fleet_base.py 41.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
16
import copy
17
import warnings
18
import paddle
19
import os
20
from paddle.fluid.framework import dygraph_only
21
from paddle.fluid import compiler
22
from .role_maker import UserDefinedRoleMaker, PaddleCloudRoleMaker, RoleMakerBase
23
from .strategy_compiler import StrategyCompiler
24
from .distributed_strategy import DistributedStrategy
25 26
from .meta_optimizer_factory import MetaOptimizerFactory
from .runtime_factory import RuntimeFactory
27
from paddle.fluid.wrapped_decorator import wrap_decorator
28
from paddle.fluid.dygraph import parallel_helper
29

30

31 32 33 34 35 36 37 38 39 40 41 42
def _inited_runtime_handler_(func):
    def __impl__(*args, **kwargs):
        cls = args[0]

        if cls._runtime_handle is None:
            raise ValueError("Fleet can not find suitable runtime handler")

        return func(*args, **kwargs)

    return __impl__


43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
def _is_non_distributed_check_(func):
    def __impl__(*args, **kwargs):
        cls = args[0]

        if cls._role_maker is not None and cls._role_maker._is_non_distributed(
        ) is True:
            warnings.warn(
                "%s() function doesn't work when use non_distributed fleet." %
                (func.__name__))
            return

        return func(*args, **kwargs)

    return __impl__


59
inited_runtime_handler = wrap_decorator(_inited_runtime_handler_)
60
is_non_distributed_check = wrap_decorator(_is_non_distributed_check_)
61 62


63 64 65
class Fleet(object):
    """
    Unified API for distributed training of PaddlePaddle
66
    Please reference the https://github.com/PaddlePaddle/FleetX for details
67 68 69 70 71


    Returns:
        Fleet: A Fleet instance

72
    Example for collective training:
1
123malin 已提交
73

74 75
        .. code-block:: python

1
123malin 已提交
76 77
            import paddle
            paddle.enable_static()
78
            import paddle.distributed.fleet as fleet
79 80 81

            fleet.init(is_collective=True)

82 83 84
            strategy = fleet.DistributedStrategy()
            optimizer = paddle.optimizer.SGD(learning_rate=0.001)
            optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
85 86 87 88 89 90 91 92

            # do distributed training


    Example for parameter server training:

        .. code-block:: python

1
123malin 已提交
93 94
            import paddle
            paddle.enable_static()
95 96
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
97 98
            fleet.init(strategy=strategy)

99
            optimizer = paddle.optimizer.SGD(learning_rate=0.001)
100
            optimizer = fleet.distributed_optimizer(optimizer)
101

102 103
            if fleet.is_first_worker():
                print("this is first worker")
104

105 106
            print("current node index: {}".format(fleet.worker_index()))
            print("total number of worker num: {}".format(fleet.worker_num()))
107

108 109 110
            if fleet.is_worker():
                print("this is worker")
            print("worker endpoints: {}".format(fleet.worker_endpoints(to_string=True)))
111

112 113
            print("server num: {}".format(fleet.server_num()))
            print("server endpoints: {}".format(fleet.server_endpoints(to_string=True)))
114

115 116 117
            if fleet.is_server():
                print("this is server")
            fleet.stop_worker()
118 119


120 121 122
    """

    def __init__(self):
123
        self._role_maker = None
124
        self.strategy_compiler = None
125
        self._is_collective = False
126
        self._runtime_handle = None
D
Dong Daxiang 已提交
127 128
        self._util = None
        self._context = {}
129

130
    def init(self, role_maker=None, is_collective=False, strategy=None):
131 132 133
        """
        Initialize role_maker in Fleet.

134 135 136 137 138 139 140 141 142 143 144
        This function is responsible for the distributed architecture
        what you want to run your code behind.

        Args:
            role_maker (RoleMakerBase, optional): A ``RoleMakerBase`` containing the configuration
                of environment variables related to distributed training.If you did not initialize 
                the rolemaker by yourself, it will be automatically initialized to PaddleRoleMaker.
                The default value is None.
            is_collective (Boolean, optional): A ``Boolean`` variable determines whether the program 
                runs on the CPU or GPU. False means set distributed training using CPU, and True means
                GPU.The default value is False.The default value is False.
145 146 147 148
            strategy (DistributedStrategy): Extra properties for distributed training. 
                For details, please refer to paddle.distributed.fleet.DistributedStrategy. Default: None.


