dense_tensor.cc 9.6 KB
Newer Older
1
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/phi/core/dense_tensor.h"
16

17 18 19 20
#include "paddle/phi/common/bfloat16.h"
#include "paddle/phi/common/complex.h"
#include "paddle/phi/common/float16.h"
#include "paddle/phi/core/compat/convert_utils.h"
21

22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
/**
 * [ Why still include the fluid headers? ]
 *
 * We hope to organize the basic implementation of Tensor and the logic related
 * to Tensor computation into an independent library, which we call
 * [Tensor Operation Library, phi], so we extract or rewrite the original
 * Kernels.
 *
 * In the future, the training library, inference library and custom operators
 * will link to this Tensor Operation library.
 *
 * However, if we directly split the link relation, we need to make too many
 * changes, which will affect the stability of the framework, so here we still
 * rely on the implementation of the framework, which is a intermediate state.
 *
 * In the future, the necessary components will be moved to the this library,
 * or the corresponding components will be re-implemented.
 */
40
#include "paddle/fluid/memory/malloc.h"
41

42
namespace phi {
43

44
DenseTensor::DenseTensor(Allocator* a, const DenseTensorMeta& meta)
45
    : meta_(meta), holder_(a->Allocate(SizeOf(dtype()) * numel())) {}
46

47
DenseTensor::DenseTensor(Allocator* a, DenseTensorMeta&& meta)
48
    : meta_(std::move(meta)), holder_(a->Allocate(SizeOf(dtype()) * numel())) {}
49

50
DenseTensor::DenseTensor(const std::shared_ptr<phi::Allocation>& holder,
51
                         const DenseTensorMeta& meta)
52
    : meta_(meta), holder_(holder) {}
53

54
DenseTensor::DenseTensor(const DenseTensor& other) : meta_(other.meta()) {
55
  holder_ = other.holder_;
56 57
  storage_properties_ =
      std::move(CopyStorageProperties(other.storage_properties_));
58
  inplace_version_counter_ = other.inplace_version_counter_;
59 60

#ifdef PADDLE_WITH_MKLDNN
61
  mem_desc_ = other.mem_desc_;
62 63
#endif
}
64

65 66
DenseTensor& DenseTensor::operator=(const DenseTensor& other) {
  meta_ = other.meta();
67
  holder_ = other.holder_;
68 69
  storage_properties_ =
      std::move(CopyStorageProperties(other.storage_properties_));
70
  inplace_version_counter_ = other.inplace_version_counter_;
71
#ifdef PADDLE_WITH_MKLDNN
72
  mem_desc_ = other.mem_desc_;
73
#endif
74 75 76
  return *this;
}

77 78
DenseTensor& DenseTensor::operator=(DenseTensor&& other) {
  meta_ = std::move(other.meta_);
79
  std::swap(holder_, other.holder_);
80
  storage_properties_ = std::move(other.storage_properties_);
81
  std::swap(inplace_version_counter_, other.inplace_version_counter_);
82 83 84
#ifdef PADDLE_WITH_MKLDNN
  mem_desc_ = other.mem_desc_;
#endif
85 86 87
  return *this;
}

88 89 90 91 92 93 94 95
int64_t DenseTensor::numel() const {
  if (meta_.is_scalar) {
    return 1;
  }
  return product(meta_.dims);
}

bool DenseTensor::IsSharedWith(const DenseTensor& b) const {
96
  return holder_ && holder_ == b.Holder();
97 98
}

99 100 101 102 103
void* DenseTensor::AllocateFrom(Allocator* allocator,
                                DataType dtype,
                                size_t requested_size) {
  PADDLE_ENFORCE_NOT_NULL(
      allocator,
104
      phi::errors::InvalidArgument(
105 106 107 108 109 110 111
          "Required allocator shall not be nullptr, but received nullptr."));
  if (this->dtype() != dtype) {
    VLOG(10) << "change data type in mutbale_data, target dtype - " << dtype;
    meta_.dtype = dtype;
  }
  PADDLE_ENFORCE(
      valid(),
112
      phi::errors::PreconditionNotMet(
113 114 115 116 117
          "The meta data must be valid when call the mutable data function."));
  size_t bytes = numel() * SizeOf(this->dtype());
  if (requested_size) {
    PADDLE_ENFORCE_GE(requested_size,
                      bytes,
118
                      phi::errors::InvalidArgument(
119 120 121 122 123 124
                          "The reserved size %d should be enough to meet the "
                          "volume required by metadata %d.",
                          requested_size,
                          bytes));
    bytes = requested_size;
  }
125 126 127
  // NOTE(paddle-dev): In case of the allocator of storage_ is different with
  // the incoming allocator, we will re-alloc data using the incoming
  // allocator. See DeviceContext.Alloc in core/device_context.cc.
128 129 130 131 132 133 134 135 136 137
  if (!holder_ || holder_->size() < bytes + meta_.offset) {
    meta_.offset = 0;
    VLOG(10) << "Allocate data with bytes: " << bytes;
    ResetHolder(allocator->Allocate(bytes));
  }

  return reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(holder_->ptr()) +
                                 meta_.offset);
}

138 139
template <typename T>
const T* DenseTensor::data() const {
H
hong 已提交
140 141 142
  PADDLE_ENFORCE_EQ(
      dtype(),
      paddle::experimental::CppTypeToDataType<T>::Type(),
143
      phi::errors::InvalidArgument(
144 145 146 147
          "The type of data we are trying to retrieve (%s) does not match the "
          "type of data (%s) currently contained in the container.",
          paddle::experimental::CppTypeToDataType<T>::Type(),
          dtype()));
148 149 150
  return static_cast<const T*>(data());
}

