matmul_v2_mkldnn_op.cc 45.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14
#include "paddle/fluid/operators/mkldnn/matmul_mkldnn_op.h"
15

16
namespace {
17
using dnnl::memory;
18
using paddle::framework::ExecutionContext;
19
using paddle::platform::MatMulV2MKLDNNHandler;
20
using paddle::platform::MKLDNNDeviceContext;
21
using paddle::platform::MKLDNNFormatForSize;
22 23
using paddle::platform::MKLDNNGetDataType;
using paddle::platform::to_void_cast;
24
using phi::DataLayout;
25
using phi::vectorize;
26
using Tensor = phi::DenseTensor;
27
using paddle::framework::GradVarName;
28
using phi::make_ddim;
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89

// Reshape a rank-3 tensor from P x M x N to (P * M) x N.
// Identity op if the tensor is not of rank 3.
static Tensor FoldOuterDims(const Tensor &input) {
  auto output = input;
  auto in_dims = input.dims();
  if (in_dims.size() == 3) {
    output.Resize({in_dims[0] * in_dims[1], in_dims[2]});
  }
  return output;
}

// Reshape a rank-3 tensor from P x M x N to M x (P * N).
// (Warning: This requires transposing data and writes into new memory.)
// Identity op if the tensor is not of rank 3.
template <typename T>
static Tensor FoldFirstAndLastDims(const MKLDNNDeviceContext &dev_ctx,
                                   const Tensor *input) {
  auto input_dims = vectorize(input->dims());
  if (input_dims.size() != 3) {
    return *input;
  }

  Tensor output;
  output.Resize({input_dims[1], input_dims[0], input_dims[2]});

  auto output_dims = vectorize(output.dims());

  memory::data_type input_type = paddle::framework::ToMKLDNNDataType(
      paddle::framework::TransToProtoVarType(input->dtype()));
  paddle::platform::ReorderMKLDNNHandler reorder_handler(
      output_dims,
      paddle::framework::TransToProtoVarType(input->dtype()),
      input_type,
      dev_ctx.GetEngine());

  auto reorder_src_memory_p = reorder_handler.AcquireSrcMemory(
      memory::format_tag::abc,
      paddle::platform::to_void_cast(input->data<T>()));
  auto reorder_dst_memory_p = reorder_handler.AcquireDstMemory(
      &output, memory::format_tag::bac, dev_ctx.GetPlace());
  auto reorder_p = reorder_handler.AcquireReorder(reorder_src_memory_p,
                                                  reorder_dst_memory_p);

  auto &astream = MKLDNNDeviceContext::tls().get_stream();
  reorder_p->execute(astream, *reorder_src_memory_p, *reorder_dst_memory_p);
  astream.wait();

  output.Resize({input_dims[1], input_dims[0] * input_dims[2]});
  return output;
}

template <typename T>
constexpr bool IsInt8() {
  return std::is_same<T, int8_t>::value || std::is_same<T, uint8_t>::value;
}

template <typename T>
constexpr bool IsBfloat16() {
  return std::is_same<T, paddle::platform::bfloat16>::value;
}
90

91 92
// Get row matrix shape from a vector shape. If the rank of x_dim > 1, the
// original x_dim is returned.
93 94
static paddle::framework::DDim RowMatrixDimsFromVector(
    const paddle::framework::DDim &x_dim) {
95
  return x_dim.size() > 1 ? x_dim : phi::make_ddim({1, x_dim[0]});
96 97 98 99
}

// Get column matrix shape from a vector shape. If the ran of y_dim > 1, the
// original y_dim is returned.
100 101
static paddle::framework::DDim ColumnMatrixDimsFromVector(
    const paddle::framework::DDim &y_dim) {
102
  return y_dim.size() > 1 ? y_dim : phi::make_ddim({y_dim[0], 1});
103 104
}

J
Jacek Czaja 已提交
105 106 107
phi::DDim GetDimForInput(const ExecutionContext &ctx, std::string input_name) {
  auto shape = ctx.Attr<std::vector<int>>("fused_reshape_" + input_name);
  auto axis = ctx.Attr<std::vector<int>>("fused_transpose_" + input_name);
108
  auto input_dims = ctx.Input<phi::DenseTensor>(input_name)->dims();
J
Jacek Czaja 已提交
109 110 111 112 113 114
  if (!shape.empty() && !axis.empty()) {
    return input_dims.reshape(shape).transpose(axis);
  }
  return input_dims;
}

115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
template <typename XT, typename YT, typename OT>
class MatMulMKLDNNHandler
    : public paddle::platform::MKLDNNHandlerNoCachingT<XT, dnnl::matmul> {
 public:
  MatMulMKLDNNHandler(const dnnl::engine engine,
                      paddle::platform::Place cpu_place,
                      Tensor *x,
                      bool trans_x,
                      Tensor *y,
                      bool trans_y,
                      Tensor *out,
                      float scale)
      : paddle::platform::MKLDNNHandlerNoCachingT<XT, dnnl::matmul>(engine,
                                                                    cpu_place) {
    auto mat_dim_x = phi::funcs::CreateMatrixDescriptor(x->dims(), 0, trans_x);
    auto mat_dim_y = phi::funcs::CreateMatrixDescriptor(y->dims(), 0, trans_y);

    memory::dim x_bs = mat_dim_x.batch_size_;
    memory::dim y_bs = mat_dim_y.batch_size_;

    memory::dim out_bs = x_bs || y_bs ? std::max(x_bs, y_bs) : 1;
    const memory::dim M = mat_dim_x.height_;
    const memory::dim N = mat_dim_y.width_;
    const memory::dim K = mat_dim_x.width_;

    memory::dims x_dims = {x_bs > 0 ? x_bs : 1, M, K};
    memory::dims y_dims = {y_bs > 0 ? y_bs : 1, K, N};
    memory::dims out_dims = {out_bs, M, N};

    memory::dims x_strides =
        !trans_x ? memory::dims{M * K, K, 1} : memory::dims{M * K, 1, M};

    memory::dims y_strides =
        !trans_y ? memory::dims{N * K, N, 1} : memory::dims{N * K, 1, K};
    memory::dims out_strides = memory::dims{M * N, N, 1};

    auto x_md = memory::desc(x_dims, MKLDNNGetDataType<XT>(), x_strides);
    auto y_md = memory::desc(y_dims, MKLDNNGetDataType<YT>(), y_strides);
    auto out_md = memory::desc(out_dims, MKLDNNGetDataType<OT>(), out_strides);

    dnnl::primitive_attr attrs;
    if (scale != 1.0f) attrs.set_output_scales(0, {scale});

