sequence_pool_op.cc 4.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/operators/sequence_pool_op.h"
16 17 18 19

namespace paddle {
namespace operators {

20
class SequencePoolOp : public framework::OperatorWithKernel {
21 22 23
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

24
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
25
    PADDLE_ENFORCE(ctx->HasInput("X"),
26
                   "Input(X) of SequencePoolOp should not be null.");
Q
Qiao Longfei 已提交
27
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
28
                   "Output(Out) of SequencePoolOp should not be null.");
Q
Qiao Longfei 已提交
29
    ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
30 31 32
  }
};

33
class SequencePoolOpMaker : public framework::OpProtoAndCheckerMaker {
34
 public:
35 36
  SequencePoolOpMaker(framework::OpProto* proto,
                      framework::OpAttrChecker* op_checker)
37
      : OpProtoAndCheckerMaker(proto, op_checker) {
L
Luo Tao 已提交
38
    AddInput("X", "(LoDTensor), the variable-length input of SequencePoolOp");
L
Luo Tao 已提交
39
    AddOutput("Out",
L
Luo Tao 已提交
40 41
              "(Tensor), output of SequencePoolOp, which does not contain LoD "
              "infomation.");
D
dzhwinter 已提交
42 43 44 45
    AddAttr<std::string>(
        "pooltype",
        "(int, default AVERAGE) the pooling pooltype of SequencePoolOp.")
        .SetDefault("AVERAGE");
46
    AddComment(R"DOC(
47 48
    SequencePoolOp pools features of all time-steps of each instance.

D
dzhwinter 已提交
49
    It supports six pooling pooltype:
50 51 52 53 54 55 56 57
    - AVERAGE: Out[i] = average_{for each instance in i-th sequence}{X[i]}
    - SUM:     Out[i] = sum_{for each instance in i-th sequence}{X[i]}
    - SQRT:    Out[i] = sum_{for each instance in i-th sequence}{X[i]} 
                        / sqrt(i-th sequence length)
    - LAST:    Out[i] = last instance in i-th sequence X[i]
    - FIRST:   Out[i] = first instance in i-th sequence X[i]
    - MAX:     Out[i] = max_{for each instance in i-th sequence}{X[i]}

L
Luo Tao 已提交
58
    For a mini-batch of 3 variable-length sentences, containing 2, 3, and 2 time-steps:
Q
Qiao Longfei 已提交
59

L
Luo Tao 已提交
60
    Assume X is a [7,M,N] LoDTensor, and X->lod()[0] = [0, 2, 5, 7], 7=2+3+2.
Q
Qiao Longfei 已提交
61
    Besides, for the sake of simplicity, we assume M=1 and N=1,
L
Luo Tao 已提交
62 63
    and the value of X = [[1, 3], [2, 4, 6], [5, 1]].

L
Luo Tao 已提交
64
    Thus, Out is a [3,1,1] Tensor without LoD infomation.
D
dzhwinter 已提交
65
    And for different pooltype, the value of Out is as follows:
L
Luo Tao 已提交
66 67 68

    - AVERAGE: [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
    - SUM: [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
Q
Qiao Longfei 已提交
69
    - SQRT: [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
L
Luo Tao 已提交
70 71 72 73
           6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
    - MAX: [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
    - LAST: [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
    - FIRST: [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
74 75 76 77
    )DOC");
  }
};

78
class SequencePoolGradOp : public framework::OperatorWithKernel {
79 80 81
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

82
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
83 84 85 86 87
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Gradient of Out should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("X"), "The input X should not be null.");
    auto og_dims = ctx->GetInputDim(framework::GradVarName("Out"));
    auto x_dims = ctx->GetInputDim("X");
88 89
    PADDLE_ENFORCE_EQ(og_dims.size(), x_dims.size(),
                      "The rank of output grad must equal to Input(X).");
90
    for (int64_t i = 1; i < og_dims.size(); ++i) {
91 92
      PADDLE_ENFORCE_EQ(og_dims[i], x_dims[i], "The dimension mismatch.");
    }
Q
Qiao Longfei 已提交
93
    ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
94 95 96 97 98 99 100
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
101 102
REGISTER_OP(sequence_pool, ops::SequencePoolOp, ops::SequencePoolOpMaker,
            sequence_pool_grad, ops::SequencePoolGradOp);
103
REGISTER_OP_CPU_KERNEL(
104
    sequence_pool, ops::SequencePoolKernel<paddle::platform::CPUPlace, float>);
105
REGISTER_OP_CPU_KERNEL(
106 107
    sequence_pool_grad,
    ops::SequencePoolGradKernel<paddle::platform::CPUPlace, float>);