149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
        Returns:
            None

        Examples1:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

        Examples2:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init(is_collective=True)

        Examples3:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
1
123malin 已提交
171
                role = fleet.PaddleCloudRoleMaker()
172
                fleet.init(role)
173

174 175 176 177 178 179 180 181
        Examples4:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                fleet.init(strategy=strategy)

182
        """
183 184 185
        if strategy is None:
            strategy = DistributedStrategy()
        self._user_defined_strategy = copy.deepcopy(strategy)
186 187

        if role_maker is None:
188 189 190 191 192 193
            if isinstance(is_collective, bool):
                self._is_collective = is_collective
                self._role_maker = PaddleCloudRoleMaker(
                    is_collective=self._is_collective)
            else:
                raise ValueError(
194 195
                    "`is_collective` should be instance of `bool`, but got {}".
                    format(type(is_collective)))
196
        else:
197 198 199 200 201 202
            if isinstance(role_maker, RoleMakerBase):
                self._role_maker = role_maker
            else:
                raise ValueError(
                    "`role_maker` should be subclass of `RoleMakerBase`, but got {}".
                    format(type(role_maker)))
203
        self._role_maker._generate_role()
204

205 206 207
        import paddle.distributed.fleet as fleet
        fleet.util._set_role_maker(self._role_maker)

208
        self.strategy_compiler = StrategyCompiler()
209 210 211 212 213 214 215 216 217

        if self._role_maker._is_non_distributed() and self._is_collective:
            if paddle.fluid.core.is_compiled_with_cuda():
                gpus_num = paddle.fluid.core.get_cuda_device_count()
                if gpus_num != 1:
                    raise ValueError(
                        "CUDA_VISIBLE_DEVICES shoule be set only 1 card if you use `python` to launch fleet program."
                    )

218
        if paddle.fluid.framework.in_dygraph_mode():
219 220
            if self.worker_num() == 1:
                return
221 222 223 224
            if parallel_helper._is_parallel_ctx_initialized():
                warnings.warn(
                    "The dygraph parallel environment has been initialized.")
            else:
225 226 227 228 229 230 231 232 233
                # FLAGS_nccl_nrings is used for dynamic graph multi-stream communication
                if "FLAGS_nccl_nrings" in os.environ:
                    warnings.warn(
                        "You have set the environment variable FLAGS_nccl_nrings "
                        "outside the program, so the nccl_comm_num in "
                        "DistributedStrategy will not take effect here.")
                else:
                    os.environ["FLAGS_nccl_nrings"] = str(
                        self._user_defined_strategy.nccl_comm_num)
234
                paddle.distributed.init_parallel_env()
235 236 237 238 239 240 241 242

    def is_first_worker(self):
        """
        Check whether the node is the first instance of worker.

        Returns:
            bool: True if this is the first node of worker,
                  False if not.
243

244 245 246 247 248 249 250 251
        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.is_first_worker()

252
        """
253
        return self._role_maker._is_first_worker()
254 255 256 257 258 259 260

    def worker_index(self):
        """
        Get current worker index.

        Returns:
            int: node id
261 262 263 264

        Examples:

            .. code-block:: python
1
123malin 已提交
265

266 267 268 269
                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.worker_index()

270
        """
271
        return self._role_maker._worker_index()
272 273 274 275 276 277 278

    def worker_num(self):
        """
        Get current total worker number.

        Returns:
            int: worker numbers
1
123malin 已提交
279

280
        Examples:
1
123malin 已提交
281

282 283 284 285 286 287
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.worker_num()

288
        """
289
        return self._role_maker._worker_num()
290 291 292 293 294 295 296 297

    def is_worker(self):
        """
        Check whether the node is an instance of worker.

        Returns:
            bool: True if this is a node of worker,
                  False if not.
298 299

        Examples:
1
123malin 已提交
300

301 302 303 304 305 306
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.is_worker()

307
        """
308
        return self._role_maker._is_worker()
309 310 311

    def worker_endpoints(self, to_string=False):
        """
312
        Get current worker endpoints, such as ["127.0.0.1:1001", "127.0.0.1:1002"].
313 314 315

        Returns:
            list/string: server endpoints
316 317

        Examples:
1
123malin 已提交
318

319 320 321 322 323 324
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.worker_endpoints()

325 326
        """
        if to_string:
327
            return ",".join(self._role_maker._get_trainer_endpoints())
328
        else:
329
            return self._role_maker._get_trainer_endpoints()
330 331 332 333 334 335 336

    def server_num(self):
        """
        Get current total worker number.

        Returns:
            int: server number
337 338

        Examples:
1
123malin 已提交
339

340
            .. code-block:: python
1
123malin 已提交
341 342 343 344

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.server_num()
345
        """
346
        return len(self._role_maker._get_pserver_endpoints())
347 348 349 350 351 352 353

    def server_index(self):
        """
        Get current server index.

