dense_tensor.cc 8.3 KB
Newer Older
1
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/phi/core/dense_tensor.h"
16

17 18 19 20
#include "paddle/phi/common/bfloat16.h"
#include "paddle/phi/common/complex.h"
#include "paddle/phi/common/float16.h"
#include "paddle/phi/core/compat/convert_utils.h"
21

22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
/**
 * [ Why still include the fluid headers? ]
 *
 * We hope to organize the basic implementation of Tensor and the logic related
 * to Tensor computation into an independent library, which we call
 * [Tensor Operation Library, phi], so we extract or rewrite the original
 * Kernels.
 *
 * In the future, the training library, inference library and custom operators
 * will link to this Tensor Operation library.
 *
 * However, if we directly split the link relation, we need to make too many
 * changes, which will affect the stability of the framework, so here we still
 * rely on the implementation of the framework, which is a intermediate state.
 *
 * In the future, the necessary components will be moved to the this library,
 * or the corresponding components will be re-implemented.
 */
40
#include "paddle/fluid/memory/malloc.h"
41

42
namespace phi {
43

44
DenseTensor::DenseTensor(Allocator* a, const DenseTensorMeta& meta)
45
    : meta_(meta), holder_(a->Allocate(SizeOf(dtype()) * numel())) {}
46

47
DenseTensor::DenseTensor(Allocator* a, DenseTensorMeta&& meta)
48
    : meta_(std::move(meta)), holder_(a->Allocate(SizeOf(dtype()) * numel())) {}
49

50
DenseTensor::DenseTensor(const std::shared_ptr<phi::Allocation>& holder,
51
                         const DenseTensorMeta& meta)
52
    : meta_(meta), holder_(holder) {}
53

54
DenseTensor::DenseTensor(const DenseTensor& other) : meta_(other.meta()) {
55
  holder_ = other.holder_;
56
  inplace_version_counter_ = other.inplace_version_counter_;
57 58 59

#ifdef PADDLE_WITH_MKLDNN
  format_ = other.format_;
60
  mem_desc_ = other.mem_desc_;
61 62
#endif
}
63

64 65
DenseTensor& DenseTensor::operator=(const DenseTensor& other) {
  meta_ = other.meta();
66
  holder_ = other.holder_;
67
  inplace_version_counter_ = other.inplace_version_counter_;
68 69
#ifdef PADDLE_WITH_MKLDNN
  format_ = other.format_;
70
  mem_desc_ = other.mem_desc_;
71
#endif
72 73 74
  return *this;
}

75 76
DenseTensor& DenseTensor::operator=(DenseTensor&& other) {
  meta_ = std::move(other.meta_);
77
  std::swap(holder_, other.holder_);
78
  std::swap(inplace_version_counter_, other.inplace_version_counter_);
79 80 81 82
#ifdef PADDLE_WITH_MKLDNN
  format_ = other.format_;
  mem_desc_ = other.mem_desc_;
#endif
83 84 85
  return *this;
}

86 87 88 89 90 91 92 93
int64_t DenseTensor::numel() const {
  if (meta_.is_scalar) {
    return 1;
  }
  return product(meta_.dims);
}

bool DenseTensor::IsSharedWith(const DenseTensor& b) const {
94
  return holder_ && holder_ == b.Holder();
95 96
}

97 98 99 100 101
void* DenseTensor::AllocateFrom(Allocator* allocator,
                                DataType dtype,
                                size_t requested_size) {
  PADDLE_ENFORCE_NOT_NULL(
      allocator,
102
      phi::errors::InvalidArgument(
103 104 105 106 107 108 109
          "Required allocator shall not be nullptr, but received nullptr."));
  if (this->dtype() != dtype) {
    VLOG(10) << "change data type in mutbale_data, target dtype - " << dtype;
    meta_.dtype = dtype;
  }
  PADDLE_ENFORCE(
      valid(),
110
      phi::errors::PreconditionNotMet(
111 112 113 114 115
          "The meta data must be valid when call the mutable data function."));
  size_t bytes = numel() * SizeOf(this->dtype());
  if (requested_size) {
    PADDLE_ENFORCE_GE(requested_size,
                      bytes,
116
                      phi::errors::InvalidArgument(
117 118 119 120 121 122
                          "The reserved size %d should be enough to meet the "
                          "volume required by metadata %d.",
                          requested_size,
                          bytes));
    bytes = requested_size;
  }
123 124 125
  // NOTE(paddle-dev): In case of the allocator of storage_ is different with
  // the incoming allocator, we will re-alloc data using the incoming
  // allocator. See DeviceContext.Alloc in core/device_context.cc.
126 127 128 129 130 131 132 133 134 135
  if (!holder_ || holder_->size() < bytes + meta_.offset) {
    meta_.offset = 0;
    VLOG(10) << "Allocate data with bytes: " << bytes;
    ResetHolder(allocator->Allocate(bytes));
  }

  return reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(holder_->ptr()) +
                                 meta_.offset);
}

