matmul_v2_mkldnn_op.cc 19.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14
#include "paddle/fluid/operators/mkldnn/matmul_mkldnn_op.h"
15

16
namespace {
17 18 19

using dnnl::memory;
using dnnl::primitive;
20 21 22
using paddle::framework::DataLayout;
using paddle::framework::ExecutionContext;
using paddle::platform::GetMKLDNNFormat;
23
using paddle::platform::MatMulV2MKLDNNHandler;
24 25 26 27
using paddle::platform::MKLDNNDeviceContext;
using paddle::platform::MKLDNNGetDataType;
using paddle::platform::to_void_cast;
using Tensor = paddle::framework::Tensor;
28
using paddle::framework::DDim;
29
using paddle::framework::GradVarName;
30 31
using phi::make_ddim;
using phi::vectorize;
32

33 34 35
// Get row matrix shape from a vector shape. If the rank of x_dim > 1, the
// original x_dim is returned.
static DDim RowMatrixDimsFromVector(const DDim& x_dim) {
36
  return x_dim.size() > 1 ? x_dim : phi::make_ddim({1, x_dim[0]});
37 38 39 40 41
}

// Get column matrix shape from a vector shape. If the ran of y_dim > 1, the
// original y_dim is returned.
static DDim ColumnMatrixDimsFromVector(const DDim& y_dim) {
42
  return y_dim.size() > 1 ? y_dim : phi::make_ddim({y_dim[0], 1});
43 44 45 46 47 48 49 50
}

static std::vector<int64_t> Transpose(const std::vector<int64_t>& x,
                                      const std::vector<int>& axis) {
  size_t in_rank = x.size();
  size_t axis_size = axis.size();

  auto axis_set = std::set<int>(axis.begin(), axis.end());
51 52
  PADDLE_ENFORCE_EQ(axis_set.size(),
                    axis_size,
53 54 55
                    paddle::platform::errors::InvalidArgument(
                        "In an axis array, elements must be unique."));

56 57
  PADDLE_ENFORCE_EQ(in_rank,
                    axis_size,
58 59 60 61 62
                    paddle::platform::errors::InvalidArgument(
                        "The input dimension's size "
                        "should be equal to the axis's size. "
                        "But received dimension is %d, "
                        "axis's size is %d",
63 64
                        in_rank,
                        axis_size));
65

66 67
  PADDLE_ENFORCE_LT(*std::max_element(axis.begin(), axis.end()),
                    axis_size,
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
                    paddle::platform::errors::InvalidArgument(
                        "Axis values must be ranging from 0 to (dims - 1)."));

  std::vector<int64_t> new_x(x.size());
  for (size_t i = 0; i < x.size(); i++) {
    new_x[i] = x[axis[i]];
  }
  return new_x;
}

std::vector<int64_t> GetInputStrides(const ExecutionContext& ctx,
                                     const std::string input_name) {
  auto shape = ctx.Attr<std::vector<int>>("fused_reshape_" + input_name);
  auto axis = ctx.Attr<std::vector<int>>("fused_transpose_" + input_name);
  auto input_dims = ctx.Input<Tensor>(input_name)->dims();
  auto new_dims = input_dims;
  if (!shape.empty() && !axis.empty()) {
    new_dims = input_dims.reshape(shape).transpose(axis);
  }

  auto& MatrixDimsFromVector =
      input_name == "X" ? RowMatrixDimsFromVector : ColumnMatrixDimsFromVector;
90
  phi::funcs::MatDescriptor mat_dim = phi::funcs::CreateMatrixDescriptor(
91 92
      MatrixDimsFromVector(new_dims),
      0,
93 94
      ctx.Attr<bool>(std::string("trans_") +
                     static_cast<char>(std::tolower(input_name[0]))));
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113

  std::vector<int64_t> strides;
  if (!shape.empty()) {
    auto shape2 = input_dims.reshape(shape);
    strides.push_back(1);
    for (auto i = shape2.size() - 1; i > 0; --i) {
      strides.insert(strides.begin(),
                     strides.front() * static_cast<int64_t>(shape2[i]));
    }
    strides = Transpose(strides, axis);
    if (shape.size() == 2)
      strides.insert(strides.begin(),
                     static_cast<int64_t>(shape[0] * shape[1]));
    mat_dim.stride_ = strides[0];
    if (mat_dim.trans_) std::swap(*strides.rbegin(), *(++strides.rbegin()));
  }
  return strides;
}

