model.py 91.1 KB
Newer Older
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import inspect
import os
import pickle
import numpy as np
import six
import warnings
25 26 27
import time
import socket
import contextlib
28

29
import paddle
30
from paddle import fluid
31
from paddle.fluid import core
32
from paddle.fluid.framework import _non_static_mode, in_dygraph_mode
33 34
from paddle.fluid.framework import Variable
from paddle.fluid.framework import _get_paddle_place
35
from paddle.fluid.framework import _current_expected_place as _get_device
36 37 38 39
from paddle.fluid.executor import global_scope
from paddle.fluid.io import is_belong_to_optimizer
from paddle.fluid.dygraph.base import to_variable
from paddle.fluid.dygraph.parallel import ParallelEnv
40 41
from paddle.fluid.dygraph.io import INFER_MODEL_SUFFIX
from paddle.fluid.dygraph.io import INFER_PARAMS_SUFFIX
42
from paddle.fluid.layers.utils import flatten
43
from paddle.fluid.layers import collective
44

45 46 47
from paddle.io import DataLoader
from paddle.io import Dataset
from paddle.io import DistributedBatchSampler
48
from paddle.metric import Metric
49
from paddle.static import InputSpec as Input
J
Jiaqi Liu 已提交
50
from paddle.distributed.fleet.base import role_maker
51
from paddle.autograd import no_grad
Z
zhaoyingli 已提交
52 53
from paddle.distributed import fleet
from paddle.distributed.parallel import init_parallel_env
54

L
LiuChiachi 已提交
55
from .callbacks import config_callbacks, EarlyStopping
L
LielinJiang 已提交
56
from .model_summary import summary
57

58
__all__ = []
59 60 61 62 63 64 65 66 67 68 69 70 71

_parallel_context_initialized = False


def to_list(value):
    if value is None:
        return value
    if isinstance(value, (list, tuple)):
        return list(value)
    return [value]


def to_numpy(var):
H
hong 已提交
72 73 74
    assert isinstance(var, (Variable, fluid.core.VarBase,
                            fluid.core.eager.Tensor)), "not a variable"
    if isinstance(var, (fluid.core.VarBase, fluid.core.eager.Tensor)):
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
        return var.numpy()
    t = global_scope().find_var(var.name).get_tensor()
    return np.array(t)


def flatten_list(l):
    assert isinstance(l, list), "not a list"
    outl = []
    splits = []
    for sl in l:
        assert isinstance(sl, list), "sub content not a list"
        splits.append(len(sl))
        outl += sl
    return outl, splits


def restore_flatten_list(l, splits):
    outl = []
    for split in splits:
        assert len(l) >= split, "list length invalid"
        sl, l = l[:split], l[split:]
        outl.append(sl)
    return outl


def extract_args(func):
    if hasattr(inspect, 'getfullargspec'):
        return inspect.getfullargspec(func)[0]
    else:
        return inspect.getargspec(func)[0]


def _all_gather(x, nranks, ring_id=0, use_calc_stream=True):
108 109 110 111
    return collective._c_allgather(x,
                                   nranks,
                                   ring_id=ring_id,
                                   use_calc_stream=use_calc_stream)
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139


def wait_server_ready(endpoints):
    assert not isinstance(endpoints, six.string_types)
    while True:
        all_ok = True
        not_ready_endpoints = []
        for ep in endpoints:
            ip_port = ep.split(":")
            with contextlib.closing(
                    socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as sock:
                sock.settimeout(2)
                result = sock.connect_ex((ip_port[0], int(ip_port[1])))
                if result != 0:
                    all_ok = False
                    not_ready_endpoints.append(ep)
        if not all_ok:
            time.sleep(3)
        else:
            break


def init_communicator(program, rank, nranks, wait_port, current_endpoint,
                      endpoints):
    if nranks < 2:
        return
    other_endpoints = endpoints[:]
    other_endpoints.remove(current_endpoint)
140
    block = program.global_block()
141 142
    if rank == 0 and wait_port:
        wait_server_ready(other_endpoints)
143 144 145 146 147 148
    if core.is_compiled_with_cuda():
        nccl_id_var = block.create_var(
            name=fluid.unique_name.generate('nccl_id'),
            persistable=True,
            type=fluid.core.VarDesc.VarType.RAW)

149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
        block.append_op(type='c_gen_nccl_id',
                        inputs={},
                        outputs={'Out': nccl_id_var},
                        attrs={
                            'rank': rank,
                            'endpoint': current_endpoint,
                            'other_endpoints': other_endpoints
                        })

        block.append_op(type='c_comm_init',
                        inputs={'X': nccl_id_var},
                        outputs={},
                        attrs={
                            'nranks': nranks,
                            'rank': rank,
                            'ring_id': 0,
                        })
166 167
    elif core.is_compiled_with_npu():
        hccl_id_var = block.create_var(
Z
zhangchunle 已提交
168
            name=fluid.unique_name.generate('hccl_id'),
169 170
            persistable=True,
            type=core.VarDesc.VarType.RAW)
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
        block.append_op(type='c_gen_hccl_id',
                        inputs={},
                        outputs={'Out': hccl_id_var},
                        attrs={
                            'rank': rank,
                            'endpoint': current_endpoint,
                            'other_endpoints': other_endpoints
                        })
        block.append_op(type='c_comm_init_hccl',
                        inputs={'X': hccl_id_var},
                        outputs={},
                        attrs={
                            'rank': rank,
                            'ring_id': 0,
                            'device_id': int(os.getenv("FLAGS_selected_npus")),
                            'rank_ids': nranks
                        })
188 189 190 191 192 193 194


def prepare_distributed_context(place=None):
    if place is None:
        place = fluid.CUDAPlace(ParallelEnv().dev_id) if ParallelEnv().nranks > 1 \
            else fluid.CUDAPlace(0)

195
    place = _get_paddle_place(place)
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
    strategy = fluid.dygraph.parallel.ParallelStrategy()
    strategy.nranks = ParallelEnv().nranks
    strategy.local_rank = ParallelEnv().local_rank
    strategy.trainer_endpoints = ParallelEnv().trainer_endpoints
    strategy.current_endpoint = ParallelEnv().current_endpoint

    if strategy.nranks < 2:
        return

    global _parallel_context_initialized

    if not _parallel_context_initialized and isinstance(place, fluid.CUDAPlace):

        def _init_context():
            communicator_prog = fluid.Program()
            init_communicator(communicator_prog, strategy.local_rank,
                              strategy.nranks, True, strategy.current_endpoint,
                              strategy.trainer_endpoints)
            exe = fluid.Executor(place)
            exe.run(communicator_prog)

J
Jiabin Yang 已提交
217
        if fluid._non_static_mode():
218 219 220 221 222 223 224 225 226
            fluid.disable_dygraph()
            _init_context()
            fluid.enable_dygraph(place)

    else:
        assert ("Only support CUDAPlace for now.")