    this->AcquireForwardPrimitiveDescriptor(attrs, x_md, y_md, out_md);
  }
  // Constructor for FWD MatMul
  MatMulMKLDNNHandler(const dnnl::engine engine, const ExecutionContext &ctx)
      : paddle::platform::MKLDNNHandlerNoCachingT<XT, dnnl::matmul>(
            engine, ctx.GetPlace()) {
    const dnnl::primitive_attr matmul_attrs = CreateMatmulAttrs(ctx);

    auto matmul_dims_ = GetMatmulDims(ctx);
    auto x_md = memory::desc(
        matmul_dims_.x_dims, MKLDNNGetDataType<XT>(), matmul_dims_.x_strides);
    auto y_md = memory::desc(
        matmul_dims_.y_dims, MKLDNNGetDataType<YT>(), matmul_dims_.y_strides);
    auto out_md = memory::desc(matmul_dims_.out_dims,
                               MKLDNNGetDataType<OT>(),
                               matmul_dims_.out_strides);
    this->AcquireForwardPrimitiveDescriptor(matmul_attrs, x_md, y_md, out_md);
  }

  std::shared_ptr<memory> AcquireWeightsMemory(const Tensor *input) {
    const YT *input_data = input->data<YT>();
    return this->AcquireMemoryFromPrimitive(this->fwd_pd_->weights_desc(),
                                            to_void_cast<YT>(input_data));
  }

 public:
184 185 186
  void Execute(const phi::DenseTensor *x,
               const phi::DenseTensor *y,
               phi::DenseTensor *out) {
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
    const auto src_memory_p = this->AcquireSrcMemory(x);
    const auto weights_memory_p = this->AcquireWeightsMemory(y);
    const auto dst_memory_p = this->AcquireDstMemory(out);

    auto matmul_p = this->AcquireForwardPrimitive();

    std::unordered_map<int, dnnl::memory> matmul_args = {
        {DNNL_ARG_SRC, *src_memory_p},
        {DNNL_ARG_WEIGHTS, *weights_memory_p},
        {DNNL_ARG_DST, *dst_memory_p}};

    auto &astream = paddle::platform::MKLDNNDeviceContext::tls().get_stream();

    // Simulate batch matmul by processing in loop
    void *x_ptr = src_memory_p->get_data_handle();
    void *y_ptr = weights_memory_p->get_data_handle();
    void *out_ptr = dst_memory_p->get_data_handle();
    auto offsets = this->GetOffsets();
    for (uint16_t i = 0; i < this->GetBatchSize(); ++i) {
      src_memory_p->set_data_handle(x_ptr);
      weights_memory_p->set_data_handle(y_ptr);
      dst_memory_p->set_data_handle(out_ptr);
209
      matmul_p->execute(astream, matmul_args);
210 211 212 213 214 215
      x_ptr = static_cast<char *>(x_ptr) + std::get<0>(offsets);
      y_ptr = static_cast<char *>(y_ptr) + std::get<1>(offsets);
      out_ptr = static_cast<char *>(out_ptr) + std::get<2>(offsets);
    }
    astream.wait();

216
    out->set_mem_desc(dst_memory_p->get_desc().reshape(out->dims()));
217 218
  }

219
  std::shared_ptr<dnnl::memory> AcquireDstMemory(phi::DenseTensor *output) {
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
    // We cannot use base AcquireDstMemory as it makes an allocation request
    // base on DST memory primitive size. This is fine in general, but in MatMul
    // we have primitive that covers only one batch of Data and then shift
    // pointer for every new batch. Hence Tensor size is bigger that dst memory
    // primitive size. So would we request less memory that is there and it
    // triggers an
    // assertion.  So as there is no 'any' format here we can leave default size
    // of Tensor as computed in ComputeInferShape
    OT *ptr = output->mutable_data<OT>(this->place_);
    return this->AcquireMemoryFromPrimitive(this->fwd_pd_->dst_desc(), ptr);
  }

 private:
  struct MatMulDims {
    const memory::dims x_dims, y_dims, out_dims, x_strides, y_strides,
        out_strides;
  };

  std::pair<phi::funcs::MatDescriptor, memory::dims> GetInputDimsAndStrides(
      const ExecutionContext &ctx, std::string input_name) {
    auto shape = ctx.Attr<std::vector<int>>("fused_reshape_" + input_name);
    auto axis = ctx.Attr<std::vector<int>>("fused_transpose_" + input_name);
242
    auto input_dims = ctx.Input<phi::DenseTensor>(input_name)->dims();
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
    auto new_dims = input_dims;
    if (!shape.empty() && !axis.empty()) {
      new_dims = input_dims.reshape(shape).transpose(axis);
    }

    auto &MatrixDimsFromVector = input_name == "X" ? RowMatrixDimsFromVector
                                                   : ColumnMatrixDimsFromVector;
    phi::funcs::MatDescriptor mat_dim = phi::funcs::CreateMatrixDescriptor(
        MatrixDimsFromVector(new_dims),
        0,
        ctx.Attr<bool>("transpose_" + input_name));

    memory::dims strides;
    if (!shape.empty()) {
      auto shape2 = input_dims.reshape(shape);
      strides.push_back(1);
      for (auto i = shape2.size() - 1; i > 0; --i) {
        strides.insert(strides.begin(), strides.front() * shape2[i]);
      }
      strides = Transpose(strides, axis);
      if (shape.size() == 4)
        strides.erase(strides.begin());
      else if (shape.size() == 2)
        strides.insert(strides.begin(), shape[0] * shape[1]);
      mat_dim.stride_ = strides[0];
      if (mat_dim.trans_) std::swap(*strides.rbegin(), *(++strides.rbegin()));
    }
    return std::make_pair(mat_dim, strides);
  }

  float ComputeOutputScale(const ExecutionContext &ctx) {
    float scale_x = ctx.Attr<float>("Scale_x");
    float scale_y = ctx.Attr<float>("Scale_y");
    bool force_fp32_out = ctx.Attr<bool>("force_fp32_output");
    float scale_out = force_fp32_out ? 1.f : ctx.Attr<float>("Scale_out");
    float alpha = ctx.Attr<float>("alpha");
    return alpha * scale_out / (scale_x * scale_y);
  }

  bool IsInputFused(const ExecutionContext &ctx) const {
    return !(ctx.Attr<std::vector<int>>("fused_reshape_X").empty() &&
             ctx.Attr<std::vector<int>>("fused_reshape_Y").empty());
  }

  bool IsOutputFused(const ExecutionContext &ctx) const {
    auto &fused_reshape_Out = ctx.Attr<std::vector<int>>("fused_reshape_Out");
    auto &fused_transpose_Out =
        ctx.Attr<std::vector<int>>("fused_transpose_Out");
    return !fused_reshape_Out.empty() && !fused_transpose_Out.empty();
  }

