dense_tensor.cc 9.7 KB
Newer Older
1
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/phi/core/dense_tensor.h"
16

17 18 19 20
#include "paddle/phi/common/bfloat16.h"
#include "paddle/phi/common/complex.h"
#include "paddle/phi/common/float16.h"
#include "paddle/phi/core/compat/convert_utils.h"
21

22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
/**
 * [ Why still include the fluid headers? ]
 *
 * We hope to organize the basic implementation of Tensor and the logic related
 * to Tensor computation into an independent library, which we call
 * [Tensor Operation Library, phi], so we extract or rewrite the original
 * Kernels.
 *
 * In the future, the training library, inference library and custom operators
 * will link to this Tensor Operation library.
 *
 * However, if we directly split the link relation, we need to make too many
 * changes, which will affect the stability of the framework, so here we still
 * rely on the implementation of the framework, which is a intermediate state.
 *
 * In the future, the necessary components will be moved to the this library,
 * or the corresponding components will be re-implemented.
 */
40
#include "paddle/fluid/memory/malloc.h"
41

42
namespace phi {
43

44
DenseTensor::DenseTensor(Allocator* a, const DenseTensorMeta& meta)
45
    : meta_(meta), holder_(a->Allocate(SizeOf(dtype()) * numel())) {}
46

47
DenseTensor::DenseTensor(Allocator* a, DenseTensorMeta&& meta)
48
    : meta_(std::move(meta)), holder_(a->Allocate(SizeOf(dtype()) * numel())) {}
49

50
DenseTensor::DenseTensor(const std::shared_ptr<phi::Allocation>& holder,
51
                         const DenseTensorMeta& meta)
52
    : meta_(meta), holder_(holder) {}
53

54
DenseTensor::DenseTensor(const DenseTensor& other) : meta_(other.meta()) {
55
  holder_ = other.holder_;
56 57
  storage_properties_ =
      std::move(CopyStorageProperties(other.storage_properties_));
58
  inplace_version_counter_ = other.inplace_version_counter_;
59 60 61

#ifdef PADDLE_WITH_MKLDNN
  format_ = other.format_;
62
  mem_desc_ = other.mem_desc_;
63 64
#endif
}
65

66 67
DenseTensor& DenseTensor::operator=(const DenseTensor& other) {
  meta_ = other.meta();
68
  holder_ = other.holder_;
69 70
  storage_properties_ =
      std::move(CopyStorageProperties(other.storage_properties_));
71
  inplace_version_counter_ = other.inplace_version_counter_;
72 73
#ifdef PADDLE_WITH_MKLDNN
  format_ = other.format_;
74
  mem_desc_ = other.mem_desc_;
75
#endif
76 77 78
  return *this;
}

79 80
DenseTensor& DenseTensor::operator=(DenseTensor&& other) {
  meta_ = std::move(other.meta_);
81
  std::swap(holder_, other.holder_);
82
  storage_properties_ = std::move(other.storage_properties_);
83
  std::swap(inplace_version_counter_, other.inplace_version_counter_);
84 85 86 87
#ifdef PADDLE_WITH_MKLDNN
  format_ = other.format_;
  mem_desc_ = other.mem_desc_;
#endif
88 89 90
  return *this;
}

91 92 93 94 95 96 97 98
int64_t DenseTensor::numel() const {
  if (meta_.is_scalar) {
    return 1;
  }
  return product(meta_.dims);
}

bool DenseTensor::IsSharedWith(const DenseTensor& b) const {
99
  return holder_ && holder_ == b.Holder();
100 101
}

102 103 104 105 106
void* DenseTensor::AllocateFrom(Allocator* allocator,
                                DataType dtype,
                                size_t requested_size) {
  PADDLE_ENFORCE_NOT_NULL(
      allocator,
107
      phi::errors::InvalidArgument(
108 109 110 111 112 113 114
          "Required allocator shall not be nullptr, but received nullptr."));
  if (this->dtype() != dtype) {
    VLOG(10) << "change data type in mutbale_data, target dtype - " << dtype;
    meta_.dtype = dtype;
  }
  PADDLE_ENFORCE(
      valid(),
115
      phi::errors::PreconditionNotMet(
116 117 118 119 120
          "The meta data must be valid when call the mutable data function."));
  size_t bytes = numel() * SizeOf(this->dtype());
  if (requested_size) {
    PADDLE_ENFORCE_GE(requested_size,
                      bytes,
121
                      phi::errors::InvalidArgument(
122 123 124 125 126 127
                          "The reserved size %d should be enough to meet the "
                          "volume required by metadata %d.",
                          requested_size,
                          bytes));
    bytes = requested_size;
  }
128 129 130
  // NOTE(paddle-dev): In case of the allocator of storage_ is different with
  // the incoming allocator, we will re-alloc data using the incoming
  // allocator. See DeviceContext.Alloc in core/device_context.cc.
131 132 133 134 135 136 137 138 139 140
  if (!holder_ || holder_->size() < bytes + meta_.offset) {
    meta_.offset = 0;
    VLOG(10) << "Allocate data with bytes: " << bytes;
    ResetHolder(allocator->Allocate(bytes));
  }

  return reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(holder_->ptr()) +
                                 meta_.offset);
}

141 142
template <typename T>
const T* DenseTensor::data() const {
H
hong 已提交
143 144 145
  PADDLE_ENFORCE_EQ(
      dtype(),
      paddle::experimental::CppTypeToDataType<T>::Type(),
146
      phi::errors::InvalidArgument(
147 148 149 150
          "The type of data we are trying to retrieve (%s) does not match the "
          "type of data (%s) currently contained in the container.",
          paddle::experimental::CppTypeToDataType<T>::Type(),
          dtype()));
151 152 153
  return static_cast<const T*>(data());
}