    _parallel_context_initialized = True
    return strategy
227 228


L
LiuChiachi 已提交
229
def _update_input_info(inputs):
L
LiuChiachi 已提交
230
    "Get input shape list by given inputs in Model initialization."
231
    shapes = None
L
LiuChiachi 已提交
232
    dtypes = None
L
LiuChiachi 已提交
233 234
    if isinstance(inputs, Input):
        shapes = [list(inputs.shape)]
L
LiuChiachi 已提交
235
        dtypes = [inputs.dtype]
236
    elif isinstance(inputs, (list, tuple)):
237
        shapes = [list(input.shape) for input in inputs]
L
LiuChiachi 已提交
238
        dtypes = [input.dtype for input in inputs]
239 240
    elif isinstance(inputs, dict):
        shapes = [list(inputs[name].shape) for name in inputs]
L
LiuChiachi 已提交
241 242 243 244
        dtypes = [inputs[name].dtype for name in inputs]
    else:
        return None
    return shapes, dtypes
245 246


247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
class StaticGraphAdapter(object):
    """
    Model traning/inference with a static graph.
    """

    def __init__(self, model):
        super(StaticGraphAdapter, self).__init__()
        self.model = model
        # with `_build_once` gone, parameters are now created in `__init__`
        # so we need to keep track of the parameters already created
        self._startup_prog = fluid.default_startup_program()
        self._orig_prog = fluid.default_main_program()

        self._label_vars = {}  # label variables
        self._input_vars = {}  # label variables
        self._endpoints = {}
        self._loss_endpoint = None
        self._executor = None
        self._progs = {}
        self._compiled_progs = {}

        self._merge_count = {
            'eval_total': 0,
            'test_total': 0,
            'eval_batch': 0,
            'test_batch': 0
        }

        self._nranks = ParallelEnv().nranks
        self._local_rank = ParallelEnv().local_rank

J
Jiaqi Liu 已提交
278 279 280
        self._amp_level = "O0"
        self._amp_configs = {}
        self._amp_custom_lists = {}
L
Leo Chen 已提交
281
        self._use_fp16_guard = None
J
Jiaqi Liu 已提交
282

283 284 285 286 287 288 289 290
    @property
    def mode(self):
        return self.model.mode

    @mode.setter
    def mode(self, value):
        self.model.mode = value

L
lyuwenyu 已提交
291
    def train_batch(self, inputs, labels=None, update=True):
292 293 294
        assert self.model._optimizer, \
            "model not ready, please call `model.prepare()` first"
        self.mode = 'train'
L
update  
lyuwenyu 已提交
295
        assert update is True, "Does not support `update == False` in static mode by now."
296 297 298 299 300 301
        return self._run(inputs, labels)

    def eval_batch(self, inputs, labels=None):
        self.mode = 'eval'
        return self._run(inputs, labels)

302
    def predict_batch(self, inputs):
303 304 305 306
        self.mode = 'test'
        return self._run(inputs, None)

    def parameters(self, *args, **kwargs):
307
        return self.model.network.parameters(*args, **kwargs)
308 309

    def save(self, path):
310

311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
        def _save(state, path):
            if not state:
                return
            state = {
                k: to_numpy(v) if isinstance(v, Variable) else v
                for k, v in state.items()
            }
            with open(path, 'wb') as f:
                pickle.dump(state, f)

        base = os.path.basename(path)
        assert base != "", "path should be of 'dirname/filename' format"
        dir_name = os.path.dirname(path)
        if dir_name and not os.path.exists(dir_name):
            os.makedirs(dir_name)
        param_path = path + ".pdparams"
327
        _save(self.model.network.state_dict(), param_path)
328 329 330 331 332 333 334 335 336 337 338 339 340 341
        prog = self._progs.get('train', None)
        if prog is None or self.model._optimizer is None:
            return
        # XXX `optimizer.state_dict()` only work in dygraph mode
        optim_path = path + ".pdopt"
        optim = {
            p.name: p
            for p in filter(is_belong_to_optimizer, prog.list_vars())
        }
        if not optim:
            return

        _save(optim, optim_path)

L
Leo Chen 已提交
342
    # TODO: support save/load scaler state in static graph
343 344 345 346 347 348 349 350
    def load(self, param_state_pairs, optim_state):
        if self._executor is None:
            executor = fluid.Executor(fluid.CPUPlace())._default_executor
        else:
            executor = self._executor._default_executor

        # restore parameter states
        fluid.core._create_loaded_parameter(
351 352
            [param for param, state in param_state_pairs], global_scope(),
            executor)
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
        for param, state in param_state_pairs:
            self._set_var(param, state)

        # restore optimizer states
        # FIXME what if a different optimizer is used?
        if not self.model._optimizer or not optim_state:
            return
        self._load_optimizer(optim_state, executor)

    def _load_optimizer(self, state, executor):
        prog = self._progs.get('train', None)
        optim = list(filter(is_belong_to_optimizer, prog.list_vars()))
        if not optim:
            return

        fluid.core._create_loaded_parameter(optim, global_scope(), executor)

        converted_state = dict(state)
        for var in optim:
            if var.name in ["@LR_DECAY_COUNTER@", "global_step"]:
                # When using learning rate scheduler, dygraph would name the
                # global step var as "global_step" to save, while static-graph
                # would has a state var named as "@LR_DECAY_COUNTER@".
                # NOTE: dygraph saved global_step is 1 larger than that in
                # static-graph, since the time of global_step to increase is
                # different.
                state_val = (
                    np.array(converted_state.pop("global_step")) - 1
                ) if "global_step" in converted_state else converted_state.pop(
                    "@LR_DECAY_COUNTER@", None)
                if state_val is not None:
                    converted_state[var.name] = state_val
            elif var.name.startswith("learning_rate_"):
                # When using static learning rate, static-graph would make it
                # a persistable var named 'unique_name.generate("learning_rate")',
                # However, dygraph wouldn't save it.
                if var.name not in state:
                    continue
            else:
                # moment and other accumulators
                if var.name not in converted_state:
                    # try to convert from dygraph name
                    opt_name = self.model._optimizer._name
                    opt_cls_name = self.model._optimizer.__class__.__name__
                    opt_unq_name = None
                    for name in self.model._optimizer._accumulators.keys():
399 400
                        accum_name = name if opt_name is None else name[
                            len(opt_name) + 1:]
401 402 403 404 405
                        for param_name, state_var in self.model._optimizer._accumulators[
                                name].items():
                            if opt_unq_name is None:
                                # can not infer out the exact unique(opt_name),
                                # thus try to extract rather than generate
406 407 408
                                for state_key in sorted(state.keys(),
                                                        key=lambda x: len(x),
                                                        reverse=True):
409 410 411 412 413 414
                                    prefix = param_name + "_" + (
                                        opt_cls_name
                                        if opt_name is None else opt_name) + "_"
                                    if state_key.startswith(prefix):
                                        prefix_offset = state_key[len(
                                            prefix):].find("_") + len(prefix)
415 416
                                        opt_unq_name = state_key[
                                            len(param_name + "_"):prefix_offset]
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
                                        # TODO: assert
                                        # assert opt_unq_name is None
                                    # gen(param.name + "_" + gen(opt_name) + "_" + accum_name)
                                    # always end with "_0" since the unique optimizer._name
                            dy_state_name = (param_name + "_" + opt_unq_name +
                                             "_" + accum_name + "_0")
                            converted_state[
                                state_var.name] = converted_state.pop(
                                    dy_state_name)

            assert var.name in converted_state, \
                "variable [{}] is not in optimizer state file".format(var.name)
            self._set_var(var, converted_state[var.name])

    def _set_var(self, var, ndarray):
        t = global_scope().find_var(var.name).get_tensor()
        p = t._place()
        if p.is_cpu_place():
            place = fluid.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = fluid.CUDAPinnedPlace()
        else:
            p = fluid.core.Place()
            p.set_place(t._place())
            place = fluid.CUDAPlace(p.gpu_device_id())

        t.set(ndarray, place)

    def _run(self, inputs, labels=None):
        compiled_prog = self._compiled_progs.get(self.mode, None)
        assert compiled_prog, \
            "Model is not ready, please call `model.prepare()` first"

        inputs = to_list(inputs)
        if labels is not None:
            labels = to_list(labels)
        assert len(inputs) == len(self._input_vars[self.mode]), \
            "number of inputs" \
            + " does not match number of arguments of `forward` method"

        feed = {}
        input_names = [v.name for v in self._input_vars[self.mode]]
L
Leo Chen 已提交
459 460
        input_dtypes = [v.dtype for v in self._input_vars[self.mode]]

