model.py 92.1 KB
Newer Older
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import inspect
import os
import pickle
import numpy as np
import six
import warnings
25 26 27
import time
import socket
import contextlib
28

29
import paddle
30
from paddle import fluid
31
from paddle.fluid import core
32
from paddle.fluid.framework import _non_static_mode, in_dygraph_mode
33 34
from paddle.fluid.framework import Variable
from paddle.fluid.framework import _get_paddle_place
35
from paddle.fluid.framework import _current_expected_place as _get_device
36 37 38 39
from paddle.fluid.executor import global_scope
from paddle.fluid.io import is_belong_to_optimizer
from paddle.fluid.dygraph.base import to_variable
from paddle.fluid.dygraph.parallel import ParallelEnv
40 41
from paddle.fluid.dygraph.io import INFER_MODEL_SUFFIX
from paddle.fluid.dygraph.io import INFER_PARAMS_SUFFIX
42
from paddle.fluid.layers.utils import flatten
43
from paddle.fluid.layers import collective
44

45 46 47
from paddle.io import DataLoader
from paddle.io import Dataset
from paddle.io import DistributedBatchSampler
48
from paddle.metric import Metric
49
from paddle.static import InputSpec as Input
J
Jiaqi Liu 已提交
50
from paddle.distributed.fleet.base import role_maker
51
from paddle.autograd import no_grad
Z
zhaoyingli 已提交
52 53
from paddle.distributed import fleet
from paddle.distributed.parallel import init_parallel_env
54

L
LiuChiachi 已提交
55
from .callbacks import config_callbacks, EarlyStopping
L
LielinJiang 已提交
56
from .model_summary import summary
57

58
__all__ = []
59 60 61 62 63 64 65 66 67 68 69 70 71

_parallel_context_initialized = False


def to_list(value):
    if value is None:
        return value
    if isinstance(value, (list, tuple)):
        return list(value)
    return [value]


def to_numpy(var):
72 73 74
    assert isinstance(
        var, (Variable, fluid.core.VarBase, fluid.core.eager.Tensor)
    ), "not a variable"
H
hong 已提交
75
    if isinstance(var, (fluid.core.VarBase, fluid.core.eager.Tensor)):
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
        return var.numpy()
    t = global_scope().find_var(var.name).get_tensor()
    return np.array(t)


def flatten_list(l):
    assert isinstance(l, list), "not a list"
    outl = []
    splits = []
    for sl in l:
        assert isinstance(sl, list), "sub content not a list"
        splits.append(len(sl))
        outl += sl
    return outl, splits


def restore_flatten_list(l, splits):
    outl = []
    for split in splits:
        assert len(l) >= split, "list length invalid"
        sl, l = l[:split], l[split:]
        outl.append(sl)
    return outl


def extract_args(func):
    if hasattr(inspect, 'getfullargspec'):
        return inspect.getfullargspec(func)[0]
    else:
        return inspect.getargspec(func)[0]


def _all_gather(x, nranks, ring_id=0, use_calc_stream=True):
109 110 111
    return collective._c_allgather(
        x, nranks, ring_id=ring_id, use_calc_stream=use_calc_stream
    )
112 113 114 115 116 117 118 119 120 121


def wait_server_ready(endpoints):
    assert not isinstance(endpoints, six.string_types)
    while True:
        all_ok = True
        not_ready_endpoints = []
        for ep in endpoints:
            ip_port = ep.split(":")
            with contextlib.closing(
122 123
                socket.socket(socket.AF_INET, socket.SOCK_STREAM)
            ) as sock:
124 125 126 127 128 129 130 131 132 133 134
                sock.settimeout(2)
                result = sock.connect_ex((ip_port[0], int(ip_port[1])))
                if result != 0:
                    all_ok = False
                    not_ready_endpoints.append(ep)
        if not all_ok:
            time.sleep(3)
        else:
            break


135 136 137
def init_communicator(
    program, rank, nranks, wait_port, current_endpoint, endpoints
):
138 139 140 141
    if nranks < 2:
        return
    other_endpoints = endpoints[:]
    other_endpoints.remove(current_endpoint)
142
    block = program.global_block()
143 144
    if rank == 0 and wait_port:
        wait_server_ready(other_endpoints)
145 146 147 148
    if core.is_compiled_with_cuda():
        nccl_id_var = block.create_var(
            name=fluid.unique_name.generate('nccl_id'),
            persistable=True,
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
            type=fluid.core.VarDesc.VarType.RAW,
        )

        block.append_op(
            type='c_gen_nccl_id',
            inputs={},
            outputs={'Out': nccl_id_var},
            attrs={
                'rank': rank,
                'endpoint': current_endpoint,
                'other_endpoints': other_endpoints,
            },
        )

        block.append_op(
            type='c_comm_init',
            inputs={'X': nccl_id_var},
            outputs={},
            attrs={
                'nranks': nranks,
                'rank': rank,
                'ring_id': 0,
            },
        )
173 174
    elif core.is_compiled_with_npu():
        hccl_id_var = block.create_var(
Z
zhangchunle 已提交
175
            name=fluid.unique_name.generate('hccl_id'),
176
            persistable=True,
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
            type=core.VarDesc.VarType.RAW,
        )
        block.append_op(
            type='c_gen_hccl_id',
            inputs={},
            outputs={'Out': hccl_id_var},
            attrs={
                'rank': rank,
                'endpoint': current_endpoint,
                'other_endpoints': other_endpoints,
            },
        )
        block.append_op(
            type='c_comm_init_hccl',
            inputs={'X': hccl_id_var},
            outputs={},
            attrs={
                'rank': rank,
                'ring_id': 0,
                'device_id': int(os.getenv("FLAGS_selected_npus")),
                'rank_ids': nranks,
            },
        )
200 201 202 203


def prepare_distributed_context(place=None):
    if place is None:
204 205 206
        place = (
            fluid.CUDAPlace(ParallelEnv().dev_id)
            if ParallelEnv().nranks > 1
207
            else fluid.CUDAPlace(0)
208
        )
209

210
    place = _get_paddle_place(place)
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
    strategy = fluid.dygraph.parallel.ParallelStrategy()
    strategy.nranks = ParallelEnv().nranks
    strategy.local_rank = ParallelEnv().local_rank
    strategy.trainer_endpoints = ParallelEnv().trainer_endpoints
    strategy.current_endpoint = ParallelEnv().current_endpoint

    if strategy.nranks < 2:
        return

    global _parallel_context_initialized

    if not _parallel_context_initialized and isinstance(place, fluid.CUDAPlace):

        def _init_context():
            communicator_prog = fluid.Program()
226 227 228 229 230 231 232 233
            init_communicator(
                communicator_prog,
                strategy.local_rank,
                strategy.nranks,
                True,
                strategy.current_endpoint,
                strategy.trainer_endpoints,
            )
234 235 236
            exe = fluid.Executor(place)
            exe.run(communicator_prog)

J
Jiabin Yang 已提交
237
        if fluid._non_static_mode():
238 239 240 241 242
            fluid.disable_dygraph()
            _init_context()
            fluid.enable_dygraph(place)

    else:
243
        assert "Only support CUDAPlace for now."
244 245 246

    _parallel_context_initialized = True
    return strategy
247 248


L
LiuChiachi 已提交
249
def _update_input_info(inputs):
L
LiuChiachi 已提交
250
    "Get input shape list by given inputs in Model initialization."
251
    shapes = None
L
LiuChiachi 已提交
252
    dtypes = None
L
LiuChiachi 已提交
253 254
    if isinstance(inputs, Input):
        shapes = [list(inputs.shape)]
L
LiuChiachi 已提交
255
        dtypes = [inputs.dtype]
256
    elif isinstance(inputs, (list, tuple)):
257
        shapes = [list(input.shape) for input in inputs]
L
LiuChiachi 已提交
258
        dtypes = [input.dtype for input in inputs]
259 260
    elif isinstance(inputs, dict):
        shapes = [list(inputs[name].shape) for name in inputs]
L
LiuChiachi 已提交
261 262 263 264
        dtypes = [inputs[name].dtype for name in inputs]
    else:
        return None
    return shapes, dtypes
265 266


267 268
class StaticGraphAdapter(object):
    """
269

270
    Model traning/inference with a static graph.
271

272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
    """

    def __init__(self, model):
        super(StaticGraphAdapter, self).__init__()
        self.model = model
        # with `_build_once` gone, parameters are now created in `__init__`
        # so we need to keep track of the parameters already created
        self._startup_prog = fluid.default_startup_program()
        self._orig_prog = fluid.default_main_program()

        self._label_vars = {}  # label variables
        self._input_vars = {}  # label variables
        self._endpoints = {}
        self._loss_endpoint = None
        self._executor = None
        self._progs = {}
        self._compiled_progs = {}

        self._merge_count = {
            'eval_total': 0,
            'test_total': 0,
            'eval_batch': 0,
294
            'test_batch': 0,
295 296 297 298 299
        }

        self._nranks = ParallelEnv().nranks
        self._local_rank = ParallelEnv().local_rank

J
Jiaqi Liu 已提交
300 301 302
        self._amp_level = "O0"
        self._amp_configs = {}
        self._amp_custom_lists = {}
L
Leo Chen 已提交
303
        self._use_fp16_guard = None
J
Jiaqi Liu 已提交
304

305 306 307 308 309 310 311 312
    @property
    def mode(self):
        return self.model.mode

    @mode.setter
    def mode(self, value):
        self.model.mode = value

L
lyuwenyu 已提交
313
    def train_batch(self, inputs, labels=None, update=True):
314 315 316
        assert (
            self.model._optimizer
        ), "model not ready, please call `model.prepare()` first"
317
        self.mode = 'train'
318 319 320
        assert (
            update is True
        ), "Does not support `update == False` in static mode by now."
321 322 323 324 325 326
        return self._run(inputs, labels)

    def eval_batch(self, inputs, labels=None):
        self.mode = 'eval'
        return self._run(inputs, labels)

327
    def predict_batch(self, inputs):
328 329 330 331
        self.mode = 'test'
        return self._run(inputs, None)

    def parameters(self, *args, **kwargs):
332
        return self.model.network.parameters(*args, **kwargs)
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350

    def save(self, path):
        def _save(state, path):
            if not state:
                return
            state = {
                k: to_numpy(v) if isinstance(v, Variable) else v
                for k, v in state.items()
            }
            with open(path, 'wb') as f:
                pickle.dump(state, f)

        base = os.path.basename(path)
        assert base != "", "path should be of 'dirname/filename' format"
        dir_name = os.path.dirname(path)
        if dir_name and not os.path.exists(dir_name):
            os.makedirs(dir_name)
        param_path = path + ".pdparams"
351
        _save(self.model.network.state_dict(), param_path)
352 353 354 355 356 357
        prog = self._progs.get('train', None)
        if prog is None or self.model._optimizer is None:
            return
        # XXX `optimizer.state_dict()` only work in dygraph mode
        optim_path = path + ".pdopt"
        optim = {
358
            p.name: p for p in filter(is_belong_to_optimizer, prog.list_vars())
359 360 361 362 363 364
        }
        if not optim:
            return

        _save(optim, optim_path)

L
Leo Chen 已提交
365
    # TODO: support save/load scaler state in static graph
366 367 368 369 370 371 372 373
    def load(self, param_state_pairs, optim_state):
        if self._executor is None:
            executor = fluid.Executor(fluid.CPUPlace())._default_executor
        else:
            executor = self._executor._default_executor

        # restore parameter states
        fluid.core._create_loaded_parameter(
374 375 376 377
            [param for param, state in param_state_pairs],
            global_scope(),
            executor,
        )
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
        for param, state in param_state_pairs:
            self._set_var(param, state)

