of all time-steps of each instance.

50 51 52 53 54 55 56 57 58
    It supports six pooling strategy:
    - AVERAGE: Out[i] = average_{for each instance in i-th sequence}{X[i]}
    - SUM:     Out[i] = sum_{for each instance in i-th sequence}{X[i]}
    - SQRT:    Out[i] = sum_{for each instance in i-th sequence}{X[i]} 
                        / sqrt(i-th sequence length)
    - LAST:    Out[i] = last instance in i-th sequence X[i]
    - FIRST:   Out[i] = first instance in i-th sequence X[i]
    - MAX:     Out[i] = max_{for each instance in i-th sequence}{X[i]}

L
Luo Tao 已提交
59
    For a mini-batch of 3 variable-length sentences, containing 2, 3, and 2 time-steps:
Q
Qiao Longfei 已提交
60

L
Luo Tao 已提交
61
    Assume X is a [7,M,N] LoDTensor, and X->lod()[0] = [0, 2, 5, 7], 7=2+3+2.
Q
Qiao Longfei 已提交
62
    Besides, for the sake of simplicity, we assume M=1 and N=1,
L
Luo Tao 已提交
63 64
    and the value of X = [[1, 3], [2, 4, 6], [5, 1]].

L
Luo Tao 已提交
65
    Thus, Out is a [3,1,1] Tensor without LoD infomation.
Q
Qiao Longfei 已提交
66
    And for different strategy, the value of Out is as follows:
L
Luo Tao 已提交
67 68 69

    - AVERAGE: [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
    - SUM: [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
Q
Qiao Longfei 已提交
70
    - SQRT: [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
L
Luo Tao 已提交
71 72 73 74
           6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
    - MAX: [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
    - LAST: [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
    - FIRST: [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
75 76 77 78
    )DOC");
  }
};

79
class SequencePoolGradOp : public framework::OperatorWithKernel {
80 81 82
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

83
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
84 85 86 87 88
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Gradient of Out should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("X"), "The input X should not be null.");
    auto og_dims = ctx->GetInputDim(framework::GradVarName("Out"));
    auto x_dims = ctx->GetInputDim("X");
89 90
    PADDLE_ENFORCE_EQ(og_dims.size(), x_dims.size(),
                      "The rank of output grad must equal to Input(X).");
91
    for (int64_t i = 1; i < og_dims.size(); ++i) {
92 93
      PADDLE_ENFORCE_EQ(og_dims[i], x_dims[i], "The dimension mismatch.");
    }
Q
Qiao Longfei 已提交
94
    ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
95 96 97 98 99 100 101
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
102 103
REGISTER_OP(sequence_pool, ops::SequencePoolOp, ops::SequencePoolOpMaker,
            sequence_pool_grad, ops::SequencePoolGradOp);
104
REGISTER_OP_CPU_KERNEL(
105
    sequence_pool, ops::SequencePoolKernel<paddle::platform::CPUPlace, float>);
106
REGISTER_OP_CPU_KERNEL(
107 108
    sequence_pool_grad,
    ops::SequencePoolGradKernel<paddle::platform::CPUPlace, float>);