        Returns:
            int: node id
354 355

        Examples:
1
123malin 已提交
356

357 358 359 360 361 362
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.server_index()

363
        """
364
        return self._role_maker._server_index()
365 366 367 368 369 370 371

    def server_endpoints(self, to_string=False):
        """
        Get current server endpoints, such as ["127.0.0.1:1001", "127.0.0.1:1002"].

        Returns:
            list/string: server endpoints
372 373

        Examples:
1
123malin 已提交
374

375 376 377 378 379 380
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.server_endpoints()

381
        """
382

383
        if to_string:
384
            return ",".join(self._role_maker._get_pserver_endpoints())
385
        else:
386
            return self._role_maker._get_pserver_endpoints()
387 388 389 390 391 392 393 394

    def is_server(self):
        """
        Check whether the node is an instance of server.

        Returns:
            bool: True if this is a node of server,
                  False if not.
395 396 397 398

        Examples:

            .. code-block:: python
1
123malin 已提交
399

400 401 402 403
                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.is_server()

404
        """
405
        return self._role_maker._is_server(
406
        ) or self._role_maker._is_heter_worker()
407 408 409

    def barrier_worker(self):
        """
410 411 412 413
        barrier all workers

        Returns:
            None
414
        """
415
        self._role_maker._barrier("worker")
416

417
    @is_non_distributed_check
418
    @inited_runtime_handler
419 420
    def init_worker(self):
        """
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
        initialize `Communicator` for parameter server training.


        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_worker()

439 440 441
        """
        self._runtime_handle._init_worker()

442
    @is_non_distributed_check
443
    @inited_runtime_handler
444
    def init_server(self, *args, **kwargs):
445
        """
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
        init_server executor to initialize startup program,
        if the `args` is not empty, it will run load_persistables for increment training.


        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_server()

465
        """
466
        self._runtime_handle._init_server(*args, **kwargs)
467

468
    @is_non_distributed_check
469
    @inited_runtime_handler
470 471
    def run_server(self):
        """
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
        run server will run pserver main program with executor.

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                if fleet.is_server():
                    fleet.init_server()

490 491 492
        """
        self._runtime_handle._run_server()

493
    @is_non_distributed_check
494
    @inited_runtime_handler
495 496
    def stop_worker(self):
        """
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
        stop `Communicator` and give training complete notice to parameter server.

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_server()

514 515 516
        """
        self._runtime_handle._stop_worker()

517 518 519 520 521 522
    def save_inference_model(self,
                             executor,
                             dirname,
                             feeded_var_names,
                             target_vars,
                             main_program=None,
523 524
                             export_for_deployment=True,
                             mode=0):
525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
        """
        save inference model for inference.

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_server()

        """

545 546
        self._runtime_handle._save_inference_model(
            executor, dirname, feeded_var_names, target_vars, main_program,
547
            export_for_deployment, mode)
548

549
    def save_persistables(self, executor, dirname, main_program=None, mode=0):
550 551
        """

1
123malin 已提交
552
        saves all persistable tensors from :code:`main_program` to
553 554
        the folder :code:`dirname`. You can refer to

1
123malin 已提交
555 556
        The :code:`dirname` is used to specify the folder where persistable tensors
        are going to be saved. If you would like to save tensors in separate
557 558 559
        files, set :code:`filename` None.

        Args:
1
123malin 已提交
560
            executor(Executor): The executor to run for saving persistable tensors.
561 562 563 564 565
                                You can refer to :ref:`api_guide_executor_en` for
                                more details.

            dirname(str, optional): The saving directory path.
                                When you need to save the parameter to the memory, set it to None.
1
123malin 已提交
566
            main_program(Program, optional): The program whose persistbale tensors will
567 568 569 570 571 572 573 574 575 576
                                             be saved. Default: None.


        Returns:
            None

        Examples:

            .. code-block:: text

1
123malin 已提交
577 578
                import paddle
                paddle.enable_static()
579 580 581 582 583 584 585
                import paddle.distributed.fleet as fleet

                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

1
123malin 已提交
586 587
                exe = paddle.static.Executor(paddle.CPUPlace())
                fleet.save_persistables(exe, "dirname", paddle.static.default_main_program())
588 589 590

        """

591 592
        self._runtime_handle._save_persistables(executor, dirname, main_program,
                                                mode)
593

594 595 596
    def shrink(self, threshold):
        self._runtime_handle._shrink(threshold)

597
    def distributed_optimizer(self, optimizer, strategy=None):
598
        """
599 600 601 602 603 604 605
        Optimizer for distributed training.

        For the distributed training, this method would rebuild a new instance of DistributedOptimizer.
        Which has basic Optimizer function and special features for distributed training.