        # restore optimizer states
        # FIXME what if a different optimizer is used?
        if not self.model._optimizer or not optim_state:
            return
        self._load_optimizer(optim_state, executor)

    def _load_optimizer(self, state, executor):
        prog = self._progs.get('train', None)
        optim = list(filter(is_belong_to_optimizer, prog.list_vars()))
        if not optim:
            return

        fluid.core._create_loaded_parameter(optim, global_scope(), executor)

        converted_state = dict(state)
        for var in optim:
            if var.name in ["@LR_DECAY_COUNTER@", "global_step"]:
                # When using learning rate scheduler, dygraph would name the
                # global step var as "global_step" to save, while static-graph
                # would has a state var named as "@LR_DECAY_COUNTER@".
                # NOTE: dygraph saved global_step is 1 larger than that in
                # static-graph, since the time of global_step to increase is
                # different.
                state_val = (
405 406 407 408
                    (np.array(converted_state.pop("global_step")) - 1)
                    if "global_step" in converted_state
                    else converted_state.pop("@LR_DECAY_COUNTER@", None)
                )
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
                if state_val is not None:
                    converted_state[var.name] = state_val
            elif var.name.startswith("learning_rate_"):
                # When using static learning rate, static-graph would make it
                # a persistable var named 'unique_name.generate("learning_rate")',
                # However, dygraph wouldn't save it.
                if var.name not in state:
                    continue
            else:
                # moment and other accumulators
                if var.name not in converted_state:
                    # try to convert from dygraph name
                    opt_name = self.model._optimizer._name
                    opt_cls_name = self.model._optimizer.__class__.__name__
                    opt_unq_name = None
                    for name in self.model._optimizer._accumulators.keys():
425 426 427 428 429 430 431 432 433
                        accum_name = (
                            name
                            if opt_name is None
                            else name[len(opt_name) + 1 :]
                        )
                        for (
                            param_name,
                            state_var,
                        ) in self.model._optimizer._accumulators[name].items():
434 435 436
                            if opt_unq_name is None:
                                # can not infer out the exact unique(opt_name),
                                # thus try to extract rather than generate
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
                                for state_key in sorted(
                                    state.keys(),
                                    key=lambda x: len(x),
                                    reverse=True,
                                ):
                                    prefix = (
                                        param_name
                                        + "_"
                                        + (
                                            opt_cls_name
                                            if opt_name is None
                                            else opt_name
                                        )
                                        + "_"
                                    )
452
                                    if state_key.startswith(prefix):
453 454 455
                                        prefix_offset = state_key[
                                            len(prefix) :
                                        ].find("_") + len(prefix)
456
                                        opt_unq_name = state_key[
457 458 459 460
                                            len(
                                                param_name + "_"
                                            ) : prefix_offset
                                        ]
461 462 463 464
                                        # TODO: assert
                                        # assert opt_unq_name is None
                                    # gen(param.name + "_" + gen(opt_name) + "_" + accum_name)
                                    # always end with "_0" since the unique optimizer._name
465 466 467 468 469 470 471 472
                            dy_state_name = (
                                param_name
                                + "_"
                                + opt_unq_name
                                + "_"
                                + accum_name
                                + "_0"
                            )
473
                            converted_state[
474 475
                                state_var.name
                            ] = converted_state.pop(dy_state_name)
476

477 478 479
            assert (
                var.name in converted_state
            ), "variable [{}] is not in optimizer state file".format(var.name)
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
            self._set_var(var, converted_state[var.name])

    def _set_var(self, var, ndarray):
        t = global_scope().find_var(var.name).get_tensor()
        p = t._place()
        if p.is_cpu_place():
            place = fluid.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = fluid.CUDAPinnedPlace()
        else:
            p = fluid.core.Place()
            p.set_place(t._place())
            place = fluid.CUDAPlace(p.gpu_device_id())

        t.set(ndarray, place)

    def _run(self, inputs, labels=None):
        compiled_prog = self._compiled_progs.get(self.mode, None)
498 499 500
        assert (
            compiled_prog
        ), "Model is not ready, please call `model.prepare()` first"
501 502 503 504

        inputs = to_list(inputs)
        if labels is not None:
            labels = to_list(labels)
505 506
        assert len(inputs) == len(self._input_vars[self.mode]), (
            "number of inputs"
507
            + " does not match number of arguments of `forward` method"
508
        )
509 510 511

        feed = {}
        input_names = [v.name for v in self._input_vars[self.mode]]
L
Leo Chen 已提交
512 513
        input_dtypes = [v.dtype for v in self._input_vars[self.mode]]

514 515 516 517
        for idx, n in enumerate(input_names):
            # train and test may take different arguments
            if inputs[idx] is not None:
                feed[n] = inputs[idx]
518 519 520 521
            if (
                self._amp_level == 'O2'
                and input_dtypes[idx] == core.VarDesc.VarType.FP16
            ):
L
Leo Chen 已提交
522 523
                if isinstance(feed[n], core.LoDTensor):
                    feed[n] = feed[n]._as_type(core.VarDesc.VarType.FP16)
L
Leo Chen 已提交
524
                elif isinstance(feed[n], np.array):
L
Leo Chen 已提交
525 526
                    feed[n] = feed[n].astype('float16')

527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
        if labels is not None:
            for idx, v in enumerate(self._label_vars[self.mode]):
                feed[v.name] = labels[idx]

        endpoints = self._endpoints[self.mode]
        if self.mode == 'test':
            fetch_list = endpoints['output']
        else:
            metric_list, metric_splits = flatten_list(endpoints['metric'])
            fetch_list = endpoints['loss'] + metric_list
            num_loss = len(endpoints['loss'])

        # if fetch Variable is same as input Variable, do not fetch
        # from program, get it from input directly
        pruned_fetch_list = []
        pruned_fetch_idx_name_map = [""] * len(fetch_list)
        for i, fetch_var in enumerate(fetch_list):
            if fetch_var.name in feed.keys():
                pruned_fetch_idx_name_map[i] = fetch_var.name
            else:
                pruned_fetch_list.append(fetch_var)

549 550 551 552 553 554
        rets = self._executor.run(
            compiled_prog,
            feed=feed,
            fetch_list=pruned_fetch_list,
            return_numpy=False,
        )
555 556 557 558 559 560 561 562 563 564

        # restore pruned fetch_list Variable from feeds
        for i, name in enumerate(pruned_fetch_idx_name_map):
            if len(name) > 0:
                rets.insert(i, feed[name])

        # LoDTensor cannot be fetch as numpy directly
        rets = [np.array(v) for v in rets]
        if self.mode == 'test':
            return rets[:]
565

566 567 568 569
        metric_states = restore_flatten_list(rets[num_loss:], metric_splits)
        metrics = []
        for metric, state in zip(self.model._metrics, metric_states):
            # cut off padding size
570 571 572 573 574 575
            if (
                self.mode != 'train'
                and self.model._test_dataloader is not None
                and isinstance(self.model._test_dataloader, DataLoader)
                and self._nranks > 1
            ):
576 577 578 579 580 581
                total_size = len(self.model._test_dataloader.dataset)
                # TODO: fixme if have better way to get batch size
                samples = state[0].shape[0]
                current_count = self._merge_count.get(self.mode + '_total', 0)
                if current_count + samples >= total_size:
                    state = [
582
                        s[: int(total_size - current_count), ...] for s in state
583 584
                    ]
                    self._merge_count[self.mode + '_total'] = 0
585 586 587
                    self._merge_count[self.mode + '_batch'] = int(
                        total_size - current_count
                    )
588 589 590 591 592
                else:
                    self._merge_count[self.mode + '_total'] += samples
                    self._merge_count[self.mode + '_batch'] = samples

            metrics.append(metric.update(*state))
593 594 595 596 597

        if num_loss and len(metrics):
            return rets[:num_loss], metrics
        else:
            return rets[:num_loss] if num_loss else metrics
598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618

    def prepare(self):
        modes = ['train', 'eval', 'test']
        for mode in modes:
            self._make_program(mode)
            self._compile_and_initialize(self._progs[mode], mode)

    def _make_program(self, mode):
        prog = self._progs.get(mode, None)
        if prog is not None:
            return

        prog = self._orig_prog.clone()
        # NOTE: When defining learning rate scheduling in static-graph, ops to
        # increase the global step var and calculate learning rate would be
        # prepended into _orig_prog. test program maked by `_orig_prog.clone`
        # also would include these ops. Thus must prune these ops in test
        # program, otherwise the global step would be changed in test.
        if mode != 'train':
            for op in list(prog.global_block().ops):
                prog.global_block()._remove_op(0)
619 620 621 622 623
        if (
            mode == 'train'
            and self.model._optimizer
            and self.model._optimizer._learning_rate_map
        ):
624 625 626 627 628 629 630 631
            # HACK workaround learning rate map issue
            lr_var = self.model._optimizer._learning_rate_map[self._orig_prog]
            new_lr_var = prog.global_block().vars[lr_var.name]
            self.model._optimizer._learning_rate_map[prog] = new_lr_var

        losses = []
        metrics = []
        with fluid.program_guard(prog, self._startup_prog):
632 633
            inputs = self.model._inputs
            labels = self.model._labels if self.model._labels else []
634 635
            inputs = [k._create_feed_layer() for k in to_list(inputs)]
            labels = [k._create_feed_layer() for k in to_list(labels)]
636
            self._label_vars[mode] = labels
637
            outputs = to_list(self.model.network.forward(*inputs))
638

639 640
            if mode != 'test' and self.model._loss:
                losses = self.model._loss(*(outputs + labels))
641 642 643 644 645 646 647 648

            if self._nranks > 1 and mode != 'train':
                outputs = [_all_gather(o, self._nranks) for o in outputs]
                if mode != 'test':
                    labels = [_all_gather(l, self._nranks) for l in labels]

            if mode != 'test':
                for metric in self.model._metrics:
649
                    metrics.append(to_list(metric.compute(*(outputs + labels))))
650 651 652 653 654 655

            if mode == 'train' and self.model._optimizer:
                self._loss_endpoint = fluid.layers.sum(losses)
                if self._nranks > 1:
                    role = role_maker.PaddleCloudRoleMaker(is_collective=True)
                    fleet.init(role)
J
Jiaqi Liu 已提交
656 657 658 659 660
                    dist_strategy = fleet.DistributedStrategy()
                    if self._amp_level != 'O0':
                        dist_strategy.amp = True
                        dist_strategy.amp_configs = self._amp_configs.copy()
                        dist_strategy.amp_configs.update(self._amp_custom_lists)
661 662 663
                        dist_strategy.amp_configs['use_pure_fp16'] = (
                            self._amp_level == 'O2'
                        )
664
                    self.model._optimizer = fleet.distributed_optimizer(
665 666
                        self.model._optimizer, strategy=dist_strategy
                    )
J
Jiaqi Liu 已提交
667
                elif self._amp_level != "O0" and core.is_compiled_with_cuda:
668 669 670 671 672 673 674
                    amp_lists = (
                        paddle.static.amp.AutoMixedPrecisionLists(
                            **self._amp_custom_lists
                        )
                        if self._amp_custom_lists
                        else None
                    )
J
Jiaqi Liu 已提交
675 676 677 678 679
                    self.model._optimizer = paddle.static.amp.decorate(
                        self.model._optimizer,
                        amp_lists=amp_lists,
                        use_pure_fp16=self._amp_level == "O2",
                        use_fp16_guard=self._use_fp16_guard,
680 681
                        **self._amp_configs
                    )
682 683 684 685 686 687 688 689 690 691 692

                self.model._optimizer.minimize(self._loss_endpoint)

        if mode != 'train':  # clone again to put it in test mode
            prog = prog.clone(for_test=True)

        self._input_vars[mode] = inputs

        self._progs[mode] = prog
        self._endpoints[mode] = {
            "output": outputs,
693
            "loss": to_list(losses),
694
            "metric": metrics,
695 696 697 698 699 700 701
        }

    def _compile_and_initialize(self, prog, mode):
        compiled_prog = self._compiled_progs.get(mode, None)
        if compiled_prog is not None:
            return compiled_prog