114 115 116 117 118 119 120 121 122 123 124 125 126
bool IsOutputFused(const ExecutionContext& ctx) {
  auto& fused_reshape_Out = ctx.Attr<std::vector<int>>("fused_reshape_Out");
  auto& fused_transpose_Out = ctx.Attr<std::vector<int>>("fused_transpose_Out");
  return !fused_reshape_Out.empty() && !fused_transpose_Out.empty();
}

float ComputeOutputScale(const ExecutionContext& ctx) {
  float scale_x = ctx.Attr<float>("Scale_x");
  float scale_y = ctx.Attr<float>("Scale_y");
  bool force_fp32_out = ctx.Attr<bool>("force_fp32_output");
  float scale_out = force_fp32_out ? 1.f : ctx.Attr<float>("Scale_out");
  return scale_out / (scale_x * scale_y);
}
127

128 129
template <typename T>
void ExecuteMatMulV2(const ExecutionContext& ctx,
130
                     const MKLDNNDeviceContext& dev_ctx,
131
                     const dnnl::engine onednn_engine,
132 133 134 135 136 137 138 139 140
                     paddle::platform::Place cpu_place,
                     const Tensor* x,
                     const std::vector<int64_t>& x_dims,
                     bool trans_x,
                     const Tensor* y,
                     const std::vector<int64_t>& y_dims,
                     bool trans_y,
                     Tensor* out,
                     const std::vector<int64_t>& out_dims,
141
                     int execution_number = 0) {
142 143
  std::vector<int64_t> x_strides_override = GetInputStrides(ctx, "X");
  std::vector<int64_t> y_strides_override = GetInputStrides(ctx, "Y");
144 145 146 147 148 149 150 151 152
  MatMulV2MKLDNNHandler<T> handler(onednn_engine,
                                   ctx.GetPlace(),
                                   x_dims,
                                   trans_x,
                                   y_dims,
                                   trans_y,
                                   IsOutputFused(ctx),
                                   x_strides_override,
                                   y_strides_override);
153

154 155 156
  const auto src_memory_p = handler.AcquireSrcMemory(x);
  const auto weights_memory_p = handler.AcquireWeightsMemory(y);
  const auto dst_memory_p = handler.AcquireDstMemory(out);
157

158
  auto matmul_p = handler.AcquireForwardPrimitive();
159

160 161 162 163
  std::unordered_map<int, memory> matmul_args = {
      {DNNL_ARG_SRC, *src_memory_p},
      {DNNL_ARG_WEIGHTS, *weights_memory_p},
      {DNNL_ARG_DST, *dst_memory_p}};
164

165 166 167
  auto& astream = MKLDNNDeviceContext::tls().get_stream();
  matmul_p->execute(astream, matmul_args);
  astream.wait();
168

169 170 171 172 173 174
  auto format = paddle::platform::MKLDNNFormatForSize(
      out->dims().size(), dnnl::memory::format_tag::nchw);
  out->set_layout(paddle::framework::DataLayout::kMKLDNN);
  out->set_format(format);
}

175 176 177 178 179 180 181 182 183 184 185
DDim GetDimForInput(const paddle::framework::ExecutionContext& ctx,
                    const std::string& input_name) {
  auto shape = ctx.Attr<std::vector<int>>("fused_reshape_" + input_name);
  auto axis = ctx.Attr<std::vector<int>>("fused_transpose_" + input_name);
  auto dim = ctx.Input<paddle::framework::Tensor>(input_name)->dims();
  if (!shape.empty() && !axis.empty()) {
    dim = dim.reshape(shape).transpose(axis);
  }
  return dim;
}

186 187 188 189
template <typename T>
class MatMulV2MKLDNNKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const ExecutionContext& ctx) const override { RunKernel(ctx); }
190