461 462 463 464
        for idx, n in enumerate(input_names):
            # train and test may take different arguments
            if inputs[idx] is not None:
                feed[n] = inputs[idx]
L
Leo Chen 已提交
465 466 467 468
            if self._amp_level == 'O2' and input_dtypes[
                    idx] == core.VarDesc.VarType.FP16:
                if isinstance(feed[n], core.LoDTensor):
                    feed[n] = feed[n]._as_type(core.VarDesc.VarType.FP16)
L
Leo Chen 已提交
469
                elif isinstance(feed[n], np.array):
L
Leo Chen 已提交
470 471
                    feed[n] = feed[n].astype('float16')

472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
        if labels is not None:
            for idx, v in enumerate(self._label_vars[self.mode]):
                feed[v.name] = labels[idx]

        endpoints = self._endpoints[self.mode]
        if self.mode == 'test':
            fetch_list = endpoints['output']
        else:
            metric_list, metric_splits = flatten_list(endpoints['metric'])
            fetch_list = endpoints['loss'] + metric_list
            num_loss = len(endpoints['loss'])

        # if fetch Variable is same as input Variable, do not fetch
        # from program, get it from input directly
        pruned_fetch_list = []
        pruned_fetch_idx_name_map = [""] * len(fetch_list)
        for i, fetch_var in enumerate(fetch_list):
            if fetch_var.name in feed.keys():
                pruned_fetch_idx_name_map[i] = fetch_var.name
            else:
                pruned_fetch_list.append(fetch_var)

        rets = self._executor.run(compiled_prog,
                                  feed=feed,
                                  fetch_list=pruned_fetch_list,
                                  return_numpy=False)

        # restore pruned fetch_list Variable from feeds
        for i, name in enumerate(pruned_fetch_idx_name_map):
            if len(name) > 0:
                rets.insert(i, feed[name])

        # LoDTensor cannot be fetch as numpy directly
        rets = [np.array(v) for v in rets]
        if self.mode == 'test':
            return rets[:]
508

509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
        metric_states = restore_flatten_list(rets[num_loss:], metric_splits)
        metrics = []
        for metric, state in zip(self.model._metrics, metric_states):
            # cut off padding size
            if self.mode != 'train' and self.model._test_dataloader is not None \
                    and isinstance(self.model._test_dataloader, DataLoader) \
                    and self._nranks > 1:
                total_size = len(self.model._test_dataloader.dataset)
                # TODO: fixme if have better way to get batch size
                samples = state[0].shape[0]
                current_count = self._merge_count.get(self.mode + '_total', 0)
                if current_count + samples >= total_size:
                    state = [
                        s[:int(total_size - current_count), ...] for s in state
                    ]
                    self._merge_count[self.mode + '_total'] = 0
                    self._merge_count[self.mode + '_batch'] = int(total_size -
                                                                  current_count)
                else:
                    self._merge_count[self.mode + '_total'] += samples
                    self._merge_count[self.mode + '_batch'] = samples

            metrics.append(metric.update(*state))
532 533 534 535 536

        if num_loss and len(metrics):
            return rets[:num_loss], metrics
        else:
            return rets[:num_loss] if num_loss else metrics
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567

    def prepare(self):
        modes = ['train', 'eval', 'test']
        for mode in modes:
            self._make_program(mode)
            self._compile_and_initialize(self._progs[mode], mode)

    def _make_program(self, mode):
        prog = self._progs.get(mode, None)
        if prog is not None:
            return

        prog = self._orig_prog.clone()
        # NOTE: When defining learning rate scheduling in static-graph, ops to
        # increase the global step var and calculate learning rate would be
        # prepended into _orig_prog. test program maked by `_orig_prog.clone`
        # also would include these ops. Thus must prune these ops in test
        # program, otherwise the global step would be changed in test.
        if mode != 'train':
            for op in list(prog.global_block().ops):
                prog.global_block()._remove_op(0)
        if mode == 'train' and self.model._optimizer \
                and self.model._optimizer._learning_rate_map:
            # HACK workaround learning rate map issue
            lr_var = self.model._optimizer._learning_rate_map[self._orig_prog]
            new_lr_var = prog.global_block().vars[lr_var.name]
            self.model._optimizer._learning_rate_map[prog] = new_lr_var

        losses = []
        metrics = []
        with fluid.program_guard(prog, self._startup_prog):
568 569
            inputs = self.model._inputs
            labels = self.model._labels if self.model._labels else []
570 571
            inputs = [k._create_feed_layer() for k in to_list(inputs)]
            labels = [k._create_feed_layer() for k in to_list(labels)]
572
            self._label_vars[mode] = labels
573
            outputs = to_list(self.model.network.forward(*inputs))
574

575 576
            if mode != 'test' and self.model._loss:
                losses = self.model._loss(*(outputs + labels))
577 578 579 580 581 582 583 584

            if self._nranks > 1 and mode != 'train':
                outputs = [_all_gather(o, self._nranks) for o in outputs]
                if mode != 'test':
                    labels = [_all_gather(l, self._nranks) for l in labels]

            if mode != 'test':
                for metric in self.model._metrics:
585
                    metrics.append(to_list(metric.compute(*(outputs + labels))))
586 587 588 589 590 591

            if mode == 'train' and self.model._optimizer:
                self._loss_endpoint = fluid.layers.sum(losses)
                if self._nranks > 1:
                    role = role_maker.PaddleCloudRoleMaker(is_collective=True)
                    fleet.init(role)
J
Jiaqi Liu 已提交
592 593 594 595 596 597 598
                    dist_strategy = fleet.DistributedStrategy()
                    if self._amp_level != 'O0':
                        dist_strategy.amp = True
                        dist_strategy.amp_configs = self._amp_configs.copy()
                        dist_strategy.amp_configs.update(self._amp_custom_lists)
                        dist_strategy.amp_configs[
                            'use_pure_fp16'] = self._amp_level == 'O2'
599 600
                    self.model._optimizer = fleet.distributed_optimizer(
                        self.model._optimizer, strategy=dist_strategy)
J
Jiaqi Liu 已提交
601 602
                elif self._amp_level != "O0" and core.is_compiled_with_cuda:
                    amp_lists = paddle.static.amp.AutoMixedPrecisionLists(
603 604
                        **self._amp_custom_lists
                    ) if self._amp_custom_lists else None
J
Jiaqi Liu 已提交
605 606 607 608 609 610
                    self.model._optimizer = paddle.static.amp.decorate(
                        self.model._optimizer,
                        amp_lists=amp_lists,
                        use_pure_fp16=self._amp_level == "O2",
                        use_fp16_guard=self._use_fp16_guard,
                        **self._amp_configs)
611 612 613 614 615 616 617 618 619 620 621