  MatMulDims GetMatmulDims(const ExecutionContext &ctx) {
    phi::funcs::MatDescriptor mat_dim_x;
    memory::dims strides_x;
    std::tie(mat_dim_x, strides_x) = GetInputDimsAndStrides(ctx, "X");
    phi::funcs::MatDescriptor mat_dim_y;
    memory::dims strides_y;
    std::tie(mat_dim_y, strides_y) = GetInputDimsAndStrides(ctx, "Y");

    auto x_bs = mat_dim_x.batch_size_;
    auto y_bs = mat_dim_y.batch_size_;
    PADDLE_ENFORCE_EQ(x_bs > 0 && y_bs > 0 && x_bs != y_bs,
                      false,
                      paddle::platform::errors::InvalidArgument(
                          "If batch sizes of X and Y are positive,"
                          "they have to be equal."));

    memory::dim out_bs = x_bs || y_bs ? std::max(x_bs, y_bs) : 1;
    const memory::dim M = mat_dim_x.height_;
    const memory::dim N = mat_dim_y.width_;
    const memory::dim K = mat_dim_x.width_;

    batch_size_ = 1;
    if (out_bs > 1 && (IsOutputFused(ctx) || IsInputFused(ctx))) {
      auto x_dims = GetDimForInput(ctx, "X");
      auto y_dims = GetDimForInput(ctx, "Y");
      batch_size_ = x_bs > y_bs ? x_dims[0] : y_dims[0];
      x_bs /= batch_size_;
      y_bs /= batch_size_;
      out_bs /= batch_size_;
    }
    memory::dims x_dims = {x_bs > 0 ? x_bs : 1, M, K};
    memory::dims y_dims = {y_bs > 0 ? y_bs : 1, K, N};
    memory::dims out_dims = {out_bs, M, N};

    x_offset_ = x_bs * M * K * sizeof(XT);
    y_offset_ = y_bs * K * N * sizeof(YT);
    out_offset_ = out_bs * M * N * sizeof(OT);

    // Translate transA and transB
    if (strides_x.empty())
      strides_x = !ctx.Attr<bool>("transpose_X") ? memory::dims{M * K, K, 1}
                                                 : memory::dims{M * K, 1, M};
    if (strides_y.empty())
      strides_y = !ctx.Attr<bool>("transpose_Y") ? memory::dims{N * K, N, 1}
                                                 : memory::dims{N * K, 1, K};
    memory::dims out_strides = memory::dims{M * N, N, 1};

    CorrectStridesWhenFloatOutputFused(ctx, N, out_bs, &out_strides);

    return {x_dims, y_dims, out_dims, strides_x, strides_y, out_strides};
  }

  std::vector<int64_t> Transpose(const std::vector<int64_t> &x,
                                 const std::vector<int> &axis) {
    size_t in_rank = x.size();
    size_t axis_size = axis.size();

    auto axis_set = std::set<int>(axis.begin(), axis.end());
    PADDLE_ENFORCE_EQ(axis_set.size(),
                      axis_size,
                      paddle::platform::errors::InvalidArgument(
                          "In an axis array, elements must be unique."));

    PADDLE_ENFORCE_EQ(in_rank,
                      axis_size,
                      paddle::platform::errors::InvalidArgument(
                          "The input dimension's size "
                          "should be equal to the axis's size. "
                          "But received dimension is %d, "
                          "axis's size is %d",
                          in_rank,
                          axis_size));

    PADDLE_ENFORCE_LT(*std::max_element(axis.begin(), axis.end()),
                      axis_size,
                      paddle::platform::errors::InvalidArgument(
                          "Axis values must be ranging from 0 to (dims - 1)."));

    std::vector<int64_t> new_x(x.size());
    for (size_t i = 0; i < x.size(); i++) {
      new_x[i] = x[axis[i]];
    }
    return new_x;
  }

  void CorrectStridesWhenFloatOutputFused(const ExecutionContext &ctx,
                                          const memory::dim N,
                                          memory::dim b,
                                          memory::dims *out_strides) const {
    if (!IsInt8<OT>() && !IsBfloat16<OT>() && IsOutputFused(ctx)) {
      *out_strides = {N, b * N, 1};
    }
  }

  uint16_t GetBatchSize(void) const { return batch_size_; }

  std::tuple<uint32_t, uint32_t, uint32_t> GetOffsets() const {
    return std::make_tuple(x_offset_, y_offset_, out_offset_);
  }

  dnnl::primitive_attr CreateMatmulAttrs(const ExecutionContext &ctx) {
    dnnl::primitive_attr matmul_attrs;
    dnnl::post_ops post_operations;

    float scale_out = ComputeOutputScale(ctx);
    if (scale_out != 1.0f) {
      matmul_attrs.set_output_scales(0, {scale_out});
    }
    paddle::platform::AppendActivation(ctx, post_operations);

    matmul_attrs.set_post_ops(post_operations);
    return matmul_attrs;
  }

 private:
  uint32_t x_offset_;
  uint32_t y_offset_;
  uint32_t out_offset_;
  uint16_t batch_size_;
};

/**
 * Reshape a tensor to 3-D or 2-D tensor by matrix descriptor.
 *
 * The shape would be [BatchSize, H, W] or [H, W].
 * If transposed, `H,W` will be swapped.
 */
static void ReshapeTensorToMatrixSequence(
    Tensor *x, const phi::funcs::MatDescriptor &descriptor) {
  int64_t h, w;
  h = descriptor.height_;
  w = descriptor.width_;
  if (descriptor.trans_) {
    std::swap(w, h);
  }
  if (descriptor.batch_size_) {
    x->Resize({descriptor.batch_size_, h, w});
  } else {
    x->Resize({h, w});
  }
}

/**
 * Reshape the x,y,out tensor to 3-D or 2-D tensor by matrix descriptor
 * Out = matmul(x, y)
 *
 * This method will first calculate X,Y matrix sequence, and then calculate
 * the out shape.
 *
 * Assume X = [BatchSize, H1, W1], Y = [BatchSize, H2, W2]
 * The out = [BatchSize, H1, W2]
 *
 * If there is no batch size in `X` and `Y`, the out will be [H1, W2]
 * If any of `X` and `Y` has batch size BatchSize, the out will have the
 * BatchSize.
 */
static void ReshapeXYOutToMatrixSequence(
    Tensor *x, Tensor *y, Tensor *out, bool trans_x, bool trans_y) {
  auto x_dim = RowMatrixDimsFromVector(x->dims());
  auto y_dim = ColumnMatrixDimsFromVector(y->dims());
  auto mat_dim_x = phi::funcs::CreateMatrixDescriptor(x_dim, 0, trans_x);
  auto mat_dim_y = phi::funcs::CreateMatrixDescriptor(y_dim, 0, trans_y);
  if (mat_dim_x.batch_size_ == 0 && mat_dim_y.batch_size_ == 0) {
    out->Resize({mat_dim_x.height_, mat_dim_y.width_});
  } else {
    out->Resize({std::max(mat_dim_x.batch_size_, mat_dim_y.batch_size_),
                 mat_dim_x.height_,
                 mat_dim_y.width_});
  }