702 703 704
        assert (
            self.model._place is not None
        ), "device is not set, please call `model.prepare()` first"
705 706 707 708 709 710 711 712 713 714 715 716

        place = self.model._place

        # XXX *ALL WEIGHTS* should be initialized upon model construction
        # even if `forward()` may run different code path for different mode
        # therefore startup program only needs to run once
        if self._executor is None:
            self._executor = fluid.Executor(place)
            # XXX incremental initialization
            uninitialized = []
            for var_py in self._startup_prog.list_vars():
                var = fluid.global_scope().find_var(var_py.name)
717 718 719 720 721
                if (
                    not var_py.name.startswith('nccl_id')
                    and var
                    and var.get_tensor()._is_initialized()
                ):
722 723 724 725 726 727 728
                    continue

                uninitialized.append(var_py)
            if uninitialized:
                startup_prog = self._startup_prog._prune(uninitialized)
                self._executor.run(startup_prog)

729 730 731 732
        if (
            self._amp_level == "O2"
            and mode == 'train'
            and core.is_compiled_with_cuda()
J
Jiaqi Liu 已提交
733 734 735
        ):
            self.model._optimizer.amp_init(place)

736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
        if self._nranks < 2:
            compiled_prog = fluid.CompiledProgram(prog)
        else:
            compiled_prog = prog

        self._compiled_progs[mode] = compiled_prog


class DynamicGraphAdapter(object):
    def __init__(self, model):
        super(DynamicGraphAdapter, self).__init__()
        self.model = model
        self._nranks = ParallelEnv().nranks
        self._local_rank = ParallelEnv().local_rank
        self._merge_count = {
            'eval_total': 0,
            'test_total': 0,
            'eval_batch': 0,
754
            'test_batch': 0,
755 756
        }

L
LiuChiachi 已提交
757
        self._input_info = None
J
Jiaqi Liu 已提交
758 759 760 761 762
        self._amp_level = "O0"
        self._amp_configs = {}
        self._amp_custom_lists = {}
        self._use_fp16_guard = True

763
        if self._nranks > 1:
Z
zhaoyingli 已提交
764
            init_parallel_env()
765 766 767 768 769
            stradegy = fluid.dygraph.parallel.ParallelStrategy()
            stradegy.nranks = ParallelEnv().nranks
            stradegy.local_rank = ParallelEnv().local_rank
            stradegy.trainer_endpoints = ParallelEnv().trainer_endpoints
            stradegy.current_endpoint = ParallelEnv().current_endpoint
770
            self.ddp_model = fluid.dygraph.parallel.DataParallel(
771 772
                self.model.network, stradegy
            )
773 774 775 776 777 778 779 780 781 782

    @property
    def mode(self):
        return self.model.mode

    @mode.setter
    def mode(self, value):
        self.model.mode = value

    # TODO multi device in dygraph mode not implemented at present time
L
lyuwenyu 已提交
783
    def train_batch(self, inputs, labels=None, update=True):
784 785 786
        assert (
            self.model._optimizer
        ), "model not ready, please call `model.prepare()` first"
787
        self.model.network.train()
788 789
        self.mode = 'train'
        inputs = to_list(inputs)
L
LiuChiachi 已提交
790
        self._input_info = _update_input_info(inputs)
791 792 793
        labels = labels or []
        labels = [to_variable(l) for l in to_list(labels)]

L
Leo Chen 已提交
794 795 796 797
        # scaler should be initialized only once
        if self._amp_level != "O0" and self.model._scaler is None:
            self.model._scaler = paddle.amp.GradScaler(**self._amp_configs)

798 799 800 801 802
        with paddle.amp.auto_cast(
            enable=self._amp_level != 'O0',
            **self._amp_custom_lists,
            level=self._amp_level
        ):
J
Jiaqi Liu 已提交
803
            if self._nranks > 1:
804
                outputs = self.ddp_model(*[to_variable(x) for x in inputs])
J
Jiaqi Liu 已提交
805
            else:
806
                outputs = self.model.network(*[to_variable(x) for x in inputs])
807

L
Leo Chen 已提交
808 809 810
        losses = self.model._loss(*(to_list(outputs) + labels))
        losses = to_list(losses)
        final_loss = fluid.layers.sum(losses)
811

J
Jiaqi Liu 已提交
812
        if self._amp_level != "O0":
L
Leo Chen 已提交
813
            scaled = self.model._scaler.scale(final_loss)
J
Jiaqi Liu 已提交
814
            scaled.backward()
L
lyuwenyu 已提交
815
            if update:
L
Leo Chen 已提交
816
                self.model._scaler.minimize(self.model._optimizer, scaled)
L
lyuwenyu 已提交
817
                self.model.network.clear_gradients()
J
Jiaqi Liu 已提交
818 819
        else:
            final_loss.backward()
L
lyuwenyu 已提交
820 821 822
            if update:
                self.model._optimizer.minimize(final_loss)
                self.model.network.clear_gradients()
L
update  
lyuwenyu 已提交
823

824 825
        metrics = []
        for metric in self.model._metrics:
826
            metric_outs = metric.compute(*(to_list(outputs) + labels))
Z
zhangchunle 已提交
827
            m = metric.update(*[to_numpy(m) for m in to_list(metric_outs)])
828 829
            metrics.append(m)

830 831 832 833 834
        return (
            ([to_numpy(l) for l in losses], metrics)
            if len(metrics) > 0
            else [to_numpy(l) for l in losses]
        )
835 836

    def eval_batch(self, inputs, labels=None):
837
        self.model.network.eval()
838 839
        self.mode = 'eval'
        inputs = to_list(inputs)
L
LiuChiachi 已提交
840
        self._input_info = _update_input_info(inputs)
841 842 843
        labels = labels or []
        labels = [to_variable(l) for l in to_list(labels)]

844
        outputs = self.model.network(*[to_variable(x) for x in inputs])
845 846 847 848 849 850 851 852 853

        # Transfrom data to expected device
        expected_device = paddle.device.get_device()
        for o in to_list(outputs):
            o._to(device=expected_device)

        for l in labels:
            l._to(device=expected_device)

854 855
        if self.model._loss:
            losses = self.model._loss(*(to_list(outputs) + labels))
856 857
            losses = to_list(losses)

858 859 860 861 862 863
        if self._nranks > 1:
            outputs = [_all_gather(o, self._nranks) for o in to_list(outputs)]
            labels = [_all_gather(l, self._nranks) for l in labels]
        metrics = []
        for metric in self.model._metrics:
            # cut off padding value.
864 865 866 867 868
            if (
                self.model._test_dataloader is not None
                and self._nranks > 1
                and isinstance(self.model._test_dataloader, DataLoader)
            ):
869 870 871 872 873
                total_size = len(self.model._test_dataloader.dataset)
                samples = outputs[0].shape[0]
                current_count = self._merge_count.get(self.mode + '_total', 0)
                if current_count + samples >= total_size:
                    outputs = [
874
                        o[: int(total_size - current_count)] for o in outputs
875 876
                    ]
                    labels = [
877
                        l[: int(total_size - current_count)] for l in labels
878 879
                    ]
                    self._merge_count[self.mode + '_total'] = 0
880 881 882
                    self._merge_count[self.mode + '_batch'] = int(
                        total_size - current_count
                    )
883 884 885 886
                else:
                    self._merge_count[self.mode + '_total'] += samples
                    self._merge_count[self.mode + '_batch'] = samples

887
            metric_outs = metric.compute(*(to_list(outputs) + labels))
Z
zhangchunle 已提交
888
            m = metric.update(*[to_numpy(m) for m in to_list(metric_outs)])
889 890
            metrics.append(m)

891
        if self.model._loss and len(metrics):
892
            return [to_numpy(l) for l in losses], metrics
893
        elif self.model._loss:
894 895 896
            return [to_numpy(l) for l in losses]
        else:
            return metrics
897

898
    def predict_batch(self, inputs):
899
        self.model.network.eval()
900 901
        self.mode = 'test'
        inputs = [to_variable(x) for x in to_list(inputs)]
L
LiuChiachi 已提交
902
        self._input_info = _update_input_info(inputs)
903
        outputs = self.model.network(*inputs)
904 905 906 907 908 909
        if self._nranks > 1 and isinstance(self.model._place, fluid.CUDAPlace):
            outputs = [_all_gather(o, self._nranks) for o in to_list(outputs)]

        return [to_numpy(o) for o in to_list(outputs)]

    def parameters(self, *args, **kwargs):
910
        return self.model.network.parameters(*args, **kwargs)
911 912

    def save(self, path):
913
        params = self.model.network.state_dict()
914
        fluid.save_dygraph(params, path)
L
Leo Chen 已提交
915 916 917 918 919 920 921 922 923 924
        if self.model._optimizer is not None:
            if self.model._optimizer.state_dict():
                optim = self.model._optimizer.state_dict()
                fluid.save_dygraph(optim, path)
        if hasattr(self.model, '_scaler') and self.model._scaler is not None:
            if self.model._scaler.state_dict():
                scaler = self.model._scaler.state_dict()
                paddle.save(scaler, path + '.pdscaler')

    def load(self, param_state_pairs, optim_state, scaler_state=None):
925 926 927 928
        # restore parameter states
        for param, state in param_state_pairs:
            param.set_value(state)

L
Leo Chen 已提交
929 930 931 932
        if hasattr(self.model, '_scaler') and self.model._scaler is not None:
            if scaler_state:
                self.model._scaler.load_state_dict(scaler_state)

933 934 935 936
        # resotre optimizer states
        if not self.model._optimizer or not optim_state:
            return

937 938
        # If optimizer performs set_state_dict when state vars haven't been created,
        # which would happen when set_state_dict before minimize, the state would be
939 940 941 942 943 944 945 946 947 948
        # stored in optimizer._accumulators_holder and loaded lazily.
        # To contrive this when loading from static-graph saved states, extend
        # state dict to include keys named accoring to dygraph naming rules.
        # TODO: if len(self.model._optimizer._accumulators) > 0
        converted_state = dict(optim_state)
        opt_unq_name = self.model._optimizer._name
        if opt_unq_name is None:
            opt_unq_name = ''

        opt_cls_name = self.model._optimizer.__class__.__name__
949
        opt_name = opt_unq_name[: opt_unq_name.rfind("_")]  # remove suffix idx
950
        param_names = [param.name for param in self.model.network.parameters()]
951 952 953
        for var_name, state_var in sorted(
            optim_state.items(), key=lambda x: len(x[0]), reverse=True
        ):
954 955 956 957 958
            if var_name in ["@LR_DECAY_COUNTER@", "global_step"]:
                # NOTE: dygraph saved global_step is 1 larger than that in
                # static-graph, since the time of global_step to increase is
                # different.
                if var_name == "@LR_DECAY_COUNTER@":
959 960 961
                    converted_state["global_step"] = (
                        np.array(converted_state.pop("@LR_DECAY_COUNTER@")) + 1
                    )
962 963 964 965 966 967
            else:
                # moment and other accumulators
                # extend state dict to include promising dygraph names
                for param_name in param_names:
                    if var_name.startswith(param_name + "_" + opt_name):
                        # when init optimizer with name
968 969 970 971 972 973 974
                        accum_name = var_name[
                            len(param_name + "_" + opt_name + "_") :
                        ]
                    elif (
                        var_name.startswith(param_name + "_")
                        and opt_name == opt_cls_name
                    ):
975
                        # when init optimizer without name
976
                        accum_name = var_name[len(param_name + "_") :]
977 978 979
                    else:
                        continue
                    # remove suffix idx
980
                    accum_name = accum_name[: accum_name.rfind("_")]
981 982
                    # state names always end with "_0" in dygraph because of the
                    # unique optimizer._name
983 984 985 986 987 988 989 990
                    dy_state_name = (
                        param_name
                        + "_"
                        + opt_unq_name
                        + "_"
                        + accum_name
                        + "_0"
                    )
991 992
                    converted_state[dy_state_name] = state_var