136 137
template <typename T>
const T* DenseTensor::data() const {
H
hong 已提交
138 139 140
  PADDLE_ENFORCE_EQ(
      dtype(),
      paddle::experimental::CppTypeToDataType<T>::Type(),
141
      phi::errors::InvalidArgument(
142 143 144 145 146
          "The type of data we are trying to retrieve does not match the "
          "type of data currently contained in the container."));
  return static_cast<const T*>(data());
}

147 148
template <typename T>
T* DenseTensor::data() {
149
  T* ret = static_cast<T*>(data());
150 151
  PADDLE_ENFORCE(
      (dtype() == paddle::experimental::CppTypeToDataType<T>::Type()),
152
      phi::errors::InvalidArgument(
153 154
          "The type of data we are trying to retrieve does not match the "
          "type of data currently contained in the container."));
155
  return ret;
156 157
}

158
void* DenseTensor::data() {
159
  check_memory_size();
160
  PADDLE_ENFORCE_NOT_NULL(
161
      holder_,
162
      phi::errors::PreconditionNotMet(
163 164
          "The storage must be valid when call the data function."));
  return reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(holder_->ptr()) +
165
                                 meta_.offset);
166 167
}

168
const void* DenseTensor::data() const {
169
  check_memory_size();
170
  PADDLE_ENFORCE_NOT_NULL(
171
      holder_,
172
      phi::errors::PreconditionNotMet(
173
          "The storage must be valid when call the data function."));
174
  return reinterpret_cast<const void*>(
175
      reinterpret_cast<uintptr_t>(holder_->ptr()) + meta_.offset);
176 177
}

178 179
void DenseTensor::set_meta(DenseTensorMeta&& meta) {
  PADDLE_ENFORCE(!meta_.valid(),
180
                 phi::errors::InvalidArgument(
181 182 183
                     "Only when the original attribute of Tensor is "
                     "incomplete, can it be reset."));
  meta_ = std::move(meta);
石晓伟 已提交
184 185
}

186 187 188
void DenseTensor::set_meta(const DenseTensorMeta& meta) {
  PADDLE_ENFORCE(
      meta.valid(),
189
      phi::errors::InvalidArgument(
190 191 192 193 194 195 196 197 198
          "Input meta is invalid, please check the meta attribute."));
  meta_.dims = meta.dims;
  meta_.dtype = meta.dtype;
  meta_.is_scalar = meta.is_scalar;
  meta_.layout = meta.layout;
  meta_.lod = meta.lod;
  meta_.offset = meta.offset;
}

199 200 201 202 203 204 205 206 207 208
/* @jim19930609: This interface will be further modified util we finalized the
   design for Allocator - Allocation
   For now, we have to temporarily accommodate two independent use cases:
   1. Designed behaviour: DenseTensor constructed with its underlying storage_
   initialized
   2. Legacy behaviour(fluid): DenseTensor constructed using default
   constructor, where
                               storage_ won't be initialized until the first
   call to mutable_data(place)
   */
209
void DenseTensor::ResizeAndAllocate(const DDim& dims) {
石晓伟 已提交
210
  meta_.dims = dims;
211 212
  if (holder_ != nullptr && place().GetType() != AllocationType::UNDEFINED) {
    mutable_data(place());
213
  }
石晓伟 已提交
214 215
}

216 217
void DenseTensor::ResetLoD(const LoD& lod) { meta_.lod = lod; }

218 219 220
#define DATA_MEMBER_FUNC_INSTANTIATION(dtype)      \
  template const dtype* DenseTensor::data() const; \
  template dtype* DenseTensor::data();
221 222 223 224 225 226 227 228 229 230

DATA_MEMBER_FUNC_INSTANTIATION(bool);
DATA_MEMBER_FUNC_INSTANTIATION(int8_t);
DATA_MEMBER_FUNC_INSTANTIATION(uint8_t);
DATA_MEMBER_FUNC_INSTANTIATION(int16_t);
DATA_MEMBER_FUNC_INSTANTIATION(uint16_t);
DATA_MEMBER_FUNC_INSTANTIATION(int32_t);
DATA_MEMBER_FUNC_INSTANTIATION(uint32_t);
DATA_MEMBER_FUNC_INSTANTIATION(int64_t);
DATA_MEMBER_FUNC_INSTANTIATION(uint64_t);
231 232
DATA_MEMBER_FUNC_INSTANTIATION(::phi::dtype::bfloat16);
DATA_MEMBER_FUNC_INSTANTIATION(::phi::dtype::float16);
233 234
DATA_MEMBER_FUNC_INSTANTIATION(float);
DATA_MEMBER_FUNC_INSTANTIATION(double);
235 236
DATA_MEMBER_FUNC_INSTANTIATION(::phi::dtype::complex<float>);
DATA_MEMBER_FUNC_INSTANTIATION(::phi::dtype::complex<double>);
237 238 239

#undef DATA_MEMBER_FUNC_INSTANTIATION

240
}  // namespace phi