        Args:
            optimizer(Optimizer): The executor to run for init server.
606 607 608 609 610
            strategy(DistributedStrategy): Extra properties for distributed optimizer. 
                It is recommended to use DistributedStrategy in fleet.init(). The strategy
                here is for compatibility. If the strategy in fleet.distributed_optimizer() 
                is not None, then it will overwrite the DistributedStrategy in fleet.init(), 
                which will take effect in distributed training.
611

612
        Returns:
613
            Fleet: instance of fleet.
614 615

        Examples:
616

617
            .. code-block:: python
618

1
123malin 已提交
619
                import paddle
620
                import paddle.distributed.fleet as fleet
1
123malin 已提交
621
                fleet.init(is_collective=True)
622 623 624 625
                strategy = fleet.DistributedStrategy()
                optimizer = paddle.optimizer.SGD(learning_rate=0.001)
                optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)

626 627
        """
        self.user_defined_optimizer = optimizer
628

629 630
        if strategy is not None:
            warnings.warn(
631 632 633 634
                "It is recommended to use DistributedStrategy "
                "in fleet.init(). The strategy here is only for compatibility. "
                "If the strategy in fleet.distributed_optimizer() is "
                "not None, then it will overwrite the DistributedStrategy in fleet.init(), "
635 636
                "which will take effect in distributed training.")
            self._user_defined_strategy = copy.deepcopy(strategy)
D
Dong Daxiang 已提交
637 638

        self._context = {}
639 640
        return self

641
    @dygraph_only
642
    def distributed_model(self, model):
643
        """
644 645 646 647 648 649 650
        Return distributed data parallel model (Only work in dygraph mode)

        Args:
            model (Layer): the user-defind model which inherits Layer.

        Returns:
            distributed data parallel model which inherits Layer.
651 652

        Examples:
653

654 655
            .. code-block:: python

656 657 658 659 660 661 662 663 664
                import paddle
                import paddle.nn as nn
                from paddle.distributed import fleet

                class LinearNet(nn.Layer):
                    def __init__(self):
                        super(LinearNet, self).__init__()
                        self._linear1 = nn.Linear(10, 10)
                        self._linear2 = nn.Linear(10, 1)
665

666 667
                    def forward(self, x):
                        return self._linear2(self._linear1(x))
668

1
123malin 已提交
669
                # 1. initialize fleet environment
670 671
                fleet.init(is_collective=True)

1
123malin 已提交
672
                # 2. create layer & optimizer
673 674 675 676 677
                layer = LinearNet()
                loss_fn = nn.MSELoss()
                adam = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=layer.parameters())

1
123malin 已提交
678
                # 3. get data_parallel model using fleet
679 680 681
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)

1
123malin 已提交
682
                # 4. run layer
683 684 685 686 687 688 689 690 691 692 693 694
                inputs = paddle.randn([10, 10], 'float32')
                outputs = dp_layer(inputs)
                labels = paddle.randn([10, 1], 'float32')
                loss = loss_fn(outputs, labels)

                print("loss:", loss.numpy())

                loss.backward()

                adam.step()
                adam.clear_grad()

695

696 697
        """
        assert model is not None
698 699
        self.model = paddle.DataParallel(
            model,
700 701 702
            comm_buffer_size=self._user_defined_strategy.fuse_grad_size_in_MB,
            last_comm_buffer_size=self._user_defined_strategy.
            last_comm_group_size_MB)
703 704 705 706 707 708
        return self.model

    @dygraph_only
    def state_dict(self):
        """
        Get state dict information from optimizer.
709
        (Only work in dygraph mode)
710 711 712 713 714 715 716

        Returns: 
            state_dict(dict) : dict contains all the Tensor used by optimizer

        Examples:
            .. code-block:: python

717 718 719 720 721
                import numpy as np
                import paddle
                from paddle.distributed import fleet

                fleet.init(is_collective=True)
722

723
                value = np.arange(26).reshape(2, 13).astype("float32")
1
123malin 已提交
724
                a = paddle.to_tensor(value)
725

726 727
                layer = paddle.nn.Linear(13, 5)
                adam = paddle.optimizer.Adam(learning_rate=0.01, parameters=layer.parameters())
728

729 730 731
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)
                state_dict = adam.state_dict()
732 733 734 735 736 737 738 739
        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.state_dict()

    @dygraph_only
    def set_state_dict(self, state_dict):
        """
        Load optimizer state dict.
740
        (Only work in dygraph mode)
741 742 743 744

        Args: 
            state_dict(dict) : Dict contains all the Tensor needed by optimizer

745 746
        Returns:
            None
747 748 749 750

        Examples:
            .. code-block:: python

751 752 753
                import numpy as np
                import paddle
                from paddle.distributed import fleet
754