993 994
        if not hasattr(self.model._optimizer, 'set_state_dict'):
            warnings.warn(
995
                "paddle.fluid.optimizer is deprecated in API 2.0, please use paddle.optimizer instead."
996 997 998 999
            )
            self.model._optimizer.set_dict(converted_state)
        else:
            self.model._optimizer.set_state_dict(converted_state)
1000

L
Leo Chen 已提交
1001
    def prepare(self):
1002 1003 1004 1005
        if (
            self._amp_level == "O2"
            and self.model.mode == 'train'
            and core.is_compiled_with_cuda()
L
Leo Chen 已提交
1006 1007 1008 1009
        ):
            self.model.network, self.model._optimizer = paddle.amp.decorate(
                models=self.model.network,
                optimizers=self.model._optimizer,
1010 1011
                level='O2',
            )
L
Leo Chen 已提交
1012 1013 1014
        if self._amp_level != "O0":
            self.model._scaler = None

1015

1016
class Model(object):
1017
    """
1018

1019 1020
    An Model object is network with training and inference features.
    Dynamic graph and static graph are supported at the same time,
1021
    switched by `paddle.enable_static()`. The usage is as follows.
1022
    But note, the switching between dynamic and static should be before
1023
    instantiating a Model. The input description, i.e, paddle.static.InputSpec,
1024
    must be required for static graph.
1025

1026
    When training on GPU, auto mixed precision (AMP O1) and pure float16
L
Leo Chen 已提交
1027
    (AMP O2) training are both supported in static mode and dynamic mode.
1028
    In static graph mode, before training with pure float16 (AMP O2),
J
Jiaqi Liu 已提交
1029 1030
    `multi_precision` could be set to True when creating optimizer, which can
    avoid poor accuracy or slow convergence in a way, and inputs of dtype float
1031 1032 1033 1034
    should be cast to float16 by users. `paddle.static.amp.fp16_guard` API
    should be also used to limit the range of pure float16 training, otherwise,
    'use_fp16_guard' should be set to False by users. However, limiting the
    range of is not supported during training using AMP.
J
Jiaqi Liu 已提交
1035

1036
    Args:
1037 1038
        network (paddle.nn.Layer): The network is an instance of
            paddle.nn.Layer.
1039
        inputs (InputSpec|list|tuple|dict|None, optional): `inputs`, entry points of network,
1040
            could be a InputSpec instance, or list/tuple of InputSpec instances,
1041
            or dict ({name: InputSpec}), and it couldn't be None in static
1042 1043
            graph. Default: None.
        labels (InputSpec|list|tuple|None, optional): `labels`, entry points of network,
1044
            could be a InputSpec instnace or list/tuple of InputSpec instances,
1045
            or None. For static graph, if labels is required in loss,
1046
            labels must be set. Otherwise, it could be None. Default: None.
1047 1048


1049
    Examples:
J
Jiaqi Liu 已提交
1050 1051
        1. A common example

1052
        .. code-block:: python
1053
          :name: code-example1
1054

1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
            import paddle
            import paddle.nn as nn
            import paddle.vision.transforms as T
            from paddle.static import InputSpec

            device = paddle.set_device('cpu') # or 'gpu'

            net = nn.Sequential(
                nn.Flatten(1),
                nn.Linear(784, 200),
                nn.Tanh(),
                nn.Linear(200, 10))

            # inputs and labels are not required for dynamic graph.
            input = InputSpec([None, 784], 'float32', 'x')
            label = InputSpec([None, 1], 'int64', 'label')
1071

1072 1073 1074 1075 1076
            model = paddle.Model(net, input, label)
            optim = paddle.optimizer.SGD(learning_rate=1e-3,
                parameters=model.parameters())

            model.prepare(optim,
1077 1078
                        paddle.nn.CrossEntropyLoss(),
                        paddle.metric.Accuracy())
1079 1080 1081 1082 1083 1084 1085

            transform = T.Compose([
                T.Transpose(),
                T.Normalize([127.5], [127.5])
            ])
            data = paddle.vision.datasets.MNIST(mode='train', transform=transform)
            model.fit(data, epochs=2, batch_size=32, verbose=1)
J
Jiaqi Liu 已提交
1086 1087 1088 1089 1090


        2. An example using mixed precision training.

        .. code-block:: python
1091
          :name: code-example2
J
Jiaqi Liu 已提交
1092

1093 1094 1095 1096
            # required: gpu
            import paddle
            import paddle.nn as nn
            import paddle.vision.transforms as T
J
Jiaqi Liu 已提交
1097

1098 1099
            def run_example_code():
                device = paddle.set_device('gpu')
J
Jiaqi Liu 已提交
1100

1101 1102
                net = nn.Sequential(nn.Flatten(1), nn.Linear(784, 200), nn.Tanh(),
                                    nn.Linear(200, 10))
J
Jiaqi Liu 已提交
1103

1104 1105
                model = paddle.Model(net)
                optim = paddle.optimizer.SGD(learning_rate=1e-3, parameters=model.parameters())
J
Jiaqi Liu 已提交
1106

1107 1108 1109 1110 1111 1112 1113 1114 1115
                amp_configs = {
                    "level": "O1",
                    "custom_white_list": {'conv2d'},
                    "use_dynamic_loss_scaling": True
                }
                model.prepare(optim,
                    paddle.nn.CrossEntropyLoss(),
                    paddle.metric.Accuracy(),
                    amp_configs=amp_configs)
J
Jiaqi Liu 已提交
1116

1117 1118 1119 1120 1121 1122 1123
                transform = T.Compose([T.Transpose(), T.Normalize([127.5], [127.5])])
                data = paddle.vision.datasets.MNIST(mode='train', transform=transform)
                model.fit(data, epochs=2, batch_size=32, verbose=1)

            # mixed precision training is only supported on GPU now.
            if paddle.is_compiled_with_cuda():
                run_example_code()
J
Jiaqi Liu 已提交
1124

1125 1126
    """

1127
    def __init__(self, network, inputs=None, labels=None):
1128
        self.mode = 'train'
1129
        self.network = network
1130 1131
        self._inputs = None
        self._labels = None
1132
        self._loss = None
1133 1134
        self._loss_weights = None
        self._optimizer = None
L
LiuChiachi 已提交
1135
        self._input_info = None
1136
        self._is_shape_inferred = False
1137
        self._test_dataloader = None
L
LiuChiachi 已提交
1138
        self.stop_training = False
1139

J
Jiabin Yang 已提交
1140
        if not _non_static_mode():
1141
            if not isinstance(inputs, (list, tuple, dict, Input)):
1142
                raise TypeError(
1143 1144
                    "'inputs' must be list or tuple or dict, and couldn't be None."
                )
1145
        elif inputs:
L
LiuChiachi 已提交
1146
            self._input_info = _update_input_info(inputs)
L
LielinJiang 已提交
1147

1148
        self._inputs = self._verify_spec(inputs, is_input=True)
1149
        self._labels = self._verify_spec(labels)
1150

1151
        # init backend
J
Jiabin Yang 已提交
1152
        if fluid._non_static_mode():
1153 1154 1155 1156
            self._adapter = DynamicGraphAdapter(self)
        else:
            self._adapter = StaticGraphAdapter(self)

L
lyuwenyu 已提交
1157
    def train_batch(self, inputs, labels=None, update=True):
1158
        """
1159

L
lyuwenyu 已提交
1160 1161
        Run one training step on one batch of data. And using `update` indicates
        whether optimizer update gradients computing by this batch.
1162 1163

        Args:
1164 1165
            inputs (numpy.ndarray|Tensor|list): Batch of input data. It could
                be a numpy array or paddle.Tensor, or a list of arrays or
1166
                tensors (in case the model has multiple inputs).
1167 1168 1169
            labels (numpy.ndarray|Tensor|list, optional): Batch of labels. It could be
                a numpy array or paddle.Tensor, or a list of arrays or tensors
                (in case the model has multiple labels). If has no labels,
1170 1171 1172
                set None. Default: None.
            update (bool, optional): Whether update parameters after loss.backward() computing.
                Set it to False to accumulate gradients. Default: True.
1173 1174 1175 1176 1177 1178 1179 1180 1181

        Returns:
            A list of scalar training loss if the model has no metrics,
            or a tuple (list of scalar loss, list of metrics) if the model
            set metrics.

        Examples:

            .. code-block:: python
1182

1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
                import paddle
                import paddle.nn as nn
                from paddle.static import InputSpec

                device = paddle.set_device('cpu') # or 'gpu'

                net = nn.Sequential(
                    nn.Linear(784, 200),
                    nn.Tanh(),
                    nn.Linear(200, 10))

                input = InputSpec([None, 784], 'float32', 'x')
                label = InputSpec([None, 1], 'int64', 'label')
                model = paddle.Model(net, input, label)
                optim = paddle.optimizer.SGD(learning_rate=1e-3,
                    parameters=model.parameters())
                model.prepare(optim, paddle.nn.CrossEntropyLoss())
                data = paddle.rand((4, 784), dtype="float32")
                label = paddle.randint(0, 10, (4, 1), dtype="int64")
                loss = model.train_batch([data], [label])
                print(loss)
                # [array([2.192784], dtype=float32)]
1205

1206
        """
L
lyuwenyu 已提交
1207
        loss = self._adapter.train_batch(inputs, labels, update)
J
Jiabin Yang 已提交
1208
        if fluid._non_static_mode() and self._input_info is None:
L
LiuChiachi 已提交
1209
            self._update_inputs()
1210
        return loss
1211

1212
    @no_grad()
1213 1214
    def eval_batch(self, inputs, labels=None):
        """
1215

1216 1217 1218
        Run one evaluating step on a batch of data.

        Args:
1219 1220
            inputs (numpy.ndarray|Tensor|list): Batch of input data. It could
                be a numpy array or paddle.Tensor, or a list of arrays or
1221
                tensors (in case the model has multiple inputs).
1222 1223 1224
            labels (numpy.ndarray|Tensor|list, optional): Batch of labels. It could be
                a numpy array or paddle.Tensor, or a list of arrays or tensors
                (in case the model has multiple labels). If has no labels,
1225
                set None. Default: None.
1226 1227 1228 1229 1230 1231 1232 1233 1234

        Returns:
            A list of scalar testing loss if the model has no metrics,
            or a tuple (list of scalar loss, list of metrics) if the model
            set metrics.