                self.model._optimizer.minimize(self._loss_endpoint)

        if mode != 'train':  # clone again to put it in test mode
            prog = prog.clone(for_test=True)

        self._input_vars[mode] = inputs

        self._progs[mode] = prog
        self._endpoints[mode] = {
            "output": outputs,
622
            "loss": to_list(losses),
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
            "metric": metrics
        }

    def _compile_and_initialize(self, prog, mode):
        compiled_prog = self._compiled_progs.get(mode, None)
        if compiled_prog is not None:
            return compiled_prog

        assert self.model._place is not None, \
            "device is not set, please call `model.prepare()` first"

        place = self.model._place

        # XXX *ALL WEIGHTS* should be initialized upon model construction
        # even if `forward()` may run different code path for different mode
        # therefore startup program only needs to run once
        if self._executor is None:
            self._executor = fluid.Executor(place)
            # XXX incremental initialization
            uninitialized = []
            for var_py in self._startup_prog.list_vars():
                var = fluid.global_scope().find_var(var_py.name)
                if not var_py.name.startswith('nccl_id') and var and \
                        var.get_tensor()._is_initialized():
                    continue

                uninitialized.append(var_py)
            if uninitialized:
                startup_prog = self._startup_prog._prune(uninitialized)
                self._executor.run(startup_prog)

J
Jiaqi Liu 已提交
654 655 656 657
        if self._amp_level == "O2" and mode == 'train' and core.is_compiled_with_cuda(
        ):
            self.model._optimizer.amp_init(place)

658 659 660 661 662 663 664 665 666
        if self._nranks < 2:
            compiled_prog = fluid.CompiledProgram(prog)
        else:
            compiled_prog = prog

        self._compiled_progs[mode] = compiled_prog


class DynamicGraphAdapter(object):
667

668 669 670 671 672 673 674 675 676 677 678 679
    def __init__(self, model):
        super(DynamicGraphAdapter, self).__init__()
        self.model = model
        self._nranks = ParallelEnv().nranks
        self._local_rank = ParallelEnv().local_rank
        self._merge_count = {
            'eval_total': 0,
            'test_total': 0,
            'eval_batch': 0,
            'test_batch': 0
        }

L
LiuChiachi 已提交
680
        self._input_info = None
J
Jiaqi Liu 已提交
681 682 683 684 685
        self._amp_level = "O0"
        self._amp_configs = {}
        self._amp_custom_lists = {}
        self._use_fp16_guard = True

686
        if self._nranks > 1:
Z
zhaoyingli 已提交
687
            init_parallel_env()
688 689 690 691 692
            stradegy = fluid.dygraph.parallel.ParallelStrategy()
            stradegy.nranks = ParallelEnv().nranks
            stradegy.local_rank = ParallelEnv().local_rank
            stradegy.trainer_endpoints = ParallelEnv().trainer_endpoints
            stradegy.current_endpoint = ParallelEnv().current_endpoint
693 694
            self.ddp_model = fluid.dygraph.parallel.DataParallel(
                self.model.network, stradegy)
695 696 697 698 699 700 701 702 703 704

    @property
    def mode(self):
        return self.model.mode

    @mode.setter
    def mode(self, value):
        self.model.mode = value

    # TODO multi device in dygraph mode not implemented at present time
L
lyuwenyu 已提交
705
    def train_batch(self, inputs, labels=None, update=True):
706 707
        assert self.model._optimizer, \
            "model not ready, please call `model.prepare()` first"
708
        self.model.network.train()
709 710
        self.mode = 'train'
        inputs = to_list(inputs)
L
LiuChiachi 已提交
711
        self._input_info = _update_input_info(inputs)
712 713 714
        labels = labels or []
        labels = [to_variable(l) for l in to_list(labels)]

L
Leo Chen 已提交
715 716 717 718
        # scaler should be initialized only once
        if self._amp_level != "O0" and self.model._scaler is None:
            self.model._scaler = paddle.amp.GradScaler(**self._amp_configs)

719 720 721
        with paddle.amp.auto_cast(enable=self._amp_level != 'O0',
                                  **self._amp_custom_lists,
                                  level=self._amp_level):
J
Jiaqi Liu 已提交
722
            if self._nranks > 1:
723
                outputs = self.ddp_model(*[to_variable(x) for x in inputs])
J
Jiaqi Liu 已提交
724
            else:
725
                outputs = self.model.network(*[to_variable(x) for x in inputs])
726

L
Leo Chen 已提交
727 728 729
        losses = self.model._loss(*(to_list(outputs) + labels))
        losses = to_list(losses)
        final_loss = fluid.layers.sum(losses)
730

J
Jiaqi Liu 已提交
731
        if self._amp_level != "O0":
L
Leo Chen 已提交
732
            scaled = self.model._scaler.scale(final_loss)
J
Jiaqi Liu 已提交
733
            scaled.backward()
L
lyuwenyu 已提交
734
            if update:
L
Leo Chen 已提交
735
                self.model._scaler.minimize(self.model._optimizer, scaled)
L
lyuwenyu 已提交
736
                self.model.network.clear_gradients()
J
Jiaqi Liu 已提交
737 738
        else:
            final_loss.backward()
L
lyuwenyu 已提交
739 740 741
            if update:
                self.model._optimizer.minimize(final_loss)
                self.model.network.clear_gradients()
L
update  
lyuwenyu 已提交
742

743 744
        metrics = []
        for metric in self.model._metrics:
745
            metric_outs = metric.compute(*(to_list(outputs) + labels))
Z
zhangchunle 已提交
746
            m = metric.update(*[to_numpy(m) for m in to_list(metric_outs)])
747 748 749 750 751 752
            metrics.append(m)

        return ([to_numpy(l) for l in losses], metrics) \
            if len(metrics) > 0 else [to_numpy(l) for l in losses]

    def eval_batch(self, inputs, labels=None):
753
        self.model.network.eval()
754 755
        self.mode = 'eval'
        inputs = to_list(inputs)
L
LiuChiachi 已提交
756
        self._input_info = _update_input_info(inputs)
757 758 759
        labels = labels or []
        labels = [to_variable(l) for l in to_list(labels)]

760
        outputs = self.model.network(*[to_variable(x) for x in inputs])
761 762 763 764 765 766 767 768 769

        # Transfrom data to expected device
        expected_device = paddle.device.get_device()
        for o in to_list(outputs):
            o._to(device=expected_device)

        for l in labels:
            l._to(device=expected_device)

770 771
        if self.model._loss:
            losses = self.model._loss(*(to_list(outputs) + labels))
772 773
            losses = to_list(losses)

774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798
        if self._nranks > 1:
            outputs = [_all_gather(o, self._nranks) for o in to_list(outputs)]
            labels = [_all_gather(l, self._nranks) for l in labels]
        metrics = []
        for metric in self.model._metrics:
            # cut off padding value.
            if self.model._test_dataloader is not None and self._nranks > 1 \
                    and isinstance(self.model._test_dataloader, DataLoader):
                total_size = len(self.model._test_dataloader.dataset)
                samples = outputs[0].shape[0]
                current_count = self._merge_count.get(self.mode + '_total', 0)
                if current_count + samples >= total_size:
                    outputs = [
                        o[:int(total_size - current_count)] for o in outputs
                    ]
                    labels = [
                        l[:int(total_size - current_count)] for l in labels
                    ]
                    self._merge_count[self.mode + '_total'] = 0
                    self._merge_count[self.mode + '_batch'] = int(total_size -
                                                                  current_count)
                else:
                    self._merge_count[self.mode + '_total'] += samples
                    self._merge_count[self.mode + '_batch'] = samples