755 756 757
                fleet.init(is_collective=True)

                value = np.arange(26).reshape(2, 13).astype("float32")
1
123malin 已提交
758
                a = paddle.to_tensor(value)
759

760 761
                layer = paddle.nn.Linear(13, 5)
                adam = paddle.optimizer.Adam(learning_rate=0.01, parameters=layer.parameters())
762

763 764 765
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)
                state_dict = adam.state_dict()
1
123malin 已提交
766 767 768
                paddle.save(state_dict, "paddle_dy")
                para_state_dict = paddle.load("paddle_dy")
                adam.set_state_dict(para_state_dict)
769 770 771 772 773 774 775 776
        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.set_state_dict(state_dict)

    @dygraph_only
    def set_lr(self, value):
        """
        Set the value of the learning rate manually in the optimizer. 
777
        (Only work in dygraph mode)
778

779 780 781
        Args:
            value (float|Tensor): the value of learning rate

782 783
        Returns: 
            None 
784 785 786 787

        Examples:
            .. code-block:: python

788 789 790
                import numpy as np
                import paddle
                from paddle.distributed import fleet
791

792
                fleet.init(is_collective=True)
793

794
                value = np.arange(26).reshape(2, 13).astype("float32")
1
123malin 已提交
795
                a = paddle.to_tensor(value)
796

797 798
                layer = paddle.nn.Linear(13, 5)
                adam = paddle.optimizer.Adam(learning_rate=0.01, parameters=layer.parameters())
799

800 801 802 803 804 805 806 807 808 809 810 811 812 813
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)

                lr_list = [0.2, 0.3, 0.4, 0.5, 0.6]
                for i in range(5):
                    adam.set_lr(lr_list[i])
                    lr = adam.get_lr()
                    print("current lr is {}".format(lr))
                # Print:
                #    current lr is 0.2
                #    current lr is 0.3
                #    current lr is 0.4
                #    current lr is 0.5
                #    current lr is 0.6
814 815 816 817 818 819 820 821
        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.set_lr(value)

    @dygraph_only
    def get_lr(self):
        """
        Get current step learning rate.
822
        (Only work in dygraph mode)
823 824 825 826 827

        Returns:
            float: The learning rate of the current step.

        Examples:
1
123malin 已提交
828

829 830
            .. code-block:: python

831 832 833 834 835
                import numpy as np
                import paddle
                from paddle.distributed import fleet

                fleet.init(is_collective=True)
836

837
                value = np.arange(26).reshape(2, 13).astype("float32")
1
123malin 已提交
838
                a = paddle.to_tensor(value)
839

840 841
                layer = paddle.nn.Linear(13, 5)
                adam = paddle.optimizer.Adam(learning_rate=0.01, parameters=layer.parameters())
842

843 844
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)
845

846 847
                lr = adam.get_lr()
                print(lr) # 0.01
848 849 850 851 852 853 854 855
        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.get_lr()

    @dygraph_only
    def step(self):
        """
        Execute the optimizer once.
856
        (Only work in dygraph mode)
857

858 859
        Returns:
            None
860 861

        Examples:
1
123malin 已提交
862

863 864
            .. code-block:: python

865 866 867
                import paddle
                import paddle.nn as nn
                from paddle.distributed import fleet
868

869 870 871 872 873
                class LinearNet(nn.Layer):
                    def __init__(self):
                        super(LinearNet, self).__init__()
                        self._linear1 = nn.Linear(10, 10)
                        self._linear2 = nn.Linear(10, 1)
874

875 876
                    def forward(self, x):
                        return self._linear2(self._linear1(x))
877

1
123malin 已提交
878
                # 1. initialize fleet environment
879 880
                fleet.init(is_collective=True)

1
123malin 已提交
881
                # 2. create layer & optimizer
882 883 884 885 886
                layer = LinearNet()
                loss_fn = nn.MSELoss()
                adam = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=layer.parameters())

1
123malin 已提交
887
                # 3. get data_parallel model using fleet
888 889 890
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)

1
123malin 已提交
891
                # 4. run layer
892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911
                inputs = paddle.randn([10, 10], 'float32')
                outputs = dp_layer(inputs)
                labels = paddle.randn([10, 1], 'float32')
                loss = loss_fn(outputs, labels)

                print("loss:", loss.numpy())

                loss.backward()

                adam.step()
                adam.clear_grad()


        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.step()

    @dygraph_only
    def clear_grad(self):
        """
912 913
        Clear the gradients of all optimized parameters for model.
        (Only work in dygraph mode)
914

915 916
        Returns: 
            None
917 918

        Examples:
1
123malin 已提交
919

920 921
            .. code-block:: python

922 923 924
                import paddle
                import paddle.nn as nn
                from paddle.distributed import fleet
925