        Examples:

            .. code-block:: python
1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258

                import paddle
                import paddle.nn as nn
                from paddle.static import InputSpec

                device = paddle.set_device('cpu') # or 'gpu'

                net = nn.Sequential(
                    nn.Linear(784, 200),
                    nn.Tanh(),
                    nn.Linear(200, 10))

                input = InputSpec([None, 784], 'float32', 'x')
                label = InputSpec([None, 1], 'int64', 'label')
                model = paddle.Model(net, input, label)
                optim = paddle.optimizer.SGD(learning_rate=1e-3,
                    parameters=model.parameters())
                model.prepare(optim,
                            paddle.nn.CrossEntropyLoss(), metrics=paddle.metric.Accuracy())
                data = paddle.rand((4, 784), dtype="float32")
                label = paddle.randint(0, 10, (4, 1), dtype="int64")
                loss, acc = model.eval_batch([data], [label])
                print(loss, acc)
                # [array([2.8825705], dtype=float32)] [0.0]
1259

1260
        """
1261
        loss = self._adapter.eval_batch(inputs, labels)
J
Jiabin Yang 已提交
1262
        if fluid._non_static_mode() and self._input_info is None:
L
LiuChiachi 已提交
1263
            self._update_inputs()
1264
        return loss
1265

1266
    @no_grad()
1267
    def predict_batch(self, inputs):
1268
        """
1269

1270
        Run one predicting step on a batch of data.
1271 1272

        Args:
1273 1274
            inputs (numpy.ndarray|Tensor|list): Batch of input data. It could
                be a numpy array or paddle.Tensor, or a list of arrays or
1275
                tensors (in case the model has multiple inputs).
1276 1277 1278 1279 1280 1281 1282 1283

        Returns:
            A list of numpy.ndarray of predictions, that is the outputs
            of Model forward.

        Examples:

            .. code-block:: python
1284 1285 1286 1287 1288 1289

                import paddle
                import paddle.nn as nn
                from paddle.static import InputSpec

                device = paddle.set_device('cpu') # or 'gpu'
1290

1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
                input = InputSpec([None, 784], 'float32', 'x')
                label = InputSpec([None, 1], 'int64', 'label')

                net = nn.Sequential(
                    nn.Linear(784, 200),
                    nn.Tanh(),
                    nn.Linear(200, 10),
                    nn.Softmax())

                model = paddle.Model(net, input, label)
                model.prepare()
                data = paddle.rand((1, 784), dtype="float32")
                out = model.predict_batch([data])
                print(out)
                # [array([[0.08189095, 0.16740078, 0.06889386, 0.05085445, 0.10729759,
                #          0.02217775, 0.14518553, 0.1591538 , 0.01808308, 0.17906217]],
                #          dtype=float32)]
1308

1309
        """
1310
        loss = self._adapter.predict_batch(inputs)
J
Jiabin Yang 已提交
1311
        if fluid._non_static_mode() and self._input_info is None:
L
LiuChiachi 已提交
1312
            self._update_inputs()
1313
        return loss
1314

1315
    def save(self, path, training=True):
1316 1317 1318
        """

        This function saves parameters, optimizer information or model and
1319 1320
        paramters only for inference to path. It depends on the parameter
        `training`.
1321

1322
        If `training` is set to True, the parameters saved contain all
1323
        the trainable Variable, will save to a file with suffix ".pdparams".
1324 1325 1326 1327
        The optimizer information contains all the variable used by optimizer.
        For Adam optimizer, contains beta1, beta2, momentum etc. All the
        information will save to a file with suffix ".pdopt". (If the optimizer
        have no variable need to save (like SGD), the fill will not generated).
1328
        This function will silently overwrite existing file at the target location.
1329

1330
        If `training` is set to False, only inference model will be saved.
1331 1332

        Args:
1333 1334 1335
            path (str): The file prefix to save model. The format
                is 'dirname/file_prefix' or 'file_prefix'. if empty str.
                A exception will be raised.
1336 1337
            training (bool, optional): Whether to save for training. If not, save
                for inference only. Default: True.
1338 1339 1340 1341 1342 1343 1344

        Returns:
            None

        Examples:

            .. code-block:: python
1345

1346
                import paddle
1347
                import paddle.nn as nn
1348
                import paddle.vision.transforms as T
1349
                from paddle.static import InputSpec
1350

1351
                class Mnist(nn.Layer):
1352
                    def __init__(self):
1353
                        super(Mnist, self).__init__()
1354
                        self.net = nn.Sequential(
L
LielinJiang 已提交
1355
                            nn.Flatten(1),
1356 1357 1358 1359
                            nn.Linear(784, 200),
                            nn.Tanh(),
                            nn.Linear(200, 10),
                            nn.Softmax())
1360

1361
                    def forward(self, x):
1362
                        return self.net(x)
1363

1364
                dynamic = True  # False
1365
                # if use static graph, do not set
1366 1367
                if not dynamic:
                    paddle.enable_static()
1368

1369 1370 1371
                input = InputSpec([None, 784], 'float32', 'x')
                label = InputSpec([None, 1], 'int64', 'label')
                model = paddle.Model(Mnist(), input, label)
1372
                optim = paddle.optimizer.SGD(learning_rate=1e-3,
1373
                    parameters=model.parameters())
1374
                model.prepare(optim, paddle.nn.CrossEntropyLoss())
1375

1376 1377 1378 1379 1380
                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                data = paddle.vision.datasets.MNIST(mode='train', transform=transform)
1381

1382
                model.fit(data, epochs=1, batch_size=32, verbose=0)
1383 1384
                model.save('checkpoint/test')  # save for training
                model.save('inference_model', False)  # save for inference
1385

1386
        """
1387

1388
        if ParallelEnv().local_rank == 0:
1389 1390 1391 1392
            if not training:
                self._save_inference_model(path)
            else:
                self._adapter.save(path)
1393 1394 1395

    def load(self, path, skip_mismatch=False, reset_optimizer=False):
        """
1396

1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
        Load from files storing the model states and optimizer states. The file
        for optimizer states is not necessary if no need to restore the optimizer.

        NOTE: parameters are retrieved out from the file storing model states
        accoring to their structured names.

        For fine-tuning or transfer-learning models where some of the layers have
        changed, keep parameters needed to restore have same structured names in
        the pre-trained model and fine-tuning model.

        Args:
            path (str): The prefix of files storing the model states and
                optimizer states. The files would be `path.pdparams` and
                `path.pdopt` separately, and the latter is not necessary
                when no need to restore.
1412
            skip_mismatch (bool, optional): Whether to skip the loading of mismatch
1413 1414
                parameter or raise an error when mismatch happens (not found
                the parameter in file storing model states of or receives a
1415 1416
                mismatch shape). Default: False.
            reset_optimizer (bool, optional): If True, ignore the providing file storing
1417 1418
                optimizer states and initialize optimizer states from scratch.
                Otherwise, restore optimizer states from `path.pdopt` if
1419
                a optimizer has been set to the model. Default: False.
1420 1421 1422 1423 1424 1425 1426

        Returns:
            None

        Examples:

            .. code-block:: python
1427 1428 1429 1430

                import paddle
                import paddle.nn as nn
                from paddle.static import InputSpec
L
LielinJiang 已提交
1431

1432
                device = paddle.set_device('cpu')
L
LielinJiang 已提交
1433

1434
                input = InputSpec([None, 784], 'float32', 'x')
1435

1436 1437 1438 1439 1440
                model = paddle.Model(nn.Sequential(
                    nn.Linear(784, 200),
                    nn.Tanh(),
                    nn.Linear(200, 10),
                    nn.Softmax()), input)
L
LielinJiang 已提交
1441

1442 1443
                model.save('checkpoint/test')
                model.load('checkpoint/test')
1444

1445 1446 1447 1448 1449 1450
        """

        def _load_state_from_path(path):
            if not os.path.exists(path):
                return
            with open(path, 'rb') as f:
T
tianshuo78520a 已提交
1451
                return pickle.load(f, encoding='latin1')
1452 1453 1454 1455 1456

        def _check_match(key, param):
            state = param_state.get(key, None)
            if state is None:
                raise ValueError(
1457 1458
                    "{} is not found in the providing file.".format(key)
                )
1459 1460
            if list(state.shape) != list(param.shape):
                raise ValueError(
1461 1462 1463 1464
                    "{} receives a shape {}, but the expected shape is {}.".format(
                        key, list(state.shape), list(param.shape)
                    )
                )
1465 1466 1467 1468
            return param, state

        def _strip_postfix(path):
            path, ext = os.path.splitext(path)
1469 1470 1471 1472 1473 1474
            assert ext in [
                '',
                '.pdparams',
                '.pdopt',
                '.pdmodel',
            ], "Unknown postfix {} from weights".format(ext)
1475 1476 1477 1478 1479 1480 1481
            return path

        path = _strip_postfix(path)
        param_state = _load_state_from_path(path + ".pdparams")
        assert param_state, "Failed to load parameters, please check path."

        matched_param_state = []
1482
        for key, param in self.network.state_dict().items():
1483 1484 1485 1486 1487
            try:
                match_res = _check_match(key, param)
            except ValueError as err:
                if skip_mismatch:
                    warnings.warn(
1488 1489
                        ("Skip loading for {}. ".format(key) + str(err))
                    )
1490 1491 1492 1493 1494 1495
                    # reset optimizer when mismatch happens
                    reset_optimizer = True
                else:
                    raise err
            matched_param_state.append(match_res)

1496 1497 1498
        optim_state = (
            None if reset_optimizer else _load_state_from_path(path + ".pdopt")
        )
L
Leo Chen 已提交
1499 1500

        # TODO: support save/load scaler state in static graph
J
Jiabin Yang 已提交
1501
        if _non_static_mode():
L
Leo Chen 已提交
1502 1503 1504 1505 1506
            scaler_state = None
            if hasattr(self, '_scaler') and self._scaler is not None:
                if os.path.exists(path + '.pdscaler'):
                    scaler_state = paddle.load(path + '.pdscaler')

1507 1508 1509
            return self._adapter.load(
                matched_param_state, optim_state, scaler_state
            )
L
Leo Chen 已提交
1510 1511
        else:
            return self._adapter.load(matched_param_state, optim_state)
1512 1513 1514

    def parameters(self, *args, **kwargs):
        """
1515

1516 1517 1518 1519 1520 1521 1522 1523 1524
        Returns a list of parameters of the model.

        Returns:
            A list of Parameter in static graph.
            A list of ParamBase in dynamic graph.