799
            metric_outs = metric.compute(*(to_list(outputs) + labels))
Z
zhangchunle 已提交
800
            m = metric.update(*[to_numpy(m) for m in to_list(metric_outs)])
801 802
            metrics.append(m)

803
        if self.model._loss and len(metrics):
804
            return [to_numpy(l) for l in losses], metrics
805
        elif self.model._loss:
806 807 808
            return [to_numpy(l) for l in losses]
        else:
            return metrics
809

810
    def predict_batch(self, inputs):
811
        self.model.network.eval()
812 813
        self.mode = 'test'
        inputs = [to_variable(x) for x in to_list(inputs)]
L
LiuChiachi 已提交
814
        self._input_info = _update_input_info(inputs)
815
        outputs = self.model.network(*inputs)
816 817 818 819 820 821
        if self._nranks > 1 and isinstance(self.model._place, fluid.CUDAPlace):
            outputs = [_all_gather(o, self._nranks) for o in to_list(outputs)]

        return [to_numpy(o) for o in to_list(outputs)]

    def parameters(self, *args, **kwargs):
822
        return self.model.network.parameters(*args, **kwargs)
823 824

    def save(self, path):
825
        params = self.model.network.state_dict()
826
        fluid.save_dygraph(params, path)
L
Leo Chen 已提交
827 828 829 830 831 832 833 834 835 836
        if self.model._optimizer is not None:
            if self.model._optimizer.state_dict():
                optim = self.model._optimizer.state_dict()
                fluid.save_dygraph(optim, path)
        if hasattr(self.model, '_scaler') and self.model._scaler is not None:
            if self.model._scaler.state_dict():
                scaler = self.model._scaler.state_dict()
                paddle.save(scaler, path + '.pdscaler')

    def load(self, param_state_pairs, optim_state, scaler_state=None):
837 838 839 840
        # restore parameter states
        for param, state in param_state_pairs:
            param.set_value(state)

L
Leo Chen 已提交
841 842 843 844
        if hasattr(self.model, '_scaler') and self.model._scaler is not None:
            if scaler_state:
                self.model._scaler.load_state_dict(scaler_state)

845 846 847 848
        # resotre optimizer states
        if not self.model._optimizer or not optim_state:
            return

849 850
        # If optimizer performs set_state_dict when state vars haven't been created,
        # which would happen when set_state_dict before minimize, the state would be
851 852 853 854 855 856 857 858 859 860 861
        # stored in optimizer._accumulators_holder and loaded lazily.
        # To contrive this when loading from static-graph saved states, extend
        # state dict to include keys named accoring to dygraph naming rules.
        # TODO: if len(self.model._optimizer._accumulators) > 0
        converted_state = dict(optim_state)
        opt_unq_name = self.model._optimizer._name
        if opt_unq_name is None:
            opt_unq_name = ''

        opt_cls_name = self.model._optimizer.__class__.__name__
        opt_name = opt_unq_name[:opt_unq_name.rfind("_")]  # remove suffix idx
862
        param_names = [param.name for param in self.model.network.parameters()]
863 864 865
        for var_name, state_var in sorted(optim_state.items(),
                                          key=lambda x: len(x[0]),
                                          reverse=True):
866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894
            if var_name in ["@LR_DECAY_COUNTER@", "global_step"]:
                # NOTE: dygraph saved global_step is 1 larger than that in
                # static-graph, since the time of global_step to increase is
                # different.
                if var_name == "@LR_DECAY_COUNTER@":
                    converted_state["global_step"] = np.array(
                        converted_state.pop("@LR_DECAY_COUNTER@")) + 1
            else:
                # moment and other accumulators
                # extend state dict to include promising dygraph names
                for param_name in param_names:
                    if var_name.startswith(param_name + "_" + opt_name):
                        # when init optimizer with name
                        accum_name = var_name[len(param_name + "_" + opt_name +
                                                  "_"):]
                    elif var_name.startswith(param_name +
                                             "_") and opt_name == opt_cls_name:
                        # when init optimizer without name
                        accum_name = var_name[len(param_name + "_"):]
                    else:
                        continue
                    # remove suffix idx
                    accum_name = accum_name[:accum_name.rfind("_")]
                    # state names always end with "_0" in dygraph because of the
                    # unique optimizer._name
                    dy_state_name = (param_name + "_" + opt_unq_name + "_" +
                                     accum_name + "_0")
                    converted_state[dy_state_name] = state_var

895 896
        if not hasattr(self.model._optimizer, 'set_state_dict'):
            warnings.warn(
897
                "paddle.fluid.optimizer is deprecated in API 2.0, please use paddle.optimizer instead."
898 899 900 901
            )
            self.model._optimizer.set_dict(converted_state)
        else:
            self.model._optimizer.set_state_dict(converted_state)
902

L
Leo Chen 已提交
903 904 905 906 907 908 909 910 911 912
    def prepare(self):
        if self._amp_level == "O2" and self.model.mode == 'train' and core.is_compiled_with_cuda(
        ):
            self.model.network, self.model._optimizer = paddle.amp.decorate(
                models=self.model.network,
                optimizers=self.model._optimizer,
                level='O2')
        if self._amp_level != "O0":
            self.model._scaler = None

913

914
class Model(object):
915 916 917
    """
    An Model object is network with training and inference features.
    Dynamic graph and static graph are supported at the same time,
918
    switched by `paddle.enable_static()`. The usage is as follows.
919
    But note, the switching between dynamic and static should be before
920
    instantiating a Model. The input description, i.e, paddle.static.InputSpec,
921
    must be required for static graph.
922

L
Leo Chen 已提交
923 924
    When training on GPU, auto mixed precision (AMP O1) and pure float16 
    (AMP O2) training are both supported in static mode and dynamic mode.
925
    In static graph mode, before training with pure float16 (AMP O2),
J
Jiaqi Liu 已提交
926 927
    `multi_precision` could be set to True when creating optimizer, which can
    avoid poor accuracy or slow convergence in a way, and inputs of dtype float
928 929 930 931
    should be cast to float16 by users. `paddle.static.amp.fp16_guard` API
    should be also used to limit the range of pure float16 training, otherwise,
    'use_fp16_guard' should be set to False by users. However, limiting the
    range of is not supported during training using AMP.
J
Jiaqi Liu 已提交
932

933
    Args:
934 935
        network (paddle.nn.Layer): The network is an instance of
            paddle.nn.Layer.
936
        inputs (InputSpec|list|tuple|dict|None, optional): `inputs`, entry points of network,
937
            could be a InputSpec instance, or list/tuple of InputSpec instances,
938
            or dict ({name: InputSpec}), and it couldn't be None in static
939 940
            graph. Default: None.
        labels (InputSpec|list|tuple|None, optional): `labels`, entry points of network,
941
            could be a InputSpec instnace or list/tuple of InputSpec instances,
942
            or None. For static graph, if labels is required in loss,
943
            labels must be set. Otherwise, it could be None. Default: None.
944 945