154 155
template <typename T>
T* DenseTensor::data() {
156
  T* ret = static_cast<T*>(data());
157 158
  PADDLE_ENFORCE(
      (dtype() == paddle::experimental::CppTypeToDataType<T>::Type()),
159
      phi::errors::InvalidArgument(
160 161 162 163
          "The type of data we are trying to retrieve (%s) does not match the "
          "type of data (%s) currently contained in the container.",
          paddle::experimental::CppTypeToDataType<T>::Type(),
          dtype()));
164
  return ret;
165 166
}

167
void* DenseTensor::data() {
168
  check_memory_size();
169
  PADDLE_ENFORCE_NOT_NULL(
170
      holder_,
171
      phi::errors::PreconditionNotMet(
172 173
          "The storage must be valid when call the data function."));
  return reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(holder_->ptr()) +
174
                                 meta_.offset);
175 176
}

177
const void* DenseTensor::data() const {
178
  check_memory_size();
179
  PADDLE_ENFORCE_NOT_NULL(
180
      holder_,
181
      phi::errors::PreconditionNotMet(
182
          "The storage must be valid when call the data function."));
183
  return reinterpret_cast<const void*>(
184
      reinterpret_cast<uintptr_t>(holder_->ptr()) + meta_.offset);
185 186
}

187 188
void DenseTensor::set_meta(DenseTensorMeta&& meta) {
  PADDLE_ENFORCE(!meta_.valid(),
189
                 phi::errors::InvalidArgument(
190 191 192
                     "Only when the original attribute of Tensor is "
                     "incomplete, can it be reset."));
  meta_ = std::move(meta);
石晓伟 已提交
193 194
}

195 196 197
void DenseTensor::set_meta(const DenseTensorMeta& meta) {
  PADDLE_ENFORCE(
      meta.valid(),
198
      phi::errors::InvalidArgument(
199 200 201 202 203 204 205 206 207
          "Input meta is invalid, please check the meta attribute."));
  meta_.dims = meta.dims;
  meta_.dtype = meta.dtype;
  meta_.is_scalar = meta.is_scalar;
  meta_.layout = meta.layout;
  meta_.lod = meta.lod;
  meta_.offset = meta.offset;
}

208 209 210 211 212 213 214 215 216 217
/* @jim19930609: This interface will be further modified util we finalized the
   design for Allocator - Allocation
   For now, we have to temporarily accommodate two independent use cases:
   1. Designed behaviour: DenseTensor constructed with its underlying storage_
   initialized
   2. Legacy behaviour(fluid): DenseTensor constructed using default
   constructor, where
                               storage_ won't be initialized until the first
   call to mutable_data(place)
   */
218
void DenseTensor::ResizeAndAllocate(const DDim& dims) {
石晓伟 已提交
219
  meta_.dims = dims;
220 221
  if (holder_ != nullptr && place().GetType() != AllocationType::UNDEFINED) {
    mutable_data(place());
222
  }
石晓伟 已提交
223 224
}

225 226
void DenseTensor::ResetLoD(const LoD& lod) { meta_.lod = lod; }

227 228 229
#define DATA_MEMBER_FUNC_INSTANTIATION(dtype)      \
  template const dtype* DenseTensor::data() const; \
  template dtype* DenseTensor::data();
230 231 232 233 234 235 236 237 238 239

DATA_MEMBER_FUNC_INSTANTIATION(bool);
DATA_MEMBER_FUNC_INSTANTIATION(int8_t);
DATA_MEMBER_FUNC_INSTANTIATION(uint8_t);
DATA_MEMBER_FUNC_INSTANTIATION(int16_t);
DATA_MEMBER_FUNC_INSTANTIATION(uint16_t);
DATA_MEMBER_FUNC_INSTANTIATION(int32_t);
DATA_MEMBER_FUNC_INSTANTIATION(uint32_t);
DATA_MEMBER_FUNC_INSTANTIATION(int64_t);
DATA_MEMBER_FUNC_INSTANTIATION(uint64_t);
240 241
DATA_MEMBER_FUNC_INSTANTIATION(::phi::dtype::bfloat16);
DATA_MEMBER_FUNC_INSTANTIATION(::phi::dtype::float16);
242 243
DATA_MEMBER_FUNC_INSTANTIATION(float);
DATA_MEMBER_FUNC_INSTANTIATION(double);
244 245
DATA_MEMBER_FUNC_INSTANTIATION(::phi::dtype::complex<float>);
DATA_MEMBER_FUNC_INSTANTIATION(::phi::dtype::complex<double>);
246 247 248

#undef DATA_MEMBER_FUNC_INSTANTIATION

249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
template <typename DeviceT>
const DeviceT& DenseTensor::storage_properties() const {
  PADDLE_ENFORCE_NOT_NULL(
      storage_properties_,
      phi::errors::PreconditionNotMet(
          "The storage_properties of current DenseTensor is nullptr."));
  if (DeviceT::classof(storage_properties_.get())) {
    return static_cast<DeviceT&>(*storage_properties_);
  } else {
    PADDLE_THROW(phi::errors::InvalidArgument(
        "The actual type of storage_properties is inconsistent with the type "
        "of the template parameter passed in."));
  }
}

template const NPUStorageProperties& DenseTensor::storage_properties() const;
#ifdef PADDLE_WITH_MKLDNN
template const OneDNNStorageProperties& DenseTensor::storage_properties() const;
#endif

269 270 271 272
bool DenseTensor::storage_properties_initialized() const {
  return storage_properties_ != nullptr;
}

273 274 275 276 277
void DenseTensor::set_storage_properties(
    std::unique_ptr<StorageProperties>&& storage_properties) {
  storage_properties_ = std::move(storage_properties);
}

278
}  // namespace phi