        Examples:

            .. code-block:: python
1525

1526 1527 1528
                import paddle
                import paddle.nn as nn
                from paddle.static import InputSpec
1529

1530
                input = InputSpec([None, 784], 'float32', 'x')
1531

1532 1533 1534 1535
                model = paddle.Model(nn.Sequential(
                    nn.Linear(784, 200),
                    nn.Tanh(),
                    nn.Linear(200, 10)), input)
L
LielinJiang 已提交
1536

1537
                params = model.parameters()
1538

1539 1540 1541
        """
        return self._adapter.parameters()

J
Jiaqi Liu 已提交
1542 1543 1544
    def _prepare_amp(self, amp_configs):
        def _check_pure_fp16_configs():
            # pure float16 training has some restricts now
L
Leo Chen 已提交
1545 1546
            if self._adapter._amp_level == "O2" and self._optimizer._grad_clip:
                # clip by value is not supported
1547 1548 1549 1550
                assert isinstance(
                    self._optimizer._grad_clip,
                    (paddle.nn.ClipGradByGlobalNorm, paddle.nn.ClipGradByNorm),
                ), "Only GradientClipByNorm and GradientClipByGlobalNorm are supported in amp training with level=O2 currently."
J
Jiaqi Liu 已提交
1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561

        self._adapter._amp_custom_lists = {}
        self._adapter._amp_configs = {}

        # check and get level of mixed precision training
        if not amp_configs:
            self._adapter._amp_level = 'O0'
            return
        elif isinstance(amp_configs, str):
            if amp_configs not in ('O0', 'O1', 'O2'):
                raise ValueError(
1562 1563
                    "The level of amp_configs should be 'O0', 'O1' or 'O2'."
                )
J
Jiaqi Liu 已提交
1564 1565 1566 1567 1568 1569 1570 1571
            self._adapter._amp_level = amp_configs
            _check_pure_fp16_configs()
            return
        else:
            if 'level' not in amp_configs:
                self._adapter._amp_level = 'O1'
            elif amp_configs['level'] not in ('O0', 'O1', 'O2'):
                raise ValueError(
1572 1573
                    "amp_configs['level'] should be 'O0', 'O1' or 'O2'."
                )
J
Jiaqi Liu 已提交
1574 1575 1576 1577 1578 1579 1580 1581
            else:
                self._adapter._amp_level = amp_configs['level']
        amp_config_key_set = set(amp_configs.keys()) - {'level'}
        if not amp_config_key_set or self._adapter._amp_level == 'O0':
            return

        if 'use_pure_fp16' in amp_configs:
            raise ValueError(
1582
                "'use_pure_fp16' is an invalid parameter, the level of mixed precision training only depends on 'O1' or 'O2'."
J
Jiaqi Liu 已提交
1583 1584 1585 1586 1587 1588 1589
            )

        _check_pure_fp16_configs()

        # construct amp_custom_lists
        if self._adapter._amp_level != 'O0' and amp_config_key_set:
            for param_name in [
1590 1591 1592
                'custom_white_list',
                'custom_black_list',
                'custom_black_varnames',
J
Jiaqi Liu 已提交
1593 1594 1595
            ]:
                if param_name in amp_config_key_set:
                    self._adapter._amp_custom_lists[param_name] = amp_configs[
1596 1597
                        param_name
                    ]
J
Jiaqi Liu 已提交
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
                    amp_config_key_set -= {param_name}

        def _check_amp_configs(amp_config_key_set):
            accepted_param_set = {
                'init_loss_scaling',
                'incr_ratio',
                'decr_ratio',
                'incr_every_n_steps',
                'decr_every_n_nan_or_inf',
                'use_dynamic_loss_scaling',
                'use_fp16_guard',
            }
            if amp_config_key_set - accepted_param_set:
                raise ValueError(
1612 1613 1614 1615
                    "Except for 'level', the keys of 'amp_configs' must be accepted by mixed precision APIs, but {} could not be recognized.".format(
                        tuple(amp_config_key_set - accepted_param_set)
                    )
                )
J
Jiaqi Liu 已提交
1616 1617

            if 'use_fp16_guard' in amp_config_key_set:
J
Jiabin Yang 已提交
1618
                if _non_static_mode():
J
Jiaqi Liu 已提交
1619
                    raise ValueError(
1620 1621
                        "'use_fp16_guard' is supported in static mode only."
                    )
J
Jiaqi Liu 已提交
1622 1623 1624 1625 1626 1627 1628 1629 1630
                self._adapter._use_fp16_guard = amp_configs['use_fp16_guard']
                amp_config_key_set.remove('use_fp16_guard')

            return amp_config_key_set

        amp_configs_set = _check_amp_configs(amp_config_key_set)
        for key in amp_configs_set:
            self._adapter._amp_configs[key] = amp_configs[key]

1631 1632 1633
    def prepare(
        self, optimizer=None, loss=None, metrics=None, amp_configs=None
    ):
1634
        """
1635

1636 1637 1638
        Configures the model before runing.

        Args:
1639
            optimizer (Optimizer|None, optional): Optimizer must be set in training
1640
                and should be a Optimizer instance. It can be None in eval
1641 1642
                and test mode. Default: None.
            loss (Loss|Callable|None, optional): Loss function can
1643
                be a `paddle.nn.Layer` instance or any callable function
1644
                taken the predicted values and ground truth values as input.
1645 1646 1647 1648
                It can be None when there is no loss. Default: None.
            metrics (Metric|list[Metric]|None, optional): If metrics is set, all
                metrics will be calculated and output in train/eval mode. Default: None.
            amp_configs (str|dict|None, optional): AMP configurations. If AMP or pure
J
Jiaqi Liu 已提交
1649 1650 1651
                float16 training is used, the key 'level' of 'amp_configs'
                should be set to 'O1' or 'O2' respectively. Otherwise, the
                value of 'level' defaults to 'O0', which means float32
1652 1653
                training. In addition to 'level', parameters consistent with
                mixed precision API could also be passed in. The supported
J
Jiaqi Liu 已提交
1654 1655 1656 1657
                keys are: 'init_loss_scaling', 'incr_ratio', 'decr_ratio',
                'incr_every_n_steps', 'decr_every_n_nan_or_inf',
                'use_dynamic_loss_scaling', 'custom_white_list',
                'custom_black_list', and 'custom_black_varnames'or
1658 1659 1660 1661 1662 1663
                'use_fp16_guard' is only supported in static mode. Mixed
                precision API documentations  :ref:`api_paddle_amp_auto_cast`
                and  :ref:`api_paddle_amp_GradScaler` could be referenced
                for details. For convenience, 'amp_configs' could be set to
                'O1' or 'O2' if no more parameters are needed. 'amp_configs'
                could be None in float32 training. Default: None.
1664

1665 1666
        Returns:
            None
1667

1668
        """
1669 1670
        self._place = _get_device()
        if isinstance(self._place, fluid.CUDAPlace):
1671 1672
            global _parallel_context_initialized
            if ParallelEnv().nranks > 1 and not _parallel_context_initialized:
J
Jiabin Yang 已提交
1673
                if fluid._non_static_mode():
1674
                    main_prog_seed = fluid.default_main_program().random_seed
1675 1676 1677
                    startup_prog_seed = (
                        fluid.default_startup_program().random_seed
                    )
1678
                    fluid.disable_dygraph()
1679
                    paddle.disable_static(self._place)
1680 1681 1682
                    # enable_dygraph would create and switch to a new program,
                    # thus also copy seed to the new program
                    fluid.default_main_program().random_seed = main_prog_seed
1683 1684 1685
                    fluid.default_startup_program().random_seed = (
                        startup_prog_seed
                    )
1686 1687 1688 1689 1690
                else:
                    prepare_distributed_context(self._place)
                _parallel_context_initialized = True

        self._optimizer = optimizer
1691 1692
        if loss is not None:
            if not isinstance(loss, paddle.nn.Layer) and not callable(loss):
1693 1694 1695
                raise TypeError(
                    "'loss' must be sub classes of `paddle.nn.Layer` or any callable function."
                )
1696
        self._loss = loss
1697 1698 1699

        metrics = metrics or []
        for metric in to_list(metrics):
1700 1701 1702
            assert isinstance(
                metric, Metric
            ), "{} is not sub class of Metric".format(metric.__class__.__name__)
1703
        self._metrics = to_list(metrics)
J
Jiaqi Liu 已提交
1704
        self._prepare_amp(amp_configs)
1705

L
Leo Chen 已提交
1706
        self._adapter.prepare()
1707

1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725
    def fit(
        self,
        train_data=None,
        eval_data=None,
        batch_size=1,
        epochs=1,
        eval_freq=1,
        log_freq=10,
        save_dir=None,
        save_freq=1,
        verbose=2,
        drop_last=False,
        shuffle=True,
        num_workers=0,
        callbacks=None,
        accumulate_grad_batches=1,
        num_iters=None,
    ):
1726
        """
1727

1728 1729 1730 1731
        Trains the model for a fixed number of epochs. If `eval_data` is set,
        evaluation will be done at the end of each epoch.

        Args:
1732 1733
            train_data (Dataset|DataLoader, optional): An iterable data loader is used for
                train. An instance of paddle paddle.io.Dataset or
1734
                paddle.io.Dataloader is recomended. Default: None.
1735
            eval_data (Dataset|DataLoader, optional): An iterable data loader is used for
1736 1737
                evaluation at the end of epoch. If None, will not do evaluation.
                An instance of paddle.io.Dataset or paddle.io.Dataloader
1738
                is recomended. Default: None.
1739
            batch_size (int, optional): The batch size of train_data and eval_data. When
1740 1741 1742 1743
                train_data and eval_data are both the instance of Dataloader, this
                parameter will be ignored. Default: 1.
            epochs (int, optional): The number of epochs to train the model. Default: 1.
            eval_freq (int, optional): The frequency, in number of epochs, an evalutation
1744
                is performed. Default: 1.
1745
            log_freq (int, optional): The frequency, in number of steps, the training logs
1746
                are printed. Default: 10.
1747
            save_dir(str|None, optional): The directory to save checkpoint during training.
1748
                If None, will not save checkpoint. Default: None.
1749
            save_freq (int, optional): The frequency, in number of epochs, to save
1750
                checkpoint. Default: 1.
1751
            verbose (int, optional): The verbosity mode, should be 0, 1, or 2. 0 = silent,
1752
                1 = progress bar, 2 = one line per epoch. Default: 2.
1753
            drop_last (bool, optional): Whether drop the last incomplete batch of
1754 1755 1756
                train_data when dataset size is not divisible by the batch size.
                When train_data is an instance of Dataloader, this parameter
                will be ignored. Default: False.
1757
            shuffle (bool, optional): Whther to shuffle train_data. When train_data is
1758 1759
                an instance of Dataloader, this parameter will be ignored.
                Default: True.
1760
            num_workers (int, optional): The number of subprocess to load data, 0 for no
1761 1762 1763
                subprocess used and loading data in main process.
                When train_data and eval_data are both the instance of
                Dataloader, this parameter will be ignored. Default: 0.
1764 1765 1766
            callbacks (Callback|None, optional): A list of `Callback` instances to apply
                during training. If None, :ref:`api_paddle_callbacks_ProgBarLogger` and
                :ref:`api_paddle_callbacks_ModelCheckpoint` are automatically inserted. Default: None.
1767
            accumulate_grad_batches (int, optional): The number of batches to accumulate gradident
L
lyuwenyu 已提交
1768
                during training process before optimizer updates. It can mimic large batch
L
lyuwenyu 已提交
1769
                size. Default: 1.
1770 1771 1772 1773
            num_iters (int|None, optional): The number of iterations to evaluate the model.
                If None, evaluate on whole input dataset, otherwise, evaluate `num_iters` times.
                Default: None.

1774 1775 1776 1777
        Returns:
            None

        Examples:
1778
            1. An example use Dataset and set batch size, shuffle in fit.
1779 1780 1781
               How to make a batch is done internally.