  ReshapeTensorToMatrixSequence(x, mat_dim_x);
  ReshapeTensorToMatrixSequence(y, mat_dim_y);
}

// Choose appropriate Handler instances based on inferred
// output type (uint8, int8 or float).
template <typename XT, typename YT>
static void ExecuteMatMul(const ExecutionContext &ctx) {
  constexpr bool is_int8 = IsInt8<XT>();
  constexpr bool is_bfloat16 = IsBfloat16<XT>();
  const bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");
475 476 477 478
  const bool fuse_relu =
      ctx.HasAttr("fuse_activation")
          ? ctx.Attr<std::string>("fuse_activation") == "relu"
          : false;
479 480 481
  auto *x = ctx.Input<phi::DenseTensor>("X");
  auto *y = ctx.Input<phi::DenseTensor>("Y");
  auto *out = ctx.Output<phi::DenseTensor>("Out");
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
  const auto &dev_ctx =
      ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
  const auto &onednn_engine = dev_ctx.GetEngine();

  if (force_fp32_output || ((!is_int8) && (!is_bfloat16))) {
    MatMulMKLDNNHandler<XT, YT, float>(onednn_engine, ctx).Execute(x, y, out);
  } else if (is_bfloat16) {
    MatMulMKLDNNHandler<XT, YT, paddle::platform::bfloat16>(onednn_engine, ctx)
        .Execute(x, y, out);
  } else if (fuse_relu) {
    MatMulMKLDNNHandler<XT, YT, uint8_t>(onednn_engine, ctx).Execute(x, y, out);
  } else {
    MatMulMKLDNNHandler<XT, YT, int8_t>(onednn_engine, ctx).Execute(x, y, out);
  }
}

template <typename T>
class MatMulMKLDNNKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const ExecutionContext &ctx) const override {
    if (ctx.HasAttr("head_number")) {
      PADDLE_ENFORCE_EQ(
          ctx.Attr<int>("head_number"),
          1,
          paddle::platform::errors::Unimplemented(
              "oneDNN matmul doesn't support multiple heads. Expected "
              "head_number=1. But received `head_number` is %d",
              ctx.Attr<int>("head_number")));
    }
    ExecuteMatMul<T, T>(ctx);
  }
};

static std::vector<int64_t> Transpose(const std::vector<int64_t> &x,
                                      const std::vector<int> &axis) {
517 518 519 520
  size_t in_rank = x.size();
  size_t axis_size = axis.size();

  auto axis_set = std::set<int>(axis.begin(), axis.end());
521 522
  PADDLE_ENFORCE_EQ(axis_set.size(),
                    axis_size,
523 524 525
                    paddle::platform::errors::InvalidArgument(
                        "In an axis array, elements must be unique."));

526 527
  PADDLE_ENFORCE_EQ(in_rank,
                    axis_size,
528 529 530 531 532
                    paddle::platform::errors::InvalidArgument(
                        "The input dimension's size "
                        "should be equal to the axis's size. "
                        "But received dimension is %d, "
                        "axis's size is %d",
533 534
                        in_rank,
                        axis_size));
535

536 537
  PADDLE_ENFORCE_LT(*std::max_element(axis.begin(), axis.end()),
                    axis_size,
538 539 540 541 542 543 544 545 546 547
                    paddle::platform::errors::InvalidArgument(
                        "Axis values must be ranging from 0 to (dims - 1)."));

  std::vector<int64_t> new_x(x.size());
  for (size_t i = 0; i < x.size(); i++) {
    new_x[i] = x[axis[i]];
  }
  return new_x;
}

548
std::vector<int64_t> GetInputStrides(const ExecutionContext &ctx,
549 550 551
                                     const std::string input_name) {
  auto shape = ctx.Attr<std::vector<int>>("fused_reshape_" + input_name);
  auto axis = ctx.Attr<std::vector<int>>("fused_transpose_" + input_name);
552
  auto input_dims = ctx.Input<phi::DenseTensor>(input_name)->dims();
553 554 555 556 557
  auto new_dims = input_dims;
  if (!shape.empty() && !axis.empty()) {
    new_dims = input_dims.reshape(shape).transpose(axis);
  }

558
  auto &MatrixDimsFromVector =
559
      input_name == "X" ? RowMatrixDimsFromVector : ColumnMatrixDimsFromVector;
560
  phi::funcs::MatDescriptor mat_dim = phi::funcs::CreateMatrixDescriptor(
561 562
      MatrixDimsFromVector(new_dims),
      0,
563 564 565 566
      ctx.HasAttr("trans_x")
          ? ctx.Attr<bool>(std::string("trans_") +
                           static_cast<char>(std::tolower(input_name[0])))
          : ctx.Attr<bool>(std::string("transpose_") + input_name[0]));
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585

  std::vector<int64_t> strides;
  if (!shape.empty()) {
    auto shape2 = input_dims.reshape(shape);
    strides.push_back(1);
    for (auto i = shape2.size() - 1; i > 0; --i) {
      strides.insert(strides.begin(),
                     strides.front() * static_cast<int64_t>(shape2[i]));
    }
    strides = Transpose(strides, axis);
    if (shape.size() == 2)
      strides.insert(strides.begin(),
                     static_cast<int64_t>(shape[0] * shape[1]));
    mat_dim.stride_ = strides[0];
    if (mat_dim.trans_) std::swap(*strides.rbegin(), *(++strides.rbegin()));
  }
  return strides;
}

586 587 588
bool IsOutputFused(const ExecutionContext &ctx) {
  auto &fused_reshape_Out = ctx.Attr<std::vector<int>>("fused_reshape_Out");
  auto &fused_transpose_Out = ctx.Attr<std::vector<int>>("fused_transpose_Out");
589 590 591
  return !fused_reshape_Out.empty() && !fused_transpose_Out.empty();
}