191 192 193 194
 private:
  void CalculateMatrixDims(const ExecutionContext& ctx,
                           const std::vector<int64_t>& x_dims,
                           const std::vector<int64_t>& y_dims,
195 196 197 198
                           std::vector<int64_t>* x_bd_dims,
                           std::vector<int64_t>* y_bd_dims,
                           std::vector<int64_t>* out_dims,
                           Tensor* out) const {
199
    if (x_dims.size() == 1) {
200
      (*x_bd_dims)[(*x_bd_dims).size() - 1] = x_dims[0];
201
    } else if (x_dims.size() == 2) {
202 203
      (*x_bd_dims)[(*x_bd_dims).size() - 1] = x_dims[1];
      (*x_bd_dims)[(*x_bd_dims).size() - 2] = x_dims[0];
204 205
    } else {
      for (size_t i = 0; i < x_dims.size(); ++i) {
206
        (*x_bd_dims)[(*x_bd_dims).size() - x_dims.size() + i] = x_dims[i];
207 208 209
      }
    }
    if (y_dims.size() == 1) {
210
      (*y_bd_dims)[(*x_bd_dims).size() - 2] = y_dims[0];
211
    } else if (y_dims.size() == 2) {
212 213
      (*y_bd_dims)[(*y_bd_dims).size() - 1] = y_dims[1];
      (*y_bd_dims)[(*y_bd_dims).size() - 2] = y_dims[0];
214 215
    } else {
      for (size_t i = 0; i < y_dims.size(); ++i) {
216
        (*y_bd_dims)[(*y_bd_dims).size() - y_dims.size() + i] = y_dims[i];
217 218 219
      }
    }

220
    if (!IsOutputFused(ctx) && x_dims.size() > 2 && y_dims.size() > 2) {
221
      for (size_t i = 0; i < (*x_bd_dims).size() - 2; ++i) {
222
        PADDLE_ENFORCE_EQ(
223 224
            (*x_bd_dims)[i] == (*y_bd_dims)[i] || (*x_bd_dims)[i] == 1 ||
                (*y_bd_dims)[i] == 1,
225 226 227 228 229
            true,
            paddle::platform::errors::InvalidArgument(
                "Tensor dimensions are incorrect for broadcasting."
                "Dimensions in X and Y must be same or equal to 1, but "
                "received x_dim[%d]=%d and y_dims[%d]= %d",
230 231 232 233 234
                i,
                (*x_bd_dims)[i],
                i,
                (*y_bd_dims)[i]));
        (*out_dims)[i] = std::max((*x_bd_dims)[i], (*y_bd_dims)[i]);
235
      }
236
      out->Resize(phi::make_ddim((*out_dims)));
237 238 239 240 241 242 243 244 245 246 247 248 249
    }
  }

  void RunKernel(const ExecutionContext& ctx) const {
    const auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
    const auto& onednn_engine = dev_ctx.GetEngine();

    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");
    auto* out = ctx.Output<Tensor>("Out");
    bool trans_x = ctx.Attr<bool>("trans_x");
    bool trans_y = ctx.Attr<bool>("trans_y");

250 251
    auto x_dims = vectorize(GetDimForInput(ctx, "X"));
    auto y_dims = vectorize(GetDimForInput(ctx, "Y"));
252
    auto out_dims = vectorize(out->dims());
253

254
    int ndims = std::max(x_dims.size(), y_dims.size());
255 256 257 258 259
    ndims = std::max(ndims, 3);

    std::vector<int64_t> x_bd_dims(ndims, 1);
    std::vector<int64_t> y_bd_dims(ndims, 1);

260 261 262 263 264 265 266 267 268 269 270 271 272 273
    CalculateMatrixDims(
        ctx, x_dims, y_dims, &x_bd_dims, &y_bd_dims, &out_dims, out);

    ExecuteMatMulV2<T>(ctx,
                       dev_ctx,
                       onednn_engine,
                       ctx.GetPlace(),
                       x,
                       x_bd_dims,
                       trans_x,
                       y,
                       y_bd_dims,
                       trans_y,
                       out,
274
                       out_dims);
275 276
  }
};
277

278
template <typename T>
279
class MatMulV2GradMKLDNNKernel : public paddle::framework::OpKernel<T> {
280 281
 public:
  void Compute(const ExecutionContext& ctx) const override { RunKernel(ctx); }
282

283
 private:
284 285
  void CalculateGradMatrixDims(const ExecutionContext& ctx,
                               Tensor* dx_tmp,
286 287 288
                               Tensor* dy_tmp,
                               const std::vector<int64_t>& dx_dims,
                               const std::vector<int64_t>& dy_dims,
289 290
                               std::vector<int64_t>* dx_bd_dims,
                               std::vector<int64_t>* dy_bd_dims) const {
291 292 293
    for (size_t i = 0; i < dx_dims.size() - 2; ++i) {
      if (dx_dims[i] != dy_dims[i]) {
        if (dx_dims[i] == 1) {
294
          (*dx_bd_dims)[i] = dy_dims[i];
295
        } else {
296
          (*dy_bd_dims)[i] = dx_dims[i];
297 298 299
        }
      }
    }
300