            .. code-block:: python
1782
              :name: code-example3
1783

1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816
                import paddle
                import paddle.vision.transforms as T
                from paddle.vision.datasets import MNIST
                from paddle.static import InputSpec

                dynamic = True
                if not dynamic:
                    paddle.enable_static()

                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                train_dataset = MNIST(mode='train', transform=transform)
                val_dataset = MNIST(mode='test', transform=transform)

                input = InputSpec([None, 1, 28, 28], 'float32', 'image')
                label = InputSpec([None, 1], 'int64', 'label')

                model = paddle.Model(
                    paddle.vision.models.LeNet(),
                    input, label)
                optim = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=model.parameters())
                model.prepare(
                    optim,
                    paddle.nn.CrossEntropyLoss(),
                    paddle.metric.Accuracy(topk=(1, 2)))
                model.fit(train_dataset,
                            val_dataset,
                            epochs=2,
                            batch_size=64,
                            save_dir='mnist_checkpoint')
1817 1818 1819 1820 1821

            2. An example use DataLoader, batch size and shuffle is set in
               DataLoader.

            .. code-block:: python
1822
              :name: code-example4
1823 1824 1825 1826 1827

                import paddle
                import paddle.vision.transforms as T
                from paddle.vision.datasets import MNIST
                from paddle.static import InputSpec
1828

1829 1830 1831
                dynamic = True
                if not dynamic:
                    paddle.enable_static()
1832

1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845
                transform = T.Compose([
                        T.Transpose(),
                        T.Normalize([127.5], [127.5])
                    ])
                train_dataset = MNIST(mode='train', transform=transform)
                train_loader = paddle.io.DataLoader(train_dataset,
                    batch_size=64)
                val_dataset = MNIST(mode='test', transform=transform)
                val_loader = paddle.io.DataLoader(val_dataset,
                    batch_size=64)

                input = InputSpec([None, 1, 28, 28], 'float32', 'image')
                label = InputSpec([None, 1], 'int64', 'label')
1846

1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
                model = paddle.Model(
                    paddle.vision.models.LeNet(), input, label)
                optim = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=model.parameters())
                model.prepare(
                    optim,
                    paddle.nn.CrossEntropyLoss(),
                    paddle.metric.Accuracy(topk=(1, 2)))
                model.fit(train_loader,
                            val_loader,
                            epochs=2,
                            save_dir='mnist_checkpoint')
1859

1860
        """
1861
        assert train_data is not None, "train_data must be given!"
1862 1863

        if isinstance(train_data, Dataset):
1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876
            train_sampler = DistributedBatchSampler(
                train_data,
                batch_size=batch_size,
                shuffle=shuffle,
                drop_last=drop_last,
            )
            train_loader = DataLoader(
                train_data,
                batch_sampler=train_sampler,
                places=self._place,
                num_workers=num_workers,
                return_list=True,
            )
1877 1878 1879 1880
        else:
            train_loader = train_data

        if eval_data is not None and isinstance(eval_data, Dataset):
1881 1882 1883 1884 1885 1886 1887 1888 1889 1890
            eval_sampler = DistributedBatchSampler(
                eval_data, batch_size=batch_size
            )
            eval_loader = DataLoader(
                eval_data,
                batch_sampler=eval_sampler,
                places=self._place,
                num_workers=num_workers,
                return_list=True,
            )
1891 1892 1893 1894 1895 1896 1897
        elif eval_data is not None:
            eval_loader = eval_data
        else:
            eval_loader = None

        do_eval = eval_loader is not None
        self._test_dataloader = eval_loader
L
update  
lyuwenyu 已提交
1898

L
lyuwenyu 已提交
1899
        self._accumulate = accumulate_grad_batches
L
update  
lyuwenyu 已提交
1900

1901
        steps = self._len_data_loader(train_loader)
1902
        self.num_iters = num_iters
1903 1904 1905 1906 1907
        if (
            num_iters is not None
            and isinstance(num_iters, int)
            and isinstance(steps, int)
        ):
1908 1909 1910
            assert num_iters > 0, "num_iters must be greater than 0!"
            epochs = (num_iters // steps) + 1
            steps = min(num_iters, steps)
1911 1912 1913 1914 1915 1916 1917 1918 1919
        cbks = config_callbacks(
            callbacks,
            model=self,
            epochs=epochs,
            steps=steps,
            log_freq=log_freq,
            save_freq=save_freq,
            save_dir=save_dir,
            verbose=verbose,
1920 1921
            metrics=self._metrics_name(),
        )
1922

L
LiuChiachi 已提交
1923 1924 1925
        if any(isinstance(k, EarlyStopping) for k in cbks) and not do_eval:
            warnings.warn("EarlyStopping needs validation data.")

1926 1927 1928 1929 1930 1931 1932 1933 1934
        cbks.on_begin('train')
        for epoch in range(epochs):
            cbks.on_epoch_begin(epoch)
            logs = self._run_one_epoch(train_loader, cbks, 'train')
            cbks.on_epoch_end(epoch, logs)

            if do_eval and epoch % eval_freq == 0:

                eval_steps = self._len_data_loader(eval_loader)
1935 1936 1937 1938
                cbks.on_begin(
                    'eval',
                    {'steps': eval_steps, 'metrics': self._metrics_name()},
                )
1939 1940 1941 1942

                eval_logs = self._run_one_epoch(eval_loader, cbks, 'eval')

                cbks.on_end('eval', eval_logs)
1943 1944
            if self.stop_training:
                break
1945 1946 1947

        cbks.on_end('train', logs)
        self._test_dataloader = None
L
update  
lyuwenyu 已提交
1948

1949 1950 1951 1952 1953 1954 1955 1956 1957 1958
    def evaluate(
        self,
        eval_data,
        batch_size=1,
        log_freq=10,
        verbose=2,
        num_workers=0,
        callbacks=None,
        num_iters=None,
    ):
1959 1960 1961 1962 1963
        """
        Evaluate the loss and metrics of the model on input dataset.

        Args:
            eval_data (Dataset|DataLoader): An iterable data loader is used for
1964
                evaluation. An instance of paddle.io.Dataset or
1965
                paddle.io.Dataloader is recomended.
1966 1967 1968 1969
            batch_size (int, optional): The batch size of train_data and eval_data.
                When eval_data is the instance of Dataloader, this argument will be
                ignored. Default: 1.
            log_freq (int, optional): The frequency, in number of steps, the eval logs
1970
                are printed. Default: 10.
1971
            verbose (int, optional): The verbosity mode, should be 0, 1, or 2. 0 = silent,
1972
                1 = progress bar, 2 = one line per epoch. Default: 2.
1973
            num_workers (int, optional): The number of subprocess to load data,
1974 1975 1976
                0 for no subprocess used and loading data in main process. When
                train_data and eval_data are both the instance of Dataloader,
                this parameter will be ignored. Default: 0.
1977
            callbacks (Callback|None, optional): A list of `Callback` instances to apply
1978 1979
                during training. If None, `ProgBarLogger` and `ModelCheckpoint`
                are automatically inserted. Default: None.
1980 1981 1982
            num_iters (int|None, optional): The number of iterations to evaluate the model.
                If None, evaluate on whole input dataset, otherwise, evaluate `num_iters` times.
                Default: None.
1983 1984 1985 1986 1987
        Returns:
            dict: Result of metric. The key is the names of Metric,
                value is a scalar or numpy.array.

        Examples:
1988 1989

          .. code-block:: python
1990

1991 1992 1993
                import paddle
                import paddle.vision.transforms as T
                from paddle.static import InputSpec
1994

1995 1996 1997 1998 1999 2000
                # declarative mode
                transform = T.Compose([
                        T.Transpose(),
                        T.Normalize([127.5], [127.5])
                    ])
                val_dataset = paddle.vision.datasets.MNIST(mode='test', transform=transform)
2001

2002 2003 2004 2005 2006 2007 2008
                input = InputSpec([-1, 1, 28, 28], 'float32', 'image')
                label = InputSpec([None, 1], 'int64', 'label')
                model = paddle.Model(paddle.vision.models.LeNet(), input, label)
                model.prepare(metrics=paddle.metric.Accuracy())
                result = model.evaluate(val_dataset, batch_size=64)
                print(result)
                # {'acc': 0.0699}
2009 2010 2011
        """

        if eval_data is not None and isinstance(eval_data, Dataset):
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
            eval_sampler = DistributedBatchSampler(
                eval_data, batch_size=batch_size
            )
            eval_loader = DataLoader(
                eval_data,
                batch_sampler=eval_sampler,
                places=self._place,
                num_workers=num_workers,
                return_list=True,
            )
2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
        else:
            eval_loader = eval_data

        self._test_dataloader = eval_loader

        cbks = config_callbacks(
            callbacks,
            model=self,
            log_freq=log_freq,
            verbose=verbose,
2032 2033
            metrics=self._metrics_name(),
        )
2034 2035

        eval_steps = self._len_data_loader(eval_loader)
2036
        self.num_iters = num_iters
2037 2038 2039 2040 2041
        if (
            num_iters is not None
            and isinstance(num_iters, int)
            and isinstance(eval_steps, int)
        ):
2042 2043 2044
            assert num_iters > 0, "num_iters must be greater than 0!"
            eval_steps = min(num_iters, eval_steps)
            self.num_iters = eval_steps
2045 2046 2047
        cbks.on_begin(
            'eval', {'steps': eval_steps, 'metrics': self._metrics_name()}
        )
2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060

        logs = self._run_one_epoch(eval_loader, cbks, 'eval')

        cbks.on_end('eval', logs)

        self._test_dataloader = None

        eval_result = {}
        for k in self._metrics_name():
            eval_result[k] = logs[k]

        return eval_result

2061 2062 2063 2064 2065 2066 2067 2068 2069
    def predict(
        self,
        test_data,
        batch_size=1,
        num_workers=0,
        stack_outputs=False,
        verbose=1,
        callbacks=None,
    ):
2070 2071 2072 2073 2074 2075 2076
        """
        Compute the output predictions on testing data.

        Args:
            test_data (Dataset|DataLoader): An iterable data loader is used for
                predict. An instance of paddle.io.Dataset or paddle.io.Dataloader
                is recomended.
2077 2078
            batch_size (int, optional): The batch size of test_data. When test_data is the
                instance of Dataloader, this argument will be ignored. Default: 1.
2079
            num_workers (int, optional): The number of subprocess to load data, 0 for no subprocess
2080 2081 2082 2083
                used and loading data in main process. When test_data is the instance of Dataloader,
                this argument will be ignored. Default: 0.
            stack_outputs (bool, optional): Whether stack output field like a batch, as for an output
                field of a sample is in shape [X, Y], test_data contains N samples, predict
2084
                output field will be in shape [N, X, Y] if stack_output is True, and will
2085
                be a length N list in shape [[X, Y], [X, Y], ..., [X, Y]] if stack_outputs
2086 2087
                is False. stack_outputs as False is used for LoDTensor output situation,
                it is recommended set as True if outputs contains no LoDTensor. Default: False.
2088
            verbose (int, optional): The verbosity mode, should be 0, 1, or 2. 0 = silent,
2089
                1 = progress bar, 2 = one line per batch. Default: 1.
2090
            callbacks(Callback, optional): A Callback instance, Default: None.
2091

2092 2093 2094 2095
        Returns:
            list: output of models.

        Examples:
2096 2097

          .. code-block:: python
2098

2099 2100 2101
                import numpy as np
                import paddle
                from paddle.static import InputSpec
2102

2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136
                class MnistDataset(paddle.vision.datasets.MNIST):
                    def __init__(self, mode, return_label=True):
                        super(MnistDataset, self).__init__(mode=mode)
                        self.return_label = return_label

                    def __getitem__(self, idx):
                        img = np.reshape(self.images[idx], [1, 28, 28])
                        if self.return_label:
                            return img, np.array(self.labels[idx]).astype('int64')
                        return img,

                    def __len__(self):
                        return len(self.images)

                test_dataset = MnistDataset(mode='test', return_label=False)

                # imperative mode
                input = InputSpec([-1, 1, 28, 28], 'float32', 'image')
                model = paddle.Model(paddle.vision.models.LeNet(), input)
                model.prepare()
                result = model.predict(test_dataset, batch_size=64)
                print(len(result[0]), result[0][0].shape)
                # 157 (64, 10)

                # declarative mode
                device = paddle.set_device('cpu')
                paddle.enable_static()
                input = InputSpec([-1, 1, 28, 28], 'float32', 'image')
                model = paddle.Model(paddle.vision.models.LeNet(), input)
                model.prepare()

                result = model.predict(test_dataset, batch_size=64)
                print(len(result[0]), result[0][0].shape)
                # 157 (64, 10)
2137 2138 2139
        """

        if test_data is not None and isinstance(test_data, Dataset):
2140 2141 2142 2143 2144 2145 2146 2147 2148 2149
            test_sampler = DistributedBatchSampler(
                test_data, batch_size=batch_size
            )
            test_loader = DataLoader(
                test_data,
                batch_sampler=test_sampler,
                places=self._place,
                num_workers=num_workers,
                return_list=True,
            )
2150 2151 2152 2153 2154
        else:
            test_loader = test_data

        self._test_dataloader = test_loader

2155
        cbks = config_callbacks(callbacks, model=self, verbose=verbose)
2156 2157 2158 2159

        test_steps = self._len_data_loader(test_loader)
        logs = {'steps': test_steps}