592
float ComputeOutputScale(const ExecutionContext &ctx) {
593 594 595 596
  float scale_x = ctx.Attr<float>("Scale_x");
  float scale_y = ctx.Attr<float>("Scale_y");
  bool force_fp32_out = ctx.Attr<bool>("force_fp32_output");
  float scale_out = force_fp32_out ? 1.f : ctx.Attr<float>("Scale_out");
597 598
  float alpha = ctx.HasAttr("alpha") ? ctx.Attr<float>("alpha") : 1.0f;
  return alpha * scale_out / (scale_x * scale_y);
599
}
600

601
template <typename T, typename T_out>
602 603
void ExecuteMatMulV2(const ExecutionContext &ctx,
                     const MKLDNNDeviceContext &dev_ctx,
604
                     const dnnl::engine onednn_engine,
605
                     paddle::platform::Place cpu_place,
606 607
                     const Tensor *x,
                     const std::vector<int64_t> &x_dims,
608
                     bool trans_x,
609 610
                     const Tensor *y,
                     const std::vector<int64_t> &y_dims,
611
                     bool trans_y,
612 613
                     Tensor *out,
                     const std::vector<int64_t> &out_dims,
614
                     int execution_number = 0) {
615 616
  std::vector<int64_t> x_strides_override = GetInputStrides(ctx, "X");
  std::vector<int64_t> y_strides_override = GetInputStrides(ctx, "Y");
617 618 619 620 621 622 623 624 625 626
  MatMulV2MKLDNNHandler<T, T, T_out> handler(ctx,
                                             onednn_engine,
                                             ctx.GetPlace(),
                                             x_dims,
                                             trans_x,
                                             y_dims,
                                             trans_y,
                                             IsOutputFused(ctx),
                                             x_strides_override,
                                             y_strides_override);
627

628 629 630
  const auto src_memory_p = handler.AcquireSrcMemory(x);
  const auto weights_memory_p = handler.AcquireWeightsMemory(y);
  const auto dst_memory_p = handler.AcquireDstMemory(out);
631

632
  auto matmul_p = handler.AcquireForwardPrimitive();
633

634 635 636 637
  std::unordered_map<int, memory> matmul_args = {
      {DNNL_ARG_SRC, *src_memory_p},
      {DNNL_ARG_WEIGHTS, *weights_memory_p},
      {DNNL_ARG_DST, *dst_memory_p}};
638

639
  if (ctx.HasInput("ResidualData")) {
640
    auto *residual_data = ctx.Input<phi::DenseTensor>("ResidualData");
641 642 643 644 645
    const auto residual_data_memory_p = handler.AcquireSrcMemory(residual_data);
    matmul_args.insert({DNNL_ARG_ATTR_MULTIPLE_POST_OP(0) | DNNL_ARG_SRC_1,
                        *residual_data_memory_p});
  }

646
  auto &astream = MKLDNNDeviceContext::tls().get_stream();
647 648
  matmul_p->execute(astream, matmul_args);
  astream.wait();
649 650 651 652 653 654 655 656 657 658 659 660

  // TODO(jczaja): Explain why int8 format of dst is ABCD and do not need
  // permute
  if (IsOutputFused(ctx) && !IsInt8<T_out>()) {
    auto axis = ctx.Attr<std::vector<int>>("fused_transpose_Out");
    auto permuted_md = dst_memory_p->get_desc().permute_axes(axis);
    out->set_mem_desc(
        permuted_md.reshape(phi::vectorize<int64_t>(out->dims())));
  } else {
    out->set_mem_desc(
        dst_memory_p->get_desc().reshape(phi::vectorize<int64_t>(out->dims())));
  }
661 662 663 664 665
}

template <typename T>
class MatMulV2MKLDNNKernel : public paddle::framework::OpKernel<T> {
 public:
666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
  void Compute(const ExecutionContext &ctx) const override {
    if (ctx.HasAttr("head_number")) {
      PADDLE_ENFORCE_EQ(
          ctx.Attr<int>("head_number"),
          1,
          paddle::platform::errors::Unimplemented(
              "oneDNN matmul doesn't support multiple heads. Expected "
              "head_number=1. But received `head_number` is %d",
              ctx.Attr<int>("head_number")));
    }
    constexpr bool is_int8 = IsInt8<T>();
    constexpr bool is_bfloat16 = IsBfloat16<T>();
    const bool force_fp32_output = ctx.HasAttr("force_fp32_output")
                                       ? ctx.Attr<bool>("force_fp32_output")
                                       : false;
    constexpr bool fuse_relu = false;  // TODO(intel): Enable eltwise fuses
    if (force_fp32_output || ((!is_int8) && (!is_bfloat16))) {
      RunKernel<float>(ctx);
    } else if (is_bfloat16) {
      RunKernel<paddle::platform::bfloat16>(ctx);
    } else if (fuse_relu) {
      RunKernel<uint8_t>(ctx);
    } else {
      RunKernel<int8_t>(ctx);
    }
  }
692

693
 private:
694 695 696 697 698 699 700
  void CalculateMatrixDims(const ExecutionContext &ctx,
                           const std::vector<int64_t> &x_dims,
                           const std::vector<int64_t> &y_dims,
                           std::vector<int64_t> *x_bd_dims,
                           std::vector<int64_t> *y_bd_dims,
                           std::vector<int64_t> *out_dims,
                           Tensor *out) const {
701
    if (x_dims.size() == 1) {
702
      (*x_bd_dims)[(*x_bd_dims).size() - 1] = x_dims[0];
703
    } else if (x_dims.size() == 2) {
704 705
      (*x_bd_dims)[(*x_bd_dims).size() - 1] = x_dims[1];
      (*x_bd_dims)[(*x_bd_dims).size() - 2] = x_dims[0];
706 707
    } else {
      for (size_t i = 0; i < x_dims.size(); ++i) {
708
        (*x_bd_dims)[(*x_bd_dims).size() - x_dims.size() + i] = x_dims[i];
709 710 711
      }
    }
    if (y_dims.size() == 1) {
712
      (*y_bd_dims)[(*x_bd_dims).size() - 2] = y_dims[0];
713
    } else if (y_dims.size() == 2) {
714 715
      (*y_bd_dims)[(*y_bd_dims).size() - 1] = y_dims[1];
      (*y_bd_dims)[(*y_bd_dims).size() - 2] = y_dims[0];
716 717
    } else {
      for (size_t i = 0; i < y_dims.size(); ++i) {
718
        (*y_bd_dims)[(*y_bd_dims).size() - y_dims.size() + i] = y_dims[i];
719 720 721
      }
    }