301
    dx_tmp->Resize(phi::make_ddim((*dx_bd_dims)));
302
    dx_tmp->mutable_data<T>(ctx.GetPlace());
303
    dy_tmp->Resize(phi::make_ddim((*dy_bd_dims)));
304 305 306
    dy_tmp->mutable_data<T>(ctx.GetPlace());
  }

307
  void ReduceSumForMatmulGradOutput(
308 309 310 311 312 313
      const ExecutionContext& ctx,
      const MKLDNNDeviceContext& dev_ctx,
      const dnnl::engine onednn_engine,
      const Tensor* dx_tmp,
      Tensor* dx,
      const std::vector<int64_t>& dx_dims,
314
      const std::vector<int64_t>& squeezed_dims) const {
315
    paddle::platform::ReductionMKLDNNHandler<T> handler(
316 317 318 319 320 321 322 323
        dnnl::algorithm::reduction_sum,
        0.0f,
        0.0f,
        onednn_engine,
        ctx.GetPlace(),
        dx_tmp,
        dx,
        dx_dims);
324 325 326 327 328 329

    auto src_memory_p = handler.AcquireSrcMemory(dx_tmp);
    auto dst_memory_p = handler.AcquireDstMemory(dx);

    std::unordered_map<int, dnnl::memory> reduction_args = {
        {DNNL_ARG_SRC, *src_memory_p}, {DNNL_ARG_DST, *dst_memory_p}};
330 331

    auto& astream = MKLDNNDeviceContext::tls().get_stream();
332 333 334
    auto reduction_p = handler.AcquireForwardPrimitive();

    reduction_p->execute(astream, reduction_args);
335
    astream.wait();
336 337 338 339 340 341 342 343 344 345 346 347 348

    dx->set_format(paddle::platform::GetMKLDNNFormat(
        dst_memory_p->get_desc().reshape(squeezed_dims)));
  }

  std::vector<int64_t> ExtendDimsWithOnes(const std::vector<int64_t>& dims,
                                          int new_size) const {
    std::vector<int64_t> new_dims(new_size, 1);
    for (size_t i = 0; i < dims.size(); ++i) {
      new_dims[new_size - dims.size() + i] = dims[i];
    }

    return new_dims;
349
  }
350

351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
  void RunKernel(const ExecutionContext& ctx) const {
    const auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
    const auto& onednn_engine = dev_ctx.GetEngine();

    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");

    auto x_dims = vectorize(x->dims());
    auto y_dims = vectorize(y->dims());

    bool is_broadcast = true;
    if (x_dims.size() <= 2 || y_dims.size() <= 2) {
      is_broadcast = false;
    } else if (x_dims.size() != y_dims.size()) {
      is_broadcast = true;
    } else {
367 368 369
      is_broadcast = !std::equal(x_dims.cbegin(),
                                 x_dims.cbegin() + x_dims.size() - 2,
                                 y_dims.cbegin());
370 371 372 373 374
    }

    // if no broadcasting is needed, we can simply use matmul's grad and avoid
    // using reduce_sum
    if (!is_broadcast) {
375
      matmul_v1_grad_mkldnn_kernel.Compute(ctx);
376 377 378 379 380 381 382 383 384 385 386
      return;
    }

    auto* dout = ctx.Input<Tensor>(GradVarName("Out"));
    auto* dx = ctx.Output<Tensor>(GradVarName("X"));
    auto* dy = ctx.Output<Tensor>(GradVarName("Y"));

    bool trans_x = ctx.Attr<bool>("trans_x");
    bool trans_y = ctx.Attr<bool>("trans_y");
    auto dout_dims = vectorize(dout->dims());

387 388 389 390 391 392 393 394
    size_t ndims = std::max(x->dims().size(), y->dims().size());
    ndims = std::max<size_t>(ndims, 3);

    if (x_dims.size() != ndims) {
      x_dims = ExtendDimsWithOnes(x_dims, ndims);
    } else if (y_dims.size() != ndims) {
      y_dims = ExtendDimsWithOnes(y_dims, ndims);
    }
395 396 397 398 399 400 401 402

    // in broadcasting scenario new memory is required because
    // reduce sum must be calculated upon broadcasted dims
    Tensor dx_tmp, dy_tmp;

    std::vector<int64_t> dx_bd_dims(x_dims);
    std::vector<int64_t> dy_bd_dims(y_dims);