926 927 928 929 930
                class LinearNet(nn.Layer):
                    def __init__(self):
                        super(LinearNet, self).__init__()
                        self._linear1 = nn.Linear(10, 10)
                        self._linear2 = nn.Linear(10, 1)
931

932 933
                    def forward(self, x):
                        return self._linear2(self._linear1(x))
934

1
123malin 已提交
935
                # 1. initialize fleet environment
936 937
                fleet.init(is_collective=True)

1
123malin 已提交
938
                # 2. create layer & optimizer
939 940 941 942 943
                layer = LinearNet()
                loss_fn = nn.MSELoss()
                adam = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=layer.parameters())

1
123malin 已提交
944
                # 3. get data_parallel model using fleet
945 946 947
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)

1
123malin 已提交
948
                # 4. run layer
949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
                inputs = paddle.randn([10, 10], 'float32')
                outputs = dp_layer(inputs)
                labels = paddle.randn([10, 1], 'float32')
                loss = loss_fn(outputs, labels)

                print("loss:", loss.numpy())

                loss.backward()

                adam.step()
                adam.clear_grad()

        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.clear_grad()

965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
    def amp_init(self,
                 place,
                 scope=None,
                 test_program=None,
                 use_fp16_test=False):
        """
        Init the amp training, such as cast fp32 parameters to fp16 type.
  
        Args:
            place(CUDAPlace): place is used to initialize 
                fp16 parameters with fp32 values.
            scope(Scope): The scope is used to find fp32 parameters.
            test_program(Program): The program is used for testing.
            use_fp16_test(bool): Whether to use fp16 testing.
            
        Examples:
            .. code-block:: python

                import numpy as np
                import paddle
                import paddle.nn.functional as F
                paddle.enable_static()

                def run_example_code():
                    place = paddle.CUDAPlace(0)
                    exe = paddle.static.Executor(place)
                    data = paddle.static.data(name='X', shape=[None, 1, 28, 28], dtype='float32')
                    conv2d = paddle.static.nn.conv2d(input=data, num_filters=6, filter_size=3)
                    # 1) Use fp16_guard to control the range of fp16 kernels used.
                    with paddle.static.amp.fp16_guard():
                        bn = paddle.static.nn.batch_norm(input=conv2d, act="relu")
                        pool = F.max_pool2d(bn, kernel_size=2, stride=2)
                        hidden = paddle.static.nn.fc(pool, size=10)
                        loss = paddle.mean(hidden)
                    # 2) Create the optimizer and set `multi_precision` to True.
                    # Setting `multi_precision` to True can avoid the poor accuracy
                    # or the slow convergence in a way. 
                    optimizer = paddle.optimizer.Momentum(learning_rate=0.01, multi_precision=True)
                    # 3) These ops in `custom_black_list` will keep in the float32 computation type.
                    amp_list = paddle.static.amp.CustomOpLists(
                        custom_black_list=['pool2d'])
                    # 4) The entry of Paddle AMP.
                    # Enable pure fp16 training by setting `use_pure_fp16` to True.
                    optimizer = paddle.static.amp.decorate(
                        optimizer,
                        amp_list,
                        init_loss_scaling=128.0,
                        use_dynamic_loss_scaling=True,
                        use_pure_fp16=True)
                    # If you don't use the default_startup_program(), you sholud pass
                    # your defined `startup_program` into `minimize`.
                    optimizer.minimize(loss)
                    exe.run(paddle.static.default_startup_program())
                    # 5) Use `amp_init` after FP32 parameters initialization(such as `exe.run(startup_program)`).
                    # If you want to perform the testing process, you should pass `test_program` into `amp_init`.
                    optimizer.amp_init(place, scope=paddle.static.global_scope())
                    
                if paddle.is_compiled_with_cuda() and len(paddle.static.cuda_places()) > 0:
                    run_example_code()       
        """
        # imitate target optimizer retrieval
1026 1027
        return self.user_defined_optimizer.amp_init(place, scope, test_program,
                                                    use_fp16_test)
1028

D
Dong Daxiang 已提交
1029 1030 1031 1032 1033 1034 1035 1036 1037
    def _final_strategy(self):
        if "valid_strategy" not in self._context:
            print(
                "WARNING: You may need to call minimize function before this function is called"
            )
            return {}
        else:
            return self._context["valid_strategy"]

1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
    def _get_applied_meta_list(self):
        if "applied_meta_list" not in self._context:
            print(
                "WARNING: You may need to call minimize function before _get_applied_meta_list called"
            )
            return []
        else:
            return self._context["applied_meta_list"]

    def _get_applied_graph_list(self):
        if "applied_graph_list" not in self._context:
            print(
                "WARNING: You may need to call minimize function before _get_applied_graph_list called"
            )
            return []
        else:
            return self._context["applied_graph_list"]

1056 1057 1058 1059 1060 1061 1062 1063 1064
    def minimize(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None):
        """
        Add distributed operations to minimize ``loss`` by updating ``parameter_list``.