946
    Examples:
J
Jiaqi Liu 已提交
947 948
        1. A common example

949
        .. code-block:: python
950
          :name: code-example1
951

952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973
            import paddle
            import paddle.nn as nn
            import paddle.vision.transforms as T
            from paddle.static import InputSpec

            device = paddle.set_device('cpu') # or 'gpu'

            net = nn.Sequential(
                nn.Flatten(1),
                nn.Linear(784, 200),
                nn.Tanh(),
                nn.Linear(200, 10))

            # inputs and labels are not required for dynamic graph.
            input = InputSpec([None, 784], 'float32', 'x')
            label = InputSpec([None, 1], 'int64', 'label')
            
            model = paddle.Model(net, input, label)
            optim = paddle.optimizer.SGD(learning_rate=1e-3,
                parameters=model.parameters())

            model.prepare(optim,
974 975
                        paddle.nn.CrossEntropyLoss(),
                        paddle.metric.Accuracy())
976 977 978 979 980 981 982

            transform = T.Compose([
                T.Transpose(),
                T.Normalize([127.5], [127.5])
            ])
            data = paddle.vision.datasets.MNIST(mode='train', transform=transform)
            model.fit(data, epochs=2, batch_size=32, verbose=1)
J
Jiaqi Liu 已提交
983 984 985 986 987


        2. An example using mixed precision training.

        .. code-block:: python
988
          :name: code-example2
J
Jiaqi Liu 已提交
989

990 991 992 993
            # required: gpu
            import paddle
            import paddle.nn as nn
            import paddle.vision.transforms as T
J
Jiaqi Liu 已提交
994

995 996
            def run_example_code():
                device = paddle.set_device('gpu')
J
Jiaqi Liu 已提交
997

998 999
                net = nn.Sequential(nn.Flatten(1), nn.Linear(784, 200), nn.Tanh(),
                                    nn.Linear(200, 10))
J
Jiaqi Liu 已提交
1000

1001 1002
                model = paddle.Model(net)
                optim = paddle.optimizer.SGD(learning_rate=1e-3, parameters=model.parameters())
J
Jiaqi Liu 已提交
1003

1004 1005 1006 1007 1008 1009 1010 1011 1012
                amp_configs = {
                    "level": "O1",
                    "custom_white_list": {'conv2d'},
                    "use_dynamic_loss_scaling": True
                }
                model.prepare(optim,
                    paddle.nn.CrossEntropyLoss(),
                    paddle.metric.Accuracy(),
                    amp_configs=amp_configs)
J
Jiaqi Liu 已提交
1013

1014 1015 1016 1017 1018 1019 1020
                transform = T.Compose([T.Transpose(), T.Normalize([127.5], [127.5])])
                data = paddle.vision.datasets.MNIST(mode='train', transform=transform)
                model.fit(data, epochs=2, batch_size=32, verbose=1)

            # mixed precision training is only supported on GPU now.
            if paddle.is_compiled_with_cuda():
                run_example_code()
J
Jiaqi Liu 已提交
1021

1022 1023
    """

1024
    def __init__(self, network, inputs=None, labels=None):
1025
        self.mode = 'train'
1026
        self.network = network
1027 1028
        self._inputs = None
        self._labels = None
1029
        self._loss = None
1030 1031
        self._loss_weights = None
        self._optimizer = None
L
LiuChiachi 已提交
1032
        self._input_info = None
1033
        self._is_shape_inferred = False
1034
        self._test_dataloader = None
L
LiuChiachi 已提交
1035
        self.stop_training = False
1036

J
Jiabin Yang 已提交
1037
        if not _non_static_mode():
1038
            if not isinstance(inputs, (list, tuple, dict, Input)):
1039
                raise TypeError(
1040 1041
                    "'inputs' must be list or tuple or dict, and couldn't be None."
                )
1042
        elif inputs:
L
LiuChiachi 已提交
1043
            self._input_info = _update_input_info(inputs)
L
LielinJiang 已提交
1044

1045
        self._inputs = self._verify_spec(inputs, is_input=True)
1046
        self._labels = self._verify_spec(labels)
1047

1048
        # init backend
J
Jiabin Yang 已提交
1049
        if fluid._non_static_mode():
1050 1051 1052 1053
            self._adapter = DynamicGraphAdapter(self)
        else:
            self._adapter = StaticGraphAdapter(self)

L
lyuwenyu 已提交
1054
    def train_batch(self, inputs, labels=None, update=True):
1055
        """
L
lyuwenyu 已提交
1056 1057
        Run one training step on one batch of data. And using `update` indicates
        whether optimizer update gradients computing by this batch.
1058 1059

        Args:
1060 1061 1062
            inputs (numpy.ndarray|Tensor|list): Batch of input data. It could 
                be a numpy array or paddle.Tensor, or a list of arrays or 
                tensors (in case the model has multiple inputs).
1063
            labels (numpy.ndarray|Tensor|list, optional): Batch of labels. It could be 
1064 1065
                a numpy array or paddle.Tensor, or a list of arrays or tensors 
                (in case the model has multiple labels). If has no labels, 
1066 1067 1068
                set None. Default: None.
            update (bool, optional): Whether update parameters after loss.backward() computing.
                Set it to False to accumulate gradients. Default: True.
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078

        Returns:
            A list of scalar training loss if the model has no metrics,
            or a tuple (list of scalar loss, list of metrics) if the model
            set metrics.

        Examples:

            .. code-block:: python
            
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
                import paddle
                import paddle.nn as nn
                from paddle.static import InputSpec

                device = paddle.set_device('cpu') # or 'gpu'

                net = nn.Sequential(
                    nn.Linear(784, 200),
                    nn.Tanh(),
                    nn.Linear(200, 10))

                input = InputSpec([None, 784], 'float32', 'x')
                label = InputSpec([None, 1], 'int64', 'label')
                model = paddle.Model(net, input, label)
                optim = paddle.optimizer.SGD(learning_rate=1e-3,
                    parameters=model.parameters())
                model.prepare(optim, paddle.nn.CrossEntropyLoss())
                data = paddle.rand((4, 784), dtype="float32")
                label = paddle.randint(0, 10, (4, 1), dtype="int64")
                loss = model.train_batch([data], [label])
                print(loss)
                # [array([2.192784], dtype=float32)]
1101
        """
L
lyuwenyu 已提交
1102
        loss = self._adapter.train_batch(inputs, labels, update)
J
Jiabin Yang 已提交
1103
        if fluid._non_static_mode() and self._input_info is None:
L
LiuChiachi 已提交
1104
            self._update_inputs()
1105
        return loss
1106

1107
    @no_grad()
1108 1109 1110 1111 1112
    def eval_batch(self, inputs, labels=None):
        """
        Run one evaluating step on a batch of data.

        Args:
1113 1114 1115
            inputs (numpy.ndarray|Tensor|list): Batch of input data. It could 
                be a numpy array or paddle.Tensor, or a list of arrays or 
                tensors (in case the model has multiple inputs).
1116
            labels (numpy.ndarray|Tensor|list, optional): Batch of labels. It could be 
1117 1118
                a numpy array or paddle.Tensor, or a list of arrays or tensors 
                (in case the model has multiple labels). If has no labels, 
1119
                set None. Default: None.
1120 1121 1122 1123 1124 1125 1126 1127 1128

        Returns:
            A list of scalar testing loss if the model has no metrics,
            or a tuple (list of scalar loss, list of metrics) if the model
            set metrics.