403 404
    CalculateGradMatrixDims(
        ctx, &dx_tmp, &dy_tmp, x_dims, y_dims, &dx_bd_dims, &dy_bd_dims);
405 406

    if (trans_x && trans_y) {
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
      ExecuteMatMulV2<T>(ctx,
                         dev_ctx,
                         onednn_engine,
                         ctx.GetPlace(),
                         y,
                         y_dims,
                         true,
                         dout,
                         dout_dims,
                         true,
                         &dx_tmp,
                         dx_bd_dims,
                         1);
      ExecuteMatMulV2<T>(ctx,
                         dev_ctx,
                         onednn_engine,
                         ctx.GetPlace(),
                         dout,
                         dout_dims,
                         true,
                         x,
                         x_dims,
                         true,
                         &dy_tmp,
                         dy_bd_dims,
432
                         2);
433
    } else if (trans_x) {
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
      ExecuteMatMulV2<T>(ctx,
                         dev_ctx,
                         onednn_engine,
                         ctx.GetPlace(),
                         y,
                         y_dims,
                         false,
                         dout,
                         dout_dims,
                         true,
                         &dx_tmp,
                         dx_bd_dims,
                         1);
      ExecuteMatMulV2<T>(ctx,
                         dev_ctx,
                         onednn_engine,
                         ctx.GetPlace(),
                         x,
                         x_dims,
                         false,
                         dout,
                         dout_dims,
                         false,
                         &dy_tmp,
                         dy_bd_dims,
                         2);
460
    } else if (trans_y) {
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
      ExecuteMatMulV2<T>(ctx,
                         dev_ctx,
                         onednn_engine,
                         ctx.GetPlace(),
                         dout,
                         dout_dims,
                         false,
                         y,
                         y_dims,
                         false,
                         &dx_tmp,
                         dx_bd_dims,
                         1);
      ExecuteMatMulV2<T>(ctx,
                         dev_ctx,
                         onednn_engine,
                         ctx.GetPlace(),
                         dout,
                         dout_dims,
                         true,
                         x,
                         x_dims,
                         false,
                         &dy_tmp,
                         dy_bd_dims,
486
                         2);
487
    } else {
488 489 490 491 492 493 494 495 496 497 498 499
      ExecuteMatMulV2<T>(ctx,
                         dev_ctx,
                         onednn_engine,
                         ctx.GetPlace(),
                         dout,
                         dout_dims,
                         false,
                         y,
                         y_dims,
                         true,
                         &dx_tmp,
                         dx_bd_dims,
500
                         1);
501 502 503 504 505 506 507 508 509 510 511 512 513
      ExecuteMatMulV2<T>(ctx,
                         dev_ctx,
                         onednn_engine,
                         ctx.GetPlace(),
                         x,
                         x_dims,
                         true,
                         dout,
                         dout_dims,
                         false,
                         &dy_tmp,
                         dy_bd_dims,
                         2);
514 515 516
    }

    if (x_dims != dx_bd_dims) {
517 518 519 520 521 522 523
      ReduceSumForMatmulGradOutput(ctx,
                                   dev_ctx,
                                   onednn_engine,
                                   &dx_tmp,
                                   dx,
                                   x_dims,
                                   phi::vectorize(x->dims()));
524 525 526 527
    } else {
      *dx = std::move(dx_tmp);
    }
    if (y_dims != dy_bd_dims) {
528 529 530 531 532 533 534
      ReduceSumForMatmulGradOutput(ctx,
                                   dev_ctx,
                                   onednn_engine,
                                   &dy_tmp,
                                   dy,
                                   y_dims,
                                   phi::vectorize(y->dims()));
535 536 537 538
    } else {
      *dy = std::move(dy_tmp);
    }

539 540
    dx->Resize(x->dims());
    dy->Resize(y->dims());
541
  }
542 543 544

 private:
  paddle::operators::MatMulGradMKLDNNKernel<T> matmul_v1_grad_mkldnn_kernel;
545
};
546
}  // anonymous namespace
547

548 549 550
REGISTER_OP_KERNEL(matmul_v2,
                   MKLDNN,
                   ::paddle::platform::CPUPlace,
551 552
                   MatMulV2MKLDNNKernel<float>,
                   MatMulV2MKLDNNKernel<paddle::platform::bfloat16>);
553

554 555 556
REGISTER_OP_KERNEL(matmul_v2_grad,
                   MKLDNN,
                   ::paddle::platform::CPUPlace,
557 558
                   MatMulV2GradMKLDNNKernel<float>,
                   MatMulV2GradMKLDNNKernel<paddle::platform::bfloat16>);