2160
        cbks.on_begin('predict', logs)
2161 2162 2163

        outputs = []

2164
        logs, outputs = self._run_one_epoch(test_loader, cbks, 'predict')
2165 2166 2167 2168 2169 2170 2171 2172 2173 2174

        outputs = list(zip(*outputs))

        # NOTE: for lod tensor output, we should not stack outputs
        # for stacking may lose its detail info
        if stack_outputs:
            outputs = [np.vstack(outs) for outs in outputs]

        self._test_dataloader = None

2175
        cbks.on_end('predict', logs)
2176 2177
        return outputs

2178
    def _save_inference_model(self, path):
2179
        """
2180
        Save inference model can be used in static or dynamic mode.
2181 2182

        Args:
2183 2184
            path (str): The path prefix to save model. The format is
                ``dirname/file_prefix`` or ``file_prefix``.
2185
        Returns:
2186
            None
2187 2188
        """

J
Jiabin Yang 已提交
2189
        if fluid._non_static_mode():
2190 2191
            with fluid.framework._dygraph_guard(None):
                layer = self.network
L
LiuChiachi 已提交
2192
                if self._input_info is None:  # No provided or inferred
2193
                    raise RuntimeError(
L
LiuChiachi 已提交
2194
                        "Saving inference model needs 'inputs' or running before saving. Please specify 'inputs' in Model initialization or input training data and perform a training for shape derivation."
2195 2196 2197 2198
                    )
                if self._is_shape_inferred:
                    warnings.warn(
                        "'inputs' was not specified when Model initialization, so the input shape to be saved will be the shape derived from the user's actual inputs. The input shape to be saved is %s. For saving correct input shapes, please provide 'inputs' for Model initialization."
2199 2200
                        % self._input_info[0]
                    )
L
LiuChiachi 已提交
2201

2202
                paddle.jit.save(layer, path, input_spec=self._inputs)
2203

2204
        else:
2205 2206 2207 2208 2209 2210
            # path check
            file_prefix = os.path.basename(path)
            if file_prefix == "":
                raise ValueError(
                    "The input path MUST be format of dirname/file_prefix "
                    "[dirname\\file_prefix in Windows system], but received "
2211 2212
                    "file_prefix is empty string."
                )
2213 2214 2215 2216 2217 2218 2219 2220 2221

            dirname = os.path.dirname(path)
            if dirname and not os.path.exists(dirname):
                os.makedirs(dirname)

            model_path = dirname
            model_filename = file_prefix + INFER_MODEL_SUFFIX
            params_filename = file_prefix + INFER_PARAMS_SUFFIX

2222
            prog = self._adapter._progs.get('test', None)
2223 2224 2225
            assert (
                prog
            ), "Model is not ready, please call `model.prepare()` first"
2226 2227 2228 2229 2230 2231

            infer_prog = prog.clone(for_test=True)

            input_names = [v.name for v in self._adapter._input_vars['test']]
            endpoints = self._adapter._endpoints['test']['output']

2232 2233 2234 2235 2236 2237 2238 2239 2240
            fluid.io.save_inference_model(
                model_path,
                input_names,
                endpoints,
                self._adapter._executor,
                main_program=infer_prog,
                model_filename=model_filename,
                params_filename=params_filename,
            )
2241

L
update  
lyuwenyu 已提交
2242
    def _run_one_epoch(
2243 2244 2245 2246 2247 2248
        self,
        data_loader,
        callbacks,
        mode,
        logs={},
    ):
2249 2250 2251 2252 2253 2254 2255 2256 2257 2258
        outputs = []
        for step, data in enumerate(data_loader):
            # data might come from different types of data_loader and have
            # different format, as following:
            # 1. DataLoader in static graph:
            #    [[input1, input2, ..., label1, lable2, ...]]
            # 2. DataLoader in dygraph
            #    [input1, input2, ..., label1, lable2, ...]
            # 3. custumed iterator yield concated inputs and labels:
            #   [input1, input2, ..., label1, lable2, ...]
2259
            # 4. custumed iterator yield separated inputs and labels:
2260 2261 2262 2263 2264
            #   ([input1, input2, ...], [label1, lable2, ...])
            # To handle all of these, flatten (nested) list to list.
            data = flatten(data)
            # LoDTensor.shape is callable, where LoDTensor comes from
            # DataLoader in static graph
2265

2266 2267 2268 2269 2270
            batch_size = (
                data[0].shape()[0]
                if callable(data[0].shape)
                else data[0].shape[0]
            )
2271 2272 2273

            callbacks.on_batch_begin(mode, step, logs)

2274
            if mode != 'predict':
2275
                _inputs = [data[: len(self._inputs)], data[len(self._inputs) :]]
L
lyuwenyu 已提交
2276
                if mode == 'train':
2277 2278 2279 2280
                    _inputs.append(
                        (step + 1) % self._accumulate == 0
                        or step + 1 == len(data_loader)
                    )
L
update  
lyuwenyu 已提交
2281

L
lyuwenyu 已提交
2282
                outs = getattr(self, mode + '_batch')(*_inputs)
L
update  
lyuwenyu 已提交
2283

2284
                if self._metrics and self._loss:
2285
                    metrics = [[l[0] for l in outs[0]]]
2286
                elif self._loss:
2287 2288 2289
                    metrics = [[l[0] for l in outs]]
                else:
                    metrics = []
2290 2291 2292 2293 2294 2295 2296 2297 2298 2299

                # metrics
                for metric in self._metrics:
                    res = metric.accumulate()
                    metrics.extend(to_list(res))

                assert len(self._metrics_name()) == len(metrics)
                for k, v in zip(self._metrics_name(), metrics):
                    logs[k] = v
            else:
L
LielinJiang 已提交
2300
                if self._inputs is not None:
2301
                    outs = self.predict_batch(data[: len(self._inputs)])
L
LielinJiang 已提交
2302
                else:
2303
                    outs = self.predict_batch(data)
L
LielinJiang 已提交
2304

2305 2306 2307
                outputs.append(outs)

            logs['step'] = step
2308 2309 2310 2311
            if (
                mode == 'train'
                or self._adapter._merge_count.get(mode + '_batch', 0) <= 0
            ):
2312 2313 2314 2315 2316
                logs['batch_size'] = batch_size * ParallelEnv().nranks
            else:
                logs['batch_size'] = self._adapter._merge_count[mode + '_batch']

            callbacks.on_batch_end(mode, step, logs)
2317 2318
            if hasattr(self, 'num_iters') and self.num_iters is not None:
                self.num_iters -= 1
2319 2320 2321
                if self.num_iters <= 0:
                    self.stop_training = True
                    del self.num_iters
2322
                    break
2323 2324
        self._reset_metrics()

2325
        if mode == 'predict':
2326 2327 2328
            return logs, outputs
        return logs

L
LielinJiang 已提交
2329
    def summary(self, input_size=None, dtype=None):
L
LielinJiang 已提交
2330 2331 2332
        """Prints a string summary of the network.

        Args:
2333 2334 2335 2336
            input_size (tuple|InputSpec|list[tuple|InputSpec], optional): size of input tensor.
                    if not set, input_size will get from ``self._inputs`` if network only have
                    one input, input_size can be tuple or InputSpec. if model have multiple
                    input, input_size must be a list which contain every input's shape.
L
LielinJiang 已提交
2337
                    Default: None.
2338
            dtype (str, optional): if dtype is None, 'float32' will be used, Default: None.
L
LielinJiang 已提交
2339 2340 2341 2342 2343 2344

        Returns:
            Dict: a summary of the network including total params and total trainable params.

        Examples:
            .. code-block:: python
2345 2346 2347 2348 2349 2350

                import paddle
                from paddle.static import InputSpec

                input = InputSpec([None, 1, 28, 28], 'float32', 'image')
                label = InputSpec([None, 1], 'int64', 'label')
L
LielinJiang 已提交
2351

2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362
                model = paddle.Model(paddle.vision.models.LeNet(),
                    input, label)
                optim = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=model.parameters())
                model.prepare(
                    optim,
                    paddle.nn.CrossEntropyLoss())

                params_info = model.summary()
                print(params_info)
                # {'total_params': 61610, 'trainable_params': 61610}
L
LielinJiang 已提交
2363 2364

        """
2365 2366 2367
        assert (
            input_size is not None or self._inputs is not None
        ), "'input_size' or 'self._input' must be set"
2368 2369 2370 2371
        if input_size is not None:
            _input_size = input_size
        else:
            _input_size = self._inputs
2372
        return summary(self.network, _input_size, dtypes=dtype)
L
LielinJiang 已提交
2373

L
LiuChiachi 已提交
2374
    def _verify_spec(self, specs, shapes=None, dtypes=None, is_input=False):
2375 2376
        out_specs = []

2377 2378 2379 2380 2381 2382
        if specs is None:
            # Note(Aurelius84): If not specific specs of `Input`, using argument names of `forward` function
            # to generate `Input`. But how can we know the actual shape of each input tensor?

            if is_input:
                arg_names = extract_args(self.network.forward)[1:]
L
LiuChiachi 已提交
2383
                # While Saving inference model in dygraph, and providing inputs only in running.
2384 2385 2386 2387
                if (
                    shapes is not None
                    and dtypes is not None
                    and fluid._non_static_mode()
L
LiuChiachi 已提交
2388
                ):
2389
                    out_specs = [
2390
                        Input(name=n, dtype=dtypes[i], shape=shapes[i])
2391 2392 2393 2394 2395 2396 2397
                        for i, n in enumerate(arg_names)
                    ]
                else:
                    out_specs = [Input(name=n, shape=[None]) for n in arg_names]
            else:
                out_specs = to_list(specs)
        elif isinstance(specs, dict):
2398 2399
            assert is_input is False
            out_specs = [
2400 2401
                specs[n]
                for n in extract_args(self.network.forward)
2402 2403
                if n != 'self'
            ]
2404 2405 2406 2407 2408 2409 2410 2411
        else:
            out_specs = to_list(specs)
        # Note: checks each element has specificed `name`.
        if out_specs is not None:
            for i, spec in enumerate(out_specs):
                assert isinstance(spec, Input)
                if spec.name is None:
                    raise ValueError(
2412 2413 2414 2415
                        "Requires Input[{}].name != None, but receive `None` with {}.".format(
                            i, spec
                        )
                    )
2416 2417 2418

        return out_specs

2419 2420 2421 2422 2423
    def _reset_metrics(self):
        for metric in self._metrics:
            metric.reset()

    def _metrics_name(self):
2424
        metrics_name = ['loss'] if self._loss else []
2425 2426 2427 2428 2429 2430 2431 2432 2433 2434
        for m in self._metrics:
            metrics_name.extend(to_list(m.name()))
        return metrics_name

    def _len_data_loader(self, data_loader):
        try:
            steps = len(data_loader)
        except Exception:
            steps = None
        return steps
L
LiuChiachi 已提交
2435 2436 2437

    def _update_inputs(self):
        "Update self._inputs according to given inputs."
L
LiuChiachi 已提交
2438 2439
        self._input_info = self._adapter._input_info
        if self._input_info is not None and len(self._input_info) == 2:
2440 2441 2442
            self._inputs = self._verify_spec(
                None, self._input_info[0], self._input_info[1], True
            )
L
LiuChiachi 已提交
2443
            self._is_shape_inferred = True