        Examples:

            .. code-block:: python
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152

                import paddle
                import paddle.nn as nn
                from paddle.static import InputSpec

                device = paddle.set_device('cpu') # or 'gpu'

                net = nn.Sequential(
                    nn.Linear(784, 200),
                    nn.Tanh(),
                    nn.Linear(200, 10))

                input = InputSpec([None, 784], 'float32', 'x')
                label = InputSpec([None, 1], 'int64', 'label')
                model = paddle.Model(net, input, label)
                optim = paddle.optimizer.SGD(learning_rate=1e-3,
                    parameters=model.parameters())
                model.prepare(optim,
                            paddle.nn.CrossEntropyLoss(), metrics=paddle.metric.Accuracy())
                data = paddle.rand((4, 784), dtype="float32")
                label = paddle.randint(0, 10, (4, 1), dtype="int64")
                loss, acc = model.eval_batch([data], [label])
                print(loss, acc)
                # [array([2.8825705], dtype=float32)] [0.0]
1153
        """
1154
        loss = self._adapter.eval_batch(inputs, labels)
J
Jiabin Yang 已提交
1155
        if fluid._non_static_mode() and self._input_info is None:
L
LiuChiachi 已提交
1156
            self._update_inputs()
1157
        return loss
1158

1159
    @no_grad()
1160
    def predict_batch(self, inputs):
1161
        """
1162
        Run one predicting step on a batch of data.
1163 1164

        Args:
1165 1166 1167
            inputs (numpy.ndarray|Tensor|list): Batch of input data. It could 
                be a numpy array or paddle.Tensor, or a list of arrays or 
                tensors (in case the model has multiple inputs).
1168 1169 1170 1171 1172 1173 1174 1175

        Returns:
            A list of numpy.ndarray of predictions, that is the outputs
            of Model forward.

        Examples:

            .. code-block:: python
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199

                import paddle
                import paddle.nn as nn
                from paddle.static import InputSpec

                device = paddle.set_device('cpu') # or 'gpu'
                
                input = InputSpec([None, 784], 'float32', 'x')
                label = InputSpec([None, 1], 'int64', 'label')

                net = nn.Sequential(
                    nn.Linear(784, 200),
                    nn.Tanh(),
                    nn.Linear(200, 10),
                    nn.Softmax())

                model = paddle.Model(net, input, label)
                model.prepare()
                data = paddle.rand((1, 784), dtype="float32")
                out = model.predict_batch([data])
                print(out)
                # [array([[0.08189095, 0.16740078, 0.06889386, 0.05085445, 0.10729759,
                #          0.02217775, 0.14518553, 0.1591538 , 0.01808308, 0.17906217]],
                #          dtype=float32)]
1200
        """
1201
        loss = self._adapter.predict_batch(inputs)
J
Jiabin Yang 已提交
1202
        if fluid._non_static_mode() and self._input_info is None:
L
LiuChiachi 已提交
1203
            self._update_inputs()
1204
        return loss
1205

1206 1207 1208 1209 1210
    def save(self, path, training=True):
        """  
        This function saves parameters, optimizer information or model and 
        paramters only for inference to path. It depends on the parameter
        `training`.
1211

1212 1213
        If `training` is set to True, the parameters saved contain all 
        the trainable Variable, will save to a file with suffix ".pdparams".
1214 1215 1216 1217
        The optimizer information contains all the variable used by optimizer.
        For Adam optimizer, contains beta1, beta2, momentum etc. All the
        information will save to a file with suffix ".pdopt". (If the optimizer
        have no variable need to save (like SGD), the fill will not generated).
1218
        This function will silently overwrite existing file at the target location.
1219

1220
        If `training` is set to False, only inference model will be saved.
1221 1222

        Args:
1223 1224 1225
            path (str): The file prefix to save model. The format
                is 'dirname/file_prefix' or 'file_prefix'. if empty str.
                A exception will be raised.
1226 1227
            training (bool, optional): Whether to save for training. If not, save
                for inference only. Default: True.
1228 1229 1230 1231 1232 1233 1234

        Returns:
            None

        Examples:

            .. code-block:: python
1235

1236
                import paddle
1237
                import paddle.nn as nn
1238
                import paddle.vision.transforms as T
1239
                from paddle.static import InputSpec
1240

1241
                class Mnist(nn.Layer):
1242
                    def __init__(self):
1243
                        super(Mnist, self).__init__()
1244
                        self.net = nn.Sequential(
L
LielinJiang 已提交
1245
                            nn.Flatten(1),
1246 1247 1248 1249
                            nn.Linear(784, 200),
                            nn.Tanh(),
                            nn.Linear(200, 10),
                            nn.Softmax())
1250

1251
                    def forward(self, x):
1252
                        return self.net(x)
1253

1254
                dynamic = True  # False
1255
                # if use static graph, do not set
1256 1257
                if not dynamic:
                    paddle.enable_static()
1258

1259 1260 1261
                input = InputSpec([None, 784], 'float32', 'x')
                label = InputSpec([None, 1], 'int64', 'label')
                model = paddle.Model(Mnist(), input, label)
1262
                optim = paddle.optimizer.SGD(learning_rate=1e-3,
1263
                    parameters=model.parameters())
1264
                model.prepare(optim, paddle.nn.CrossEntropyLoss())
1265

1266 1267 1268 1269 1270 1271
                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                data = paddle.vision.datasets.MNIST(mode='train', transform=transform)
                
1272
                model.fit(data, epochs=1, batch_size=32, verbose=0)
1273 1274
                model.save('checkpoint/test')  # save for training
                model.save('inference_model', False)  # save for inference
1275
        """
1276

1277
        if ParallelEnv().local_rank == 0:
1278 1279 1280 1281
            if not training:
                self._save_inference_model(path)
            else:
                self._adapter.save(path)
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299

    def load(self, path, skip_mismatch=False, reset_optimizer=False):
        """
        Load from files storing the model states and optimizer states. The file
        for optimizer states is not necessary if no need to restore the optimizer.

        NOTE: parameters are retrieved out from the file storing model states
        accoring to their structured names.

        For fine-tuning or transfer-learning models where some of the layers have
        changed, keep parameters needed to restore have same structured names in
        the pre-trained model and fine-tuning model.