        Args:
1
123malin 已提交
1065
            loss (Tensor): A ``Tensor`` containing the value to minimize.
1066 1067 1068
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameter_list``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
1
123malin 已提交
1069
            parameter_list (Iterable, optional): Iterable of ``Tensor`` or ``Tensor.name`` to update
1070 1071
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
1
123malin 已提交
1072
            no_grad_set (set, optional): Set of ``Tensor``  or ``Tensor.name`` that don't need
1073 1074 1075 1076
                to be updated. The default value is None.

        Returns:
            tuple: tuple (optimize_ops, params_grads), A list of operators appended
1
123malin 已提交
1077
            by minimize and a list of (param, grad) tensor pairs, param is
1078
            ``Parameter``, grad is the gradient value corresponding to the parameter.
1079 1080
            The returned tuple can be passed to ``fetch_list`` in ``Executor.run()`` to
            indicate program pruning. If so, the program will be pruned by ``feed`` and
1081 1082 1083
            ``fetch_list`` before run, see details in ``Executor``.

        Examples:
1
123malin 已提交
1084

1085
            .. code-block:: python
1086

1087
                import paddle
1
123malin 已提交
1088
                paddle.enable_static()
1089
                import paddle.distributed.fleet as fleet
1
123malin 已提交
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
                import paddle.nn.functional as F

                hid_dim = 10
                label_dim = 2
                input_x = paddle.static.data(name='x', shape=[None, 13], dtype='float32')
                input_y = paddle.static.data(name='y', shape=[None, 1], dtype='int64')
                fc_1 = paddle.static.nn.fc(x=input_x, size=hid_dim, activation='tanh')
                fc_2 = paddle.static.nn.fc(x=fc_1, size=hid_dim, activation='tanh')
                prediction = paddle.static.nn.fc(x=[fc_2], size=label_dim, activation='softmax')
                cost = F.cross_entropy(input=prediction, label=input_y)
                avg_cost = paddle.mean(x=cost)
1101

1
123malin 已提交
1102
                fleet.init(is_collective=True)
1103 1104 1105 1106
                strategy = fleet.DistributedStrategy()
                optimizer = paddle.optimizer.SGD(learning_rate=0.001)
                optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
                optimizer.minimize(avg_cost)
1107

1108
                # for more examples, please reference https://github.com/PaddlePaddle/FleetX
1109 1110

        """
D
Dong Daxiang 已提交
1111 1112 1113
        context = {}
        context["user_defined_strategy"] = copy.deepcopy(
            self._user_defined_strategy)
1114 1115 1116
        if paddle.fluid.framework.in_dygraph_mode():
            # imitate target optimizer retrieval
            target_opt = self.user_defined_optimizer
D
Dong Daxiang 已提交
1117
            self._context = context
1118 1119
            return target_opt.minimize(loss)

1120 1121
        # cache original feed forward program
        self.origin_main_program = loss.block.program
1122 1123
        context["origin_main_program"] = self.origin_main_program
        context["loss"] = loss
1124 1125
        if startup_program == None:
            self.origin_startup_program = \
1126 1127
                paddle.static.default_startup_program().clone(for_test=False)
            startup_program = paddle.static.default_startup_program()
1128 1129 1130
        else:
            self.origin_startup_program = \
                startup_program.clone(for_test=False)
1131

1132 1133
        context["origin_startup_program"] = startup_program
        context["role_maker"] = self._role_maker
1134 1135 1136 1137 1138

        # compile time
        distributed_optimizer_list = \
            MetaOptimizerFactory()._get_valid_meta_optimizers(
                self.user_defined_optimizer)
D
Dong Daxiang 已提交
1139

D
Dong Daxiang 已提交
1140 1141 1142
        context["user_defined_strategy"] = copy.deepcopy(
            self._user_defined_strategy)
        copy_user_defined_strategy = copy.deepcopy(self._user_defined_strategy)
1143 1144 1145 1146 1147 1148

        # trigger the auto-parallel in very strict condition
        # strategy = DistributedStrategy()
        # strategy.auto = True
        # optimizer = paddle.optimizer.SGD(learning_rate=0.1)
        # optimizer = fleet.distributed_optimizer(optimizer, strategy)
D
Dong Daxiang 已提交
1149
        if copy_user_defined_strategy._is_strict_auto():
1150 1151
            # turn on all the strategy for each optimizer
            for opt in distributed_optimizer_list:
D
Dong Daxiang 已提交
1152
                opt._enable_strategy(copy_user_defined_strategy, context)
1153