722
    if (!IsOutputFused(ctx) && x_dims.size() > 2 && y_dims.size() > 2) {
723
      for (size_t i = 0; i < (*x_bd_dims).size() - 2; ++i) {
724
        PADDLE_ENFORCE_EQ(
725 726
            (*x_bd_dims)[i] == (*y_bd_dims)[i] || (*x_bd_dims)[i] == 1 ||
                (*y_bd_dims)[i] == 1,
727 728 729 730 731
            true,
            paddle::platform::errors::InvalidArgument(
                "Tensor dimensions are incorrect for broadcasting."
                "Dimensions in X and Y must be same or equal to 1, but "
                "received x_dim[%d]=%d and y_dims[%d]= %d",
732 733 734 735 736
                i,
                (*x_bd_dims)[i],
                i,
                (*y_bd_dims)[i]));
        (*out_dims)[i] = std::max((*x_bd_dims)[i], (*y_bd_dims)[i]);
737
      }
738
      out->Resize(phi::make_ddim((*out_dims)));
739 740 741
    }
  }

742
  template <typename T_out>
743 744 745
  void RunKernel(const ExecutionContext &ctx) const {
    const auto &dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
    const auto &onednn_engine = dev_ctx.GetEngine();
746

747 748 749
    auto *x = ctx.Input<phi::DenseTensor>("X");
    auto *y = ctx.Input<phi::DenseTensor>("Y");
    auto *out = ctx.Output<phi::DenseTensor>("Out");
750 751 752 753
    bool trans_x = ctx.HasAttr("trans_x") ? ctx.Attr<bool>("trans_x")
                                          : ctx.Attr<bool>("transpose_X");
    bool trans_y = ctx.HasAttr("trans_y") ? ctx.Attr<bool>("trans_y")
                                          : ctx.Attr<bool>("transpose_Y");
754

755 756
    auto x_dims = vectorize(GetDimForInput(ctx, "X"));
    auto y_dims = vectorize(GetDimForInput(ctx, "Y"));
757
    auto out_dims = vectorize(out->dims());
758

759
    int ndims = std::max(x_dims.size(), y_dims.size());
760 761 762 763 764
    ndims = std::max(ndims, 3);

    std::vector<int64_t> x_bd_dims(ndims, 1);
    std::vector<int64_t> y_bd_dims(ndims, 1);

765 766 767
    CalculateMatrixDims(
        ctx, x_dims, y_dims, &x_bd_dims, &y_bd_dims, &out_dims, out);

768 769 770 771 772 773 774 775 776 777 778 779
    ExecuteMatMulV2<T, T_out>(ctx,
                              dev_ctx,
                              onednn_engine,
                              ctx.GetPlace(),
                              x,
                              x_bd_dims,
                              trans_x,
                              y,
                              y_bd_dims,
                              trans_y,
                              out,
                              out_dims);
780 781
  }
};
782

783
template <typename T>
784
class MatMulV2GradMKLDNNKernel : public paddle::framework::OpKernel<T> {
785
 public:
786
  void Compute(const ExecutionContext &ctx) const override { RunKernel(ctx); }
787

788
 private:
789 790 791 792 793 794 795
  void CalculateGradMatrixDims(const ExecutionContext &ctx,
                               Tensor *dx_tmp,
                               Tensor *dy_tmp,
                               const std::vector<int64_t> &dx_dims,
                               const std::vector<int64_t> &dy_dims,
                               std::vector<int64_t> *dx_bd_dims,
                               std::vector<int64_t> *dy_bd_dims) const {
796 797 798
    for (size_t i = 0; i < dx_dims.size() - 2; ++i) {
      if (dx_dims[i] != dy_dims[i]) {
        if (dx_dims[i] == 1) {
799
          (*dx_bd_dims)[i] = dy_dims[i];
800
        } else {
801
          (*dy_bd_dims)[i] = dx_dims[i];
802 803 804
        }
      }
    }
805

806
    dx_tmp->Resize(phi::make_ddim((*dx_bd_dims)));
807
    dx_tmp->mutable_data<T>(ctx.GetPlace());
808
    dy_tmp->Resize(phi::make_ddim((*dy_bd_dims)));
809 810 811
    dy_tmp->mutable_data<T>(ctx.GetPlace());
  }

812
  void ReduceSumForMatmulGradOutput(
813 814
      const ExecutionContext &ctx,
      const MKLDNNDeviceContext &dev_ctx,
815
      const dnnl::engine onednn_engine,
816 817 818 819
      const Tensor *dx_tmp,
      Tensor *dx,
      const std::vector<int64_t> &dx_dims,
      const std::vector<int64_t> &squeezed_dims) const {
820
    paddle::platform::ReductionMKLDNNHandler<T> handler(
821 822 823 824 825 826 827 828
        dnnl::algorithm::reduction_sum,
        0.0f,
        0.0f,
        onednn_engine,
        ctx.GetPlace(),
        dx_tmp,
        dx,
        dx_dims);
829 830 831 832 833 834

    auto src_memory_p = handler.AcquireSrcMemory(dx_tmp);
    auto dst_memory_p = handler.AcquireDstMemory(dx);

    std::unordered_map<int, dnnl::memory> reduction_args = {
        {DNNL_ARG_SRC, *src_memory_p}, {DNNL_ARG_DST, *dst_memory_p}};
835

836
    auto &astream = MKLDNNDeviceContext::tls().get_stream();
837 838 839
    auto reduction_p = handler.AcquireForwardPrimitive();

    reduction_p->execute(astream, reduction_args);
840
    astream.wait();
841

842
    dx->set_mem_desc(dst_memory_p->get_desc().reshape(squeezed_dims));
843 844
  }

845
  std::vector<int64_t> ExtendDimsWithOnes(const std::vector<int64_t> &dims,
846 847 848 849 850 851 852
                                          int new_size) const {
    std::vector<int64_t> new_dims(new_size, 1);
    for (size_t i = 0; i < dims.size(); ++i) {
      new_dims[new_size - dims.size() + i] = dims[i];
    }

    return new_dims;
853
  }
854

855 856 857
  void RunKernel(const ExecutionContext &ctx) const {
    const auto &dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
    const auto &onednn_engine = dev_ctx.GetEngine();
858

859 860
    auto *x = ctx.Input<phi::DenseTensor>("X");
    auto *y = ctx.Input<phi::DenseTensor>("Y");
861 862 863 864 865 866 867 868 869 870

    auto x_dims = vectorize(x->dims());
    auto y_dims = vectorize(y->dims());

    bool is_broadcast = true;
    if (x_dims.size() <= 2 || y_dims.size() <= 2) {
      is_broadcast = false;
    } else if (x_dims.size() != y_dims.size()) {
      is_broadcast = true;
    } else {
871 872 873
      is_broadcast = !std::equal(x_dims.cbegin(),
                                 x_dims.cbegin() + x_dims.size() - 2,
                                 y_dims.cbegin());
874 875 876 877 878
    }