        Args:
            path (str): The prefix of files storing the model states and
                optimizer states. The files would be `path.pdparams` and
                `path.pdopt` separately, and the latter is not necessary
                when no need to restore.
1300
            skip_mismatch (bool, optional): Whether to skip the loading of mismatch
1301 1302
                parameter or raise an error when mismatch happens (not found
                the parameter in file storing model states of or receives a
1303 1304
                mismatch shape). Default: False.
            reset_optimizer (bool, optional): If True, ignore the providing file storing
1305 1306
                optimizer states and initialize optimizer states from scratch.
                Otherwise, restore optimizer states from `path.pdopt` if
1307
                a optimizer has been set to the model. Default: False.
1308 1309 1310 1311 1312 1313 1314

        Returns:
            None

        Examples:

            .. code-block:: python
1315 1316 1317 1318

                import paddle
                import paddle.nn as nn
                from paddle.static import InputSpec
L
LielinJiang 已提交
1319

1320
                device = paddle.set_device('cpu')
L
LielinJiang 已提交
1321

1322
                input = InputSpec([None, 784], 'float32', 'x')
1323

1324 1325 1326 1327 1328
                model = paddle.Model(nn.Sequential(
                    nn.Linear(784, 200),
                    nn.Tanh(),
                    nn.Linear(200, 10),
                    nn.Softmax()), input)
L
LielinJiang 已提交
1329

1330 1331
                model.save('checkpoint/test')
                model.load('checkpoint/test')
1332 1333 1334 1335 1336 1337
        """

        def _load_state_from_path(path):
            if not os.path.exists(path):
                return
            with open(path, 'rb') as f:
T
tianshuo78520a 已提交
1338
                return pickle.load(f, encoding='latin1')
1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361

        def _check_match(key, param):
            state = param_state.get(key, None)
            if state is None:
                raise ValueError(
                    "{} is not found in the providing file.".format(key))
            if list(state.shape) != list(param.shape):
                raise ValueError(
                    "{} receives a shape {}, but the expected shape is {}.".
                    format(key, list(state.shape), list(param.shape)))
            return param, state

        def _strip_postfix(path):
            path, ext = os.path.splitext(path)
            assert ext in ['', '.pdparams', '.pdopt', '.pdmodel'], \
                    "Unknown postfix {} from weights".format(ext)
            return path

        path = _strip_postfix(path)
        param_state = _load_state_from_path(path + ".pdparams")
        assert param_state, "Failed to load parameters, please check path."

        matched_param_state = []
1362
        for key, param in self.network.state_dict().items():
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
            try:
                match_res = _check_match(key, param)
            except ValueError as err:
                if skip_mismatch:
                    warnings.warn(
                        ("Skip loading for {}. ".format(key) + str(err)))
                    # reset optimizer when mismatch happens
                    reset_optimizer = True
                else:
                    raise err
            matched_param_state.append(match_res)

        optim_state = None if reset_optimizer else _load_state_from_path(
            path + ".pdopt")
L
Leo Chen 已提交
1377 1378

        # TODO: support save/load scaler state in static graph
J
Jiabin Yang 已提交
1379
        if _non_static_mode():
L
Leo Chen 已提交
1380 1381 1382 1383 1384 1385 1386 1387 1388
            scaler_state = None
            if hasattr(self, '_scaler') and self._scaler is not None:
                if os.path.exists(path + '.pdscaler'):
                    scaler_state = paddle.load(path + '.pdscaler')

            return self._adapter.load(matched_param_state, optim_state,
                                      scaler_state)
        else:
            return self._adapter.load(matched_param_state, optim_state)
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400

    def parameters(self, *args, **kwargs):
        """
        Returns a list of parameters of the model.

        Returns:
            A list of Parameter in static graph.
            A list of ParamBase in dynamic graph.

        Examples:

            .. code-block:: python
1401 1402 1403 1404
            
                import paddle
                import paddle.nn as nn
                from paddle.static import InputSpec
1405

1406 1407 1408 1409 1410 1411
                input = InputSpec([None, 784], 'float32', 'x')
                
                model = paddle.Model(nn.Sequential(
                    nn.Linear(784, 200),
                    nn.Tanh(),
                    nn.Linear(200, 10)), input)
L
LielinJiang 已提交
1412

1413
                params = model.parameters()
1414 1415 1416
        """
        return self._adapter.parameters()

J
Jiaqi Liu 已提交
1417
    def _prepare_amp(self, amp_configs):
1418

J
Jiaqi Liu 已提交
1419 1420
        def _check_pure_fp16_configs():
            # pure float16 training has some restricts now
L
Leo Chen 已提交
1421 1422 1423 1424
            if self._adapter._amp_level == "O2" and self._optimizer._grad_clip:
                # clip by value is not supported
                assert isinstance(self._optimizer._grad_clip, (paddle.nn.ClipGradByGlobalNorm, paddle.nn.ClipGradByNorm)), \
                     "Only GradientClipByNorm and GradientClipByGlobalNorm are supported in amp training with level=O2 currently."
J
Jiaqi Liu 已提交
1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453

        self._adapter._amp_custom_lists = {}
        self._adapter._amp_configs = {}

        # check and get level of mixed precision training
        if not amp_configs:
            self._adapter._amp_level = 'O0'
            return
        elif isinstance(amp_configs, str):
            if amp_configs not in ('O0', 'O1', 'O2'):
                raise ValueError(
                    "The level of amp_configs should be 'O0', 'O1' or 'O2'.")
            self._adapter._amp_level = amp_configs
            _check_pure_fp16_configs()
            return
        else:
            if 'level' not in amp_configs:
                self._adapter._amp_level = 'O1'
            elif amp_configs['level'] not in ('O0', 'O1', 'O2'):
                raise ValueError(
                    "amp_configs['level'] should be 'O0', 'O1' or 'O2'.")
            else:
                self._adapter._amp_level = amp_configs['level']
        amp_config_key_set = set(amp_configs.keys()) - {'level'}
        if not amp_config_key_set or self._adapter._amp_level == 'O0':
            return

        if 'use_pure_fp16' in amp_configs:
            raise ValueError(
1454
                "'use_pure_fp16' is an invalid parameter, the level of mixed precision training only depends on 'O1' or 'O2'."
J
Jiaqi Liu 已提交
1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
            )

        _check_pure_fp16_configs()

        # construct amp_custom_lists
        if self._adapter._amp_level != 'O0' and amp_config_key_set:
            for param_name in [
                    'custom_white_list', 'custom_black_list',
                    'custom_black_varnames'
            ]:
                if param_name in amp_config_key_set:
                    self._adapter._amp_custom_lists[param_name] = amp_configs[
                        param_name]
                    amp_config_key_set -= {param_name}

        def _check_amp_configs(amp_config_key_set):
            accepted_param_set = {
                'init_loss_scaling',
                'incr_ratio',
                'decr_ratio',
                'incr_every_n_steps',
                'decr_every_n_nan_or_inf',
                'use_dynamic_loss_scaling',
                'use_fp16_guard',
            }
            if amp_config_key_set - accepted_param_set:
                raise ValueError(
1482 1483
                    "Except for 'level', the keys of 'amp_configs' must be accepted by mixed precision APIs, but {} could not be recognized."
                    .format(tuple(amp_config_key_set - accepted_param_set)))
J
Jiaqi Liu 已提交
1484 1485

            if 'use_fp16_guard' in amp_config_key_set:
J
Jiabin Yang 已提交
1486
                if _non_static_mode():
J
Jiaqi Liu 已提交
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
                    raise ValueError(
                        "'use_fp16_guard' is supported in static mode only.")
                self._adapter._use_fp16_guard = amp_configs['use_fp16_guard']
                amp_config_key_set.remove('use_fp16_guard')

            return amp_config_key_set

        amp_configs_set = _check_amp_configs(amp_config_key_set)
        for key in amp_configs_set:
            self._adapter._amp_configs[key] = amp_configs[key]

1498 1499 1500 1501
    def prepare(self,
                optimizer=None,
                loss=None,
                metrics=None,
J
Jiaqi Liu 已提交
1502
                amp_configs=None):
1503 1504 1505 1506
        """
        Configures the model before runing.

        Args:
1507
            optimizer (Optimizer|None, optional): Optimizer must be set in