1154 1155
        valid_optimizer_list = []
        valid_graph_optimizer_list = []
D
Dong Daxiang 已提交
1156
        can_not_apply_optimizer_list = []
1157 1158 1159 1160
        # recall meta optimizers for ranking
        for opt in distributed_optimizer_list:
            opt._set_basic_info(loss, self._role_maker,
                                self.user_defined_optimizer,
D
Dong Daxiang 已提交
1161
                                copy_user_defined_strategy)
1162 1163
            if opt._can_apply() and not opt._is_graph_out():
                valid_optimizer_list.append(opt)
D
Dong Daxiang 已提交
1164
            elif opt._can_apply() and opt._is_graph_out():
1165
                valid_graph_optimizer_list.append(opt)
D
Dong Daxiang 已提交
1166 1167
            else:
                can_not_apply_optimizer_list.append(opt)
1168
        # combine recalled meta optimizers to be a valid meta optimizer
D
Dong Daxiang 已提交
1169
        meta_optimizer, graph_optimizer = \
1170 1171
            self.strategy_compiler.generate_optimizer(
                loss, self._role_maker, self.user_defined_optimizer,
D
Dong Daxiang 已提交
1172
                copy_user_defined_strategy, valid_optimizer_list,
1173
                valid_graph_optimizer_list)
D
Dong Daxiang 已提交
1174

D
Dong Daxiang 已提交
1175
        valid_strategy = self.strategy_compiler._get_valid_strategy(
D
Dong Daxiang 已提交
1176 1177 1178
            copy_user_defined_strategy, can_not_apply_optimizer_list)

        context["valid_strategy"] = copy.deepcopy(valid_strategy)
1179

1180 1181 1182 1183 1184 1185
        applied_meta_list = self.strategy_compiler._get_applied_meta_list()
        applied_graph_list = self.strategy_compiler._get_applied_graph_list()

        context['applied_meta_list'] = applied_meta_list
        context['applied_graph_list'] = applied_graph_list

D
Dong Daxiang 已提交
1186
        self._context = context
1187

D
Dong Daxiang 已提交
1188
        self.valid_strategy = valid_strategy
1189
        self.valid_strategy._enable_env()
D
Dong Daxiang 已提交
1190

1191 1192
        optimize_ops = []
        params_grads = []
1193

1194 1195 1196 1197 1198 1199 1200 1201 1202
        if self._role_maker._is_non_distributed() and not self._is_collective:
            if self._runtime_handle is None:
                self._runtime_handle = RuntimeFactory()._create_runtime(context)

            compiled_program = compiler.CompiledProgram(
                self.origin_main_program).with_data_parallel(
                    loss_name=loss.name, share_vars_from=None)
            loss.block.program._graph = compiled_program
            return self.user_defined_optimizer.minimize(
M
MRXLT 已提交
1203
                loss, startup_program, parameter_list, no_grad_set=no_grad_set)
1204

1205 1206
        if meta_optimizer:
            optimize_ops, params_grads = meta_optimizer.minimize(
M
MRXLT 已提交
1207
                loss, startup_program, parameter_list, no_grad_set=no_grad_set)
1208

1209
            default_program = paddle.static.default_main_program()
1210 1211 1212 1213

            if id(default_program) != id(loss.block.program):
                paddle.fluid.framework.switch_main_program(loss.block.program)

1214 1215
        else:
            optimize_ops, params_grads = self.user_defined_optimizer.minimize(
M
MRXLT 已提交
1216
                loss, startup_program, parameter_list, no_grad_set=no_grad_set)
1217

1218 1219
        context["program_optimize_ops"] = optimize_ops
        context["program_params_grads"] = params_grads
1220

1221
        if graph_optimizer:
D
Dong Daxiang 已提交
1222
            optimize_ops, params_grads = graph_optimizer.minimize(
M
MRXLT 已提交
1223
                loss, startup_program, parameter_list, no_grad_set=no_grad_set)
1224 1225 1226 1227
            # since we do not encourage users to use graph operations
            # if a graph optimizer takes effect, mostly
            # optimizers_ops and params_grads are None
            # i.e. users can not modify current computation graph anymore
1228 1229 1230
            context["graph_optimize_ops"] = optimize_ops
            context["graph_optimize_grads"] = params_grads

1231
        if self._runtime_handle is None:
1232
            self._runtime_handle = RuntimeFactory()._create_runtime(context)
1233

1234 1235
        import paddle.distributed.fleet as fleet
        fleet.util._set_strategy(context["valid_strategy"])
1236 1237

        return optimize_ops, params_grads