    // if no broadcasting is needed, we can simply use matmul's grad and avoid
    // using reduce_sum
    if (!is_broadcast) {
879
      matmul_v1_grad_mkldnn_kernel.Compute(ctx);
880 881 882
      return;
    }

883 884 885
    auto *dout = ctx.Input<phi::DenseTensor>(GradVarName("Out"));
    auto *dx = ctx.Output<phi::DenseTensor>(GradVarName("X"));
    auto *dy = ctx.Output<phi::DenseTensor>(GradVarName("Y"));
886

887 888 889 890
    bool trans_x = ctx.HasAttr("trans_x") ? ctx.Attr<bool>("trans_x")
                                          : ctx.Attr<bool>("transpose_X");
    bool trans_y = ctx.HasAttr("trans_y") ? ctx.Attr<bool>("trans_y")
                                          : ctx.Attr<bool>("transpose_Y");
891 892
    auto dout_dims = vectorize(dout->dims());

893 894 895 896 897 898 899 900
    size_t ndims = std::max(x->dims().size(), y->dims().size());
    ndims = std::max<size_t>(ndims, 3);

    if (x_dims.size() != ndims) {
      x_dims = ExtendDimsWithOnes(x_dims, ndims);
    } else if (y_dims.size() != ndims) {
      y_dims = ExtendDimsWithOnes(y_dims, ndims);
    }
901 902 903 904 905 906 907 908

    // in broadcasting scenario new memory is required because
    // reduce sum must be calculated upon broadcasted dims
    Tensor dx_tmp, dy_tmp;

    std::vector<int64_t> dx_bd_dims(x_dims);
    std::vector<int64_t> dy_bd_dims(y_dims);

909 910
    CalculateGradMatrixDims(
        ctx, &dx_tmp, &dy_tmp, x_dims, y_dims, &dx_bd_dims, &dy_bd_dims);
911 912

    if (trans_x && trans_y) {
913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
      ExecuteMatMulV2<T, T>(ctx,
                            dev_ctx,
                            onednn_engine,
                            ctx.GetPlace(),
                            y,
                            y_dims,
                            true,
                            dout,
                            dout_dims,
                            true,
                            &dx_tmp,
                            dx_bd_dims,
                            1);
      ExecuteMatMulV2<T, T>(ctx,
                            dev_ctx,
                            onednn_engine,
                            ctx.GetPlace(),
                            dout,
                            dout_dims,
                            true,
                            x,
                            x_dims,
                            true,
                            &dy_tmp,
                            dy_bd_dims,
                            2);
939
    } else if (trans_x) {
940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
      ExecuteMatMulV2<T, T>(ctx,
                            dev_ctx,
                            onednn_engine,
                            ctx.GetPlace(),
                            y,
                            y_dims,
                            false,
                            dout,
                            dout_dims,
                            true,
                            &dx_tmp,
                            dx_bd_dims,
                            1);
      ExecuteMatMulV2<T, T>(ctx,
                            dev_ctx,
                            onednn_engine,
                            ctx.GetPlace(),
                            x,
                            x_dims,
                            false,
                            dout,
                            dout_dims,
                            false,
                            &dy_tmp,
                            dy_bd_dims,
                            2);
966
    } else if (trans_y) {
967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
      ExecuteMatMulV2<T, T>(ctx,
                            dev_ctx,
                            onednn_engine,
                            ctx.GetPlace(),
                            dout,
                            dout_dims,
                            false,
                            y,
                            y_dims,
                            false,
                            &dx_tmp,
                            dx_bd_dims,
                            1);
      ExecuteMatMulV2<T, T>(ctx,
                            dev_ctx,
                            onednn_engine,
                            ctx.GetPlace(),
                            dout,
                            dout_dims,
                            true,
                            x,
                            x_dims,
                            false,
                            &dy_tmp,
                            dy_bd_dims,
                            2);
993
    } else {
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
      ExecuteMatMulV2<T, T>(ctx,
                            dev_ctx,
                            onednn_engine,
                            ctx.GetPlace(),
                            dout,
                            dout_dims,
                            false,
                            y,
                            y_dims,
                            true,
                            &dx_tmp,
                            dx_bd_dims,
                            1);
      ExecuteMatMulV2<T, T>(ctx,
                            dev_ctx,
                            onednn_engine,
                            ctx.GetPlace(),
                            x,
                            x_dims,
                            true,
                            dout,
                            dout_dims,
                            false,
                            &dy_tmp,
                            dy_bd_dims,
                            2);
1020 1021 1022
    }

    if (x_dims != dx_bd_dims) {
1023 1024 1025 1026 1027 1028 1029
      ReduceSumForMatmulGradOutput(ctx,
                                   dev_ctx,
                                   onednn_engine,
                                   &dx_tmp,
                                   dx,
                                   x_dims,
                                   phi::vectorize(x->dims()));
1030 1031 1032 1033
    } else {
      *dx = std::move(dx_tmp);
    }
    if (y_dims != dy_bd_dims) {
1034 1035 1036 1037 1038 1039 1040
      ReduceSumForMatmulGradOutput(ctx,
                                   dev_ctx,
                                   onednn_engine,
                                   &dy_tmp,
                                   dy,
                                   y_dims,
                                   phi::vectorize(y->dims()));
1041 1042 1043 1044
    } else {
      *dy = std::move(dy_tmp);
    }

1045 1046
    dx->Resize(x->dims());
    dy->Resize(y->dims());
1047
  }
1048 1049 1050

 private:
  paddle::operators::MatMulGradMKLDNNKernel<T> matmul_v1_grad_mkldnn_kernel;
1051
};
1052
}  // anonymous namespace
1053

1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
namespace paddle {
namespace operators {

template <typename T>
void MatMulGradMKLDNNKernel<T>::Compute(const ExecutionContext &ctx) const {
  if (ctx.HasAttr("head_number")) {
    PADDLE_ENFORCE_EQ(
        ctx.Attr<int>("head_number"),
        1,
        platform::errors::Unimplemented(
            "oneDNN matmul doesn't support multiple heads. Expected "
            "head_number=1. But received `head_number` is %d",
            ctx.Attr<int>("head_number")));
  }
  RunKernel(ctx);
}

template <typename T>
void MatMulGradMKLDNNKernel<T>::ExecuteMatMulGrad(
    const ExecutionContext &ctx,
    const MKLDNNDeviceContext &dev_ctx,
    const dnnl::engine &engine,
    Tensor *x,
    bool trans_x,
    bool is_fold_init_dims_x,
    Tensor *y,
    bool trans_y,
    bool is_fold_init_dims_y,
    Tensor *out) const {
  // gradient is calculated in a different way when broadcasting is used
  bool need_combine = (x->dims().size() == 3 || y->dims().size() == 3) &&
                      out->dims().size() == 2;

