matmul_v2_mkldnn_op.cc 16.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/fluid/operators/mkldnn/matmul_mkldnn_op.h"
16

17
namespace {
18 19 20

using dnnl::memory;
using dnnl::primitive;
21 22 23
using paddle::framework::DataLayout;
using paddle::framework::ExecutionContext;
using paddle::platform::GetMKLDNNFormat;
24
using paddle::platform::MatMulV2MKLDNNHandler;
25 26 27 28
using paddle::platform::MKLDNNDeviceContext;
using paddle::platform::MKLDNNGetDataType;
using paddle::platform::to_void_cast;
using Tensor = paddle::framework::Tensor;
29
using paddle::framework::DDim;
30
using paddle::framework::GradVarName;
31 32
using phi::make_ddim;
using phi::vectorize;
33

34 35 36
// Get row matrix shape from a vector shape. If the rank of x_dim > 1, the
// original x_dim is returned.
static DDim RowMatrixDimsFromVector(const DDim& x_dim) {
37
  return x_dim.size() > 1 ? x_dim : phi::make_ddim({1, x_dim[0]});
38 39 40 41 42
}

// Get column matrix shape from a vector shape. If the ran of y_dim > 1, the
// original y_dim is returned.
static DDim ColumnMatrixDimsFromVector(const DDim& y_dim) {
43
  return y_dim.size() > 1 ? y_dim : phi::make_ddim({y_dim[0], 1});
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
}

static std::vector<int64_t> Transpose(const std::vector<int64_t>& x,
                                      const std::vector<int>& axis) {
  size_t in_rank = x.size();
  size_t axis_size = axis.size();

  auto axis_set = std::set<int>(axis.begin(), axis.end());
  PADDLE_ENFORCE_EQ(axis_set.size(), axis_size,
                    paddle::platform::errors::InvalidArgument(
                        "In an axis array, elements must be unique."));

  PADDLE_ENFORCE_EQ(in_rank, axis_size,
                    paddle::platform::errors::InvalidArgument(
                        "The input dimension's size "
                        "should be equal to the axis's size. "
                        "But received dimension is %d, "
                        "axis's size is %d",
                        in_rank, axis_size));

  PADDLE_ENFORCE_LT(*std::max_element(axis.begin(), axis.end()), axis_size,
                    paddle::platform::errors::InvalidArgument(
                        "Axis values must be ranging from 0 to (dims - 1)."));

  std::vector<int64_t> new_x(x.size());
  for (size_t i = 0; i < x.size(); i++) {
    new_x[i] = x[axis[i]];
  }
  return new_x;
}

std::vector<int64_t> GetInputStrides(const ExecutionContext& ctx,
                                     const std::string input_name) {
  auto shape = ctx.Attr<std::vector<int>>("fused_reshape_" + input_name);
  auto axis = ctx.Attr<std::vector<int>>("fused_transpose_" + input_name);
  auto input_dims = ctx.Input<Tensor>(input_name)->dims();
  auto new_dims = input_dims;
  if (!shape.empty() && !axis.empty()) {
    new_dims = input_dims.reshape(shape).transpose(axis);
  }

  auto& MatrixDimsFromVector =
      input_name == "X" ? RowMatrixDimsFromVector : ColumnMatrixDimsFromVector;
87
  phi::funcs::MatDescriptor mat_dim = phi::funcs::CreateMatrixDescriptor(
88 89 90
      MatrixDimsFromVector(new_dims), 0,
      ctx.Attr<bool>(std::string("trans_") +
                     static_cast<char>(std::tolower(input_name[0]))));
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109

  std::vector<int64_t> strides;
  if (!shape.empty()) {
    auto shape2 = input_dims.reshape(shape);
    strides.push_back(1);
    for (auto i = shape2.size() - 1; i > 0; --i) {
      strides.insert(strides.begin(),
                     strides.front() * static_cast<int64_t>(shape2[i]));
    }
    strides = Transpose(strides, axis);
    if (shape.size() == 2)
      strides.insert(strides.begin(),
                     static_cast<int64_t>(shape[0] * shape[1]));
    mat_dim.stride_ = strides[0];
    if (mat_dim.trans_) std::swap(*strides.rbegin(), *(++strides.rbegin()));
  }
  return strides;
}