151 152
template <typename T>
T* DenseTensor::data() {
153
  T* ret = static_cast<T*>(data());
154 155
  PADDLE_ENFORCE(
      (dtype() == paddle::experimental::CppTypeToDataType<T>::Type()),
156
      phi::errors::InvalidArgument(
157 158 159 160
          "The type of data we are trying to retrieve (%s) does not match the "
          "type of data (%s) currently contained in the container.",
          paddle::experimental::CppTypeToDataType<T>::Type(),
          dtype()));
161
  return ret;
162 163
}

164
void* DenseTensor::data() {
165
  check_memory_size();
166
  PADDLE_ENFORCE_NOT_NULL(
167
      holder_,
168
      phi::errors::PreconditionNotMet(
169 170
          "The storage must be valid when call the data function."));
  return reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(holder_->ptr()) +
171
                                 meta_.offset);
172 173
}

174
const void* DenseTensor::data() const {
175
  check_memory_size();
176
  PADDLE_ENFORCE_NOT_NULL(
177
      holder_,
178
      phi::errors::PreconditionNotMet(
179
          "The storage must be valid when call the data function."));
180
  return reinterpret_cast<const void*>(
181
      reinterpret_cast<uintptr_t>(holder_->ptr()) + meta_.offset);
182 183
}

184 185
void DenseTensor::set_meta(DenseTensorMeta&& meta) {
  PADDLE_ENFORCE(!meta_.valid(),
186
                 phi::errors::InvalidArgument(
187 188 189
                     "Only when the original attribute of Tensor is "
                     "incomplete, can it be reset."));
  meta_ = std::move(meta);
石晓伟 已提交
190 191
}

192 193 194
void DenseTensor::set_meta(const DenseTensorMeta& meta) {
  PADDLE_ENFORCE(
      meta.valid(),
195
      phi::errors::InvalidArgument(
196 197 198 199 200 201 202
          "Input meta is invalid, please check the meta attribute."));
  meta_.dims = meta.dims;
  meta_.dtype = meta.dtype;
  meta_.is_scalar = meta.is_scalar;
  meta_.layout = meta.layout;
  meta_.lod = meta.lod;
  meta_.offset = meta.offset;
203
  meta_.use_cudnn = meta.use_cudnn;
204 205
}

206
/* @jim19930609: This interface will be further modified until we finalized the
207 208 209 210 211 212 213 214 215
   design for Allocator - Allocation
   For now, we have to temporarily accommodate two independent use cases:
   1. Designed behaviour: DenseTensor constructed with its underlying storage_
   initialized
   2. Legacy behaviour(fluid): DenseTensor constructed using default
   constructor, where
                               storage_ won't be initialized until the first
   call to mutable_data(place)
   */
216
void DenseTensor::ResizeAndAllocate(const DDim& dims) {
石晓伟 已提交
217
  meta_.dims = dims;
218 219
  if (holder_ != nullptr && place().GetType() != AllocationType::UNDEFINED) {
    mutable_data(place());
220
  }
石晓伟 已提交
221 222
}

223 224
void DenseTensor::ResetLoD(const LoD& lod) { meta_.lod = lod; }

225 226 227
#define DATA_MEMBER_FUNC_INSTANTIATION(dtype)      \
  template const dtype* DenseTensor::data() const; \
  template dtype* DenseTensor::data();
228 229 230 231 232 233 234 235 236 237

DATA_MEMBER_FUNC_INSTANTIATION(bool);
DATA_MEMBER_FUNC_INSTANTIATION(int8_t);
DATA_MEMBER_FUNC_INSTANTIATION(uint8_t);
DATA_MEMBER_FUNC_INSTANTIATION(int16_t);
DATA_MEMBER_FUNC_INSTANTIATION(uint16_t);
DATA_MEMBER_FUNC_INSTANTIATION(int32_t);
DATA_MEMBER_FUNC_INSTANTIATION(uint32_t);
DATA_MEMBER_FUNC_INSTANTIATION(int64_t);
DATA_MEMBER_FUNC_INSTANTIATION(uint64_t);
238 239
DATA_MEMBER_FUNC_INSTANTIATION(::phi::dtype::bfloat16);
DATA_MEMBER_FUNC_INSTANTIATION(::phi::dtype::float16);
240 241
DATA_MEMBER_FUNC_INSTANTIATION(float);
DATA_MEMBER_FUNC_INSTANTIATION(double);
242 243
DATA_MEMBER_FUNC_INSTANTIATION(::phi::dtype::complex<float>);
DATA_MEMBER_FUNC_INSTANTIATION(::phi::dtype::complex<double>);
244 245 246

#undef DATA_MEMBER_FUNC_INSTANTIATION

247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
template <typename DeviceT>
const DeviceT& DenseTensor::storage_properties() const {
  PADDLE_ENFORCE_NOT_NULL(
      storage_properties_,
      phi::errors::PreconditionNotMet(
          "The storage_properties of current DenseTensor is nullptr."));
  if (DeviceT::classof(storage_properties_.get())) {
    return static_cast<DeviceT&>(*storage_properties_);
  } else {
    PADDLE_THROW(phi::errors::InvalidArgument(
        "The actual type of storage_properties is inconsistent with the type "
        "of the template parameter passed in."));
  }
}

template const NPUStorageProperties& DenseTensor::storage_properties() const;
#ifdef PADDLE_WITH_MKLDNN
template const OneDNNStorageProperties& DenseTensor::storage_properties() const;
#endif

267 268 269 270
bool DenseTensor::storage_properties_initialized() const {
  return storage_properties_ != nullptr;
}

271 272 273 274 275
void DenseTensor::set_storage_properties(
    std::unique_ptr<StorageProperties>&& storage_properties) {
  storage_properties_ = std::move(storage_properties);
}

276
}  // namespace phi