  Tensor x_combined, y_combined;
  if (!need_combine) {
    x_combined = *x;
    y_combined = *y;
  } else {
    x_combined = is_fold_init_dims_x ? FoldOuterDims(*x)
                                     : FoldFirstAndLastDims<T>(dev_ctx, x);
    y_combined = is_fold_init_dims_y ? FoldOuterDims(*y)
                                     : FoldFirstAndLastDims<T>(dev_ctx, y);
  }

  float alpha = ctx.HasAttr("alpha") ? ctx.Attr<float>("alpha") : 1.0f;

  MatMulMKLDNNHandler<T, T, T> handler(engine,
                                       ctx.GetPlace(),
                                       &x_combined,
                                       trans_x,
                                       &y_combined,
                                       trans_y,
                                       out,
                                       alpha);

  const auto src_memory_p = handler.AcquireSrcMemory(&x_combined);
  const auto weights_memory_p = handler.AcquireWeightsMemory(&y_combined);
  const auto dst_memory_p = handler.AcquireDstMemory(out);

  auto matmul_p = handler.AcquireForwardPrimitive();

  std::unordered_map<int, dnnl::memory> matmul_args = {
      {DNNL_ARG_SRC, *src_memory_p},
      {DNNL_ARG_WEIGHTS, *weights_memory_p},
      {DNNL_ARG_DST, *dst_memory_p}};

  auto &astream = platform::MKLDNNDeviceContext::tls().get_stream();
  matmul_p->execute(astream, matmul_args);
  astream.wait();

1124 1125
  out->set_mem_desc(
      dst_memory_p->get_desc().reshape(vectorize<int64_t>(out->dims())));
1126 1127 1128 1129 1130 1131 1132 1133
}

template <typename T>
void MatMulGradMKLDNNKernel<T>::RunKernel(const ExecutionContext &ctx) const {
  const auto &dev_ctx =
      ctx.template device_context<platform::MKLDNNDeviceContext>();
  const auto &onednn_engine = dev_ctx.GetEngine();

1134 1135 1136 1137 1138
  auto x = *ctx.Input<phi::DenseTensor>("X");
  auto y = *ctx.Input<phi::DenseTensor>("Y");
  auto dout = *ctx.Input<phi::DenseTensor>(framework::GradVarName("Out"));
  auto *dx = ctx.Output<phi::DenseTensor>(framework::GradVarName("X"));
  auto *dy = ctx.Output<phi::DenseTensor>(framework::GradVarName("Y"));
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187

  bool transpose_x = ctx.HasAttr("transpose_X") ? ctx.Attr<bool>("transpose_X")
                                                : ctx.Attr<bool>("trans_x");
  bool transpose_y = ctx.HasAttr("transpose_Y") ? ctx.Attr<bool>("transpose_Y")
                                                : ctx.Attr<bool>("trans_y");

  ReshapeXYOutToMatrixSequence(&x, &y, &dout, transpose_x, transpose_y);

  framework::DDim dx_dims;
  if (dx) {
    dx_dims = dx->dims();
    if (dx_dims != x.dims()) {
      dx->Resize(x.dims());
    }
  }

  framework::DDim dy_dims;
  if (dy) {
    dy_dims = dy->dims();
    if (dy_dims != y.dims()) {
      dy->Resize(y.dims());
    }
  }

  if (transpose_x && transpose_y) {
    this->ExecuteMatMulGrad(
        ctx, dev_ctx, onednn_engine, &y, true, true, &dout, true, false, dx);
    this->ExecuteMatMulGrad(
        ctx, dev_ctx, onednn_engine, &dout, true, true, &x, true, false, dy);
  } else if (transpose_x) {
    this->ExecuteMatMulGrad(
        ctx, dev_ctx, onednn_engine, &y, false, false, &dout, true, false, dx);
    this->ExecuteMatMulGrad(
        ctx, dev_ctx, onednn_engine, &x, false, false, &dout, false, true, dy);
  } else if (transpose_y) {
    this->ExecuteMatMulGrad(
        ctx, dev_ctx, onednn_engine, &dout, false, false, &y, false, true, dx);
    this->ExecuteMatMulGrad(
        ctx, dev_ctx, onednn_engine, &dout, true, true, &x, false, true, dy);
  } else {
    this->ExecuteMatMulGrad(
        ctx, dev_ctx, onednn_engine, &dout, false, false, &y, true, false, dx);
    this->ExecuteMatMulGrad(
        ctx, dev_ctx, onednn_engine, &x, true, true, &dout, false, true, dy);
  }

  if (dx) {
    if (dx_dims != x.dims()) {
      dx->Resize(dx_dims);
1188
      dx->set_mem_desc(x.mem_desc());
1189 1190 1191 1192 1193
    }
  }
  if (dy) {
    if (dy_dims != y.dims()) {
      dy->Resize(dy_dims);
1194
      dy->set_mem_desc(y.mem_desc());
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
    }
  }
}

template class MatMulGradMKLDNNKernel<float>;
template class MatMulGradMKLDNNKernel<paddle::platform::bfloat16>;

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

1207 1208 1209 1210 1211 1212 1213
REGISTER_OP_KERNEL(matmul,
                   MKLDNN,
                   ::paddle::platform::CPUPlace,
                   MatMulV2MKLDNNKernel<float>,
                   MatMulV2MKLDNNKernel<paddle::platform::bfloat16>,
                   MatMulV2MKLDNNKernel<int8_t>,
                   MatMulV2MKLDNNKernel<uint8_t>);
1214 1215 1216 1217 1218 1219 1220

REGISTER_OP_KERNEL(matmul_grad,
                   MKLDNN,
                   ::paddle::platform::CPUPlace,
                   ops::MatMulGradMKLDNNKernel<float>,
                   ops::MatMulGradMKLDNNKernel<paddle::platform::bfloat16>);

1221 1222 1223
REGISTER_OP_KERNEL(matmul_v2,
                   MKLDNN,
                   ::paddle::platform::CPUPlace,
1224
                   MatMulV2MKLDNNKernel<float>,
1225 1226 1227
                   MatMulV2MKLDNNKernel<paddle::platform::bfloat16>,
                   MatMulV2MKLDNNKernel<int8_t>,
                   MatMulV2MKLDNNKernel<uint8_t>);
1228

1229 1230 1231
REGISTER_OP_KERNEL(matmul_v2_grad,
                   MKLDNN,
                   ::paddle::platform::CPUPlace,
1232 1233
                   MatMulV2GradMKLDNNKernel<float>,
                   MatMulV2GradMKLDNNKernel<paddle::platform::bfloat16>);