110 111 112 113 114 115 116 117 118 119 120 121 122
bool IsOutputFused(const ExecutionContext& ctx) {
  auto& fused_reshape_Out = ctx.Attr<std::vector<int>>("fused_reshape_Out");
  auto& fused_transpose_Out = ctx.Attr<std::vector<int>>("fused_transpose_Out");
  return !fused_reshape_Out.empty() && !fused_transpose_Out.empty();
}

float ComputeOutputScale(const ExecutionContext& ctx) {
  float scale_x = ctx.Attr<float>("Scale_x");
  float scale_y = ctx.Attr<float>("Scale_y");
  bool force_fp32_out = ctx.Attr<bool>("force_fp32_output");
  float scale_out = force_fp32_out ? 1.f : ctx.Attr<float>("Scale_out");
  return scale_out / (scale_x * scale_y);
}
123

124 125
template <typename T>
void ExecuteMatMulV2(const ExecutionContext& ctx,
126
                     const MKLDNNDeviceContext& dev_ctx,
127
                     const dnnl::engine onednn_engine,
128 129 130 131
                     paddle::platform::Place cpu_place, const Tensor* x,
                     std::vector<int64_t>& x_dims, bool trans_x,
                     const Tensor* y, std::vector<int64_t>& y_dims,
                     bool trans_y, Tensor* out, std::vector<int64_t>& out_dims,
132
                     int execution_number = 0) {
133 134
  std::vector<int64_t> x_strides_override = GetInputStrides(ctx, "X");
  std::vector<int64_t> y_strides_override = GetInputStrides(ctx, "Y");
135
  MatMulV2MKLDNNHandler<T> handler(onednn_engine, ctx.GetPlace(), x_dims,
136 137
                                   trans_x, y_dims, trans_y, IsOutputFused(ctx),
                                   x_strides_override, y_strides_override);
138

139 140 141
  const auto src_memory_p = handler.AcquireSrcMemory(x);
  const auto weights_memory_p = handler.AcquireWeightsMemory(y);
  const auto dst_memory_p = handler.AcquireDstMemory(out);
142

143
  auto matmul_p = handler.AcquireForwardPrimitive();
144

145 146 147 148
  std::unordered_map<int, memory> matmul_args = {
      {DNNL_ARG_SRC, *src_memory_p},
      {DNNL_ARG_WEIGHTS, *weights_memory_p},
      {DNNL_ARG_DST, *dst_memory_p}};
149

150 151 152
  auto& astream = MKLDNNDeviceContext::tls().get_stream();
  matmul_p->execute(astream, matmul_args);
  astream.wait();
153

154 155 156 157 158 159
  auto format = paddle::platform::MKLDNNFormatForSize(
      out->dims().size(), dnnl::memory::format_tag::nchw);
  out->set_layout(paddle::framework::DataLayout::kMKLDNN);
  out->set_format(format);
}

160 161 162 163 164 165 166 167 168 169 170
DDim GetDimForInput(const paddle::framework::ExecutionContext& ctx,
                    const std::string& input_name) {
  auto shape = ctx.Attr<std::vector<int>>("fused_reshape_" + input_name);
  auto axis = ctx.Attr<std::vector<int>>("fused_transpose_" + input_name);
  auto dim = ctx.Input<paddle::framework::Tensor>(input_name)->dims();
  if (!shape.empty() && !axis.empty()) {
    dim = dim.reshape(shape).transpose(axis);
  }
  return dim;
}

171 172 173 174
template <typename T>
class MatMulV2MKLDNNKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const ExecutionContext& ctx) const override { RunKernel(ctx); }
175

176 177 178 179 180 181 182 183 184
 private:
  void CalculateMatrixDims(const ExecutionContext& ctx,
                           const std::vector<int64_t>& x_dims,
                           const std::vector<int64_t>& y_dims,
                           std::vector<int64_t>& x_bd_dims,
                           std::vector<int64_t>& y_bd_dims,
                           std::vector<int64_t>& out_dims, Tensor* out) const {
    if (x_dims.size() == 1) {
      x_bd_dims[x_bd_dims.size() - 1] = x_dims[0];
185
    } else if (x_dims.size() == 2) {
J
jakpiase 已提交
186 187
      x_bd_dims[x_bd_dims.size() - 1] = x_dims[1];
      x_bd_dims[x_bd_dims.size() - 2] = x_dims[0];
188 189
    } else {
      for (size_t i = 0; i < x_dims.size(); ++i) {
190
        x_bd_dims[x_bd_dims.size() - x_dims.size() + i] = x_dims[i];
191 192 193 194
      }
    }
    if (y_dims.size() == 1) {
      y_bd_dims[x_bd_dims.size() - 2] = y_dims[0];
195
    } else if (y_dims.size() == 2) {
J
jakpiase 已提交
196 197
      y_bd_dims[y_bd_dims.size() - 1] = y_dims[1];
      y_bd_dims[y_bd_dims.size() - 2] = y_dims[0];
198 199
    } else {
      for (size_t i = 0; i < y_dims.size(); ++i) {
200
        y_bd_dims[y_bd_dims.size() - y_dims.size() + i] = y_dims[i];
201 202 203
      }
    }

204 205
    if (!IsOutputFused(ctx) && x_dims.size() > 2 && y_dims.size() > 2) {
      for (size_t i = 0; i < x_bd_dims.size() - 2; ++i) {
206
        PADDLE_ENFORCE_EQ(
207 208
            x_bd_dims[i] == y_bd_dims[i] || x_bd_dims[i] == 1 ||
                y_bd_dims[i] == 1,
209 210 211 212 213 214
            true,
            paddle::platform::errors::InvalidArgument(
                "Tensor dimensions are incorrect for broadcasting."
                "Dimensions in X and Y must be same or equal to 1, but "
                "received x_dim[%d]=%d and y_dims[%d]= %d",
                i, x_bd_dims[i], i, y_bd_dims[i]));
215
        out_dims[i] = std::max(x_bd_dims[i], y_bd_dims[i]);
216
      }
217
      out->Resize(phi::make_ddim(out_dims));
218 219 220 221 222 223 224 225 226 227 228 229 230
    }
  }

  void RunKernel(const ExecutionContext& ctx) const {
    const auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
    const auto& onednn_engine = dev_ctx.GetEngine();

    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");
    auto* out = ctx.Output<Tensor>("Out");
    bool trans_x = ctx.Attr<bool>("trans_x");
    bool trans_y = ctx.Attr<bool>("trans_y");

231 232
    auto x_dims = vectorize(GetDimForInput(ctx, "X"));
    auto y_dims = vectorize(GetDimForInput(ctx, "Y"));
233
    auto out_dims = vectorize(out->dims());
234

235
    int ndims = std::max(x_dims.size(), y_dims.size());
236 237 238 239 240 241 242 243
    ndims = std::max(ndims, 3);

    std::vector<int64_t> x_bd_dims(ndims, 1);
    std::vector<int64_t> y_bd_dims(ndims, 1);

    CalculateMatrixDims(ctx, x_dims, y_dims, x_bd_dims, y_bd_dims, out_dims,
                        out);

244 245 246
    ExecuteMatMulV2<T>(ctx, dev_ctx, onednn_engine, ctx.GetPlace(), x,
                       x_bd_dims, trans_x, y, y_bd_dims, trans_y, out,
                       out_dims);
247 248
  }
};
249

250
template <typename T>
251
class MatMulV2GradMKLDNNKernel : public paddle::framework::OpKernel<T> {
252 253
 public:
  void Compute(const ExecutionContext& ctx) const override { RunKernel(ctx); }
254

255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
 private:
  void CalculateGradMatrixDims(const ExecutionContext& ctx, Tensor* dx_tmp,
                               Tensor* dy_tmp,
                               const std::vector<int64_t>& dx_dims,
                               const std::vector<int64_t>& dy_dims,
                               std::vector<int64_t>& dx_bd_dims,
                               std::vector<int64_t>& dy_bd_dims) const {
    for (size_t i = 0; i < dx_dims.size() - 2; ++i) {
      if (dx_dims[i] != dy_dims[i]) {
        if (dx_dims[i] == 1) {
          dx_bd_dims[i] = dy_dims[i];
        } else {
          dy_bd_dims[i] = dx_dims[i];
        }
      }
    }
271

272
    dx_tmp->Resize(phi::make_ddim(dx_bd_dims));
273
    dx_tmp->mutable_data<T>(ctx.GetPlace());
274
    dy_tmp->Resize(phi::make_ddim(dy_bd_dims));
275 276 277
    dy_tmp->mutable_data<T>(ctx.GetPlace());
  }

278 279 280 281 282
  void ReduceSumForMatmulGradOutput(
      const ExecutionContext& ctx, const MKLDNNDeviceContext& dev_ctx,
      const dnnl::engine onednn_engine, const Tensor* dx_tmp, Tensor* dx,
      std::vector<int64_t>& dx_dims,
      const std::vector<int64_t>& squeezed_dims) const {
283
    paddle::platform::ReductionMKLDNNHandler<T> handler(
284 285
        dnnl::algorithm::reduction_sum, 0.0f, 0.0f, onednn_engine,
        ctx.GetPlace(), dx_tmp, dx, dx_dims);
286 287 288 289 290 291

    auto src_memory_p = handler.AcquireSrcMemory(dx_tmp);
    auto dst_memory_p = handler.AcquireDstMemory(dx);

    std::unordered_map<int, dnnl::memory> reduction_args = {
        {DNNL_ARG_SRC, *src_memory_p}, {DNNL_ARG_DST, *dst_memory_p}};
292 293

    auto& astream = MKLDNNDeviceContext::tls().get_stream();
294 295 296
    auto reduction_p = handler.AcquireForwardPrimitive();

    reduction_p->execute(astream, reduction_args);
297
    astream.wait();
298 299 300 301 302 303 304 305 306 307 308 309 310

    dx->set_format(paddle::platform::GetMKLDNNFormat(
        dst_memory_p->get_desc().reshape(squeezed_dims)));
  }

  std::vector<int64_t> ExtendDimsWithOnes(const std::vector<int64_t>& dims,
                                          int new_size) const {
    std::vector<int64_t> new_dims(new_size, 1);
    for (size_t i = 0; i < dims.size(); ++i) {
      new_dims[new_size - dims.size() + i] = dims[i];
    }

    return new_dims;
311
  }
312

313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
  void RunKernel(const ExecutionContext& ctx) const {
    const auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
    const auto& onednn_engine = dev_ctx.GetEngine();

    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");

    auto x_dims = vectorize(x->dims());
    auto y_dims = vectorize(y->dims());

    bool is_broadcast = true;
    if (x_dims.size() <= 2 || y_dims.size() <= 2) {
      is_broadcast = false;
    } else if (x_dims.size() != y_dims.size()) {
      is_broadcast = true;
    } else {
      is_broadcast =
          !std::equal(x_dims.cbegin(), x_dims.cbegin() + x_dims.size() - 2,
                      y_dims.cbegin());
    }

    // if no broadcasting is needed, we can simply use matmul's grad and avoid
    // using reduce_sum
    if (!is_broadcast) {
337
      matmul_v1_grad_mkldnn_kernel.Compute(ctx);
338 339 340 341 342 343 344 345 346 347 348
      return;
    }

    auto* dout = ctx.Input<Tensor>(GradVarName("Out"));
    auto* dx = ctx.Output<Tensor>(GradVarName("X"));
    auto* dy = ctx.Output<Tensor>(GradVarName("Y"));

    bool trans_x = ctx.Attr<bool>("trans_x");
    bool trans_y = ctx.Attr<bool>("trans_y");
    auto dout_dims = vectorize(dout->dims());

349 350 351 352 353 354 355 356
    size_t ndims = std::max(x->dims().size(), y->dims().size());
    ndims = std::max<size_t>(ndims, 3);

    if (x_dims.size() != ndims) {
      x_dims = ExtendDimsWithOnes(x_dims, ndims);
    } else if (y_dims.size() != ndims) {
      y_dims = ExtendDimsWithOnes(y_dims, ndims);
    }
357 358 359 360 361 362 363 364 365 366 367 368

    // in broadcasting scenario new memory is required because
    // reduce sum must be calculated upon broadcasted dims
    Tensor dx_tmp, dy_tmp;

    std::vector<int64_t> dx_bd_dims(x_dims);
    std::vector<int64_t> dy_bd_dims(y_dims);

    CalculateGradMatrixDims(ctx, &dx_tmp, &dy_tmp, x_dims, y_dims, dx_bd_dims,
                            dy_bd_dims);

    if (trans_x && trans_y) {
369 370 371 372 373
      ExecuteMatMulV2<T>(ctx, dev_ctx, onednn_engine, ctx.GetPlace(), y, y_dims,
                         true, dout, dout_dims, true, &dx_tmp, dx_bd_dims, 1);
      ExecuteMatMulV2<T>(ctx, dev_ctx, onednn_engine, ctx.GetPlace(), dout,
                         dout_dims, true, x, x_dims, true, &dy_tmp, dy_bd_dims,
                         2);
374
    } else if (trans_x) {
375 376 377 378
      ExecuteMatMulV2<T>(ctx, dev_ctx, onednn_engine, ctx.GetPlace(), y, y_dims,
                         false, dout, dout_dims, true, &dx_tmp, dx_bd_dims, 1);
      ExecuteMatMulV2<T>(ctx, dev_ctx, onednn_engine, ctx.GetPlace(), x, x_dims,
                         false, dout, dout_dims, false, &dy_tmp, dy_bd_dims, 2);
379
    } else if (trans_y) {
380 381 382 383 384 385
      ExecuteMatMulV2<T>(ctx, dev_ctx, onednn_engine, ctx.GetPlace(), dout,
                         dout_dims, false, y, y_dims, false, &dx_tmp,
                         dx_bd_dims, 1);
      ExecuteMatMulV2<T>(ctx, dev_ctx, onednn_engine, ctx.GetPlace(), dout,
                         dout_dims, true, x, x_dims, false, &dy_tmp, dy_bd_dims,
                         2);
386
    } else {
387 388 389 390 391
      ExecuteMatMulV2<T>(ctx, dev_ctx, onednn_engine, ctx.GetPlace(), dout,
                         dout_dims, false, y, y_dims, true, &dx_tmp, dx_bd_dims,
                         1);
      ExecuteMatMulV2<T>(ctx, dev_ctx, onednn_engine, ctx.GetPlace(), x, x_dims,
                         true, dout, dout_dims, false, &dy_tmp, dy_bd_dims, 2);
392 393 394 395
    }

    if (x_dims != dx_bd_dims) {
      ReduceSumForMatmulGradOutput(ctx, dev_ctx, onednn_engine, &dx_tmp, dx,
396
                                   x_dims, phi::vectorize(x->dims()));
397 398 399 400 401
    } else {
      *dx = std::move(dx_tmp);
    }
    if (y_dims != dy_bd_dims) {
      ReduceSumForMatmulGradOutput(ctx, dev_ctx, onednn_engine, &dy_tmp, dy,
402
                                   y_dims, phi::vectorize(y->dims()));
403 404 405 406
    } else {
      *dy = std::move(dy_tmp);
    }

407 408
    dx->Resize(x->dims());
    dy->Resize(y->dims());
409
  }
410 411 412

 private:
  paddle::operators::MatMulGradMKLDNNKernel<T> matmul_v1_grad_mkldnn_kernel;
413
};
414
}  // anonymous namespace
415

416
REGISTER_OP_KERNEL(matmul_v2, MKLDNN, ::paddle::platform::CPUPlace,
417 418
                   MatMulV2MKLDNNKernel<float>,
                   MatMulV2MKLDNNKernel<paddle::platform::bfloat16>);
419

420 421 422
REGISTER_OP_KERNEL(matmul_v2_grad, MKLDNN, ::paddle::platform::CPUPlace,
                   MatMulV2GradMKLDNNKernel<float>,
                   MatMulV2GradMKLDNNKernel<paddle::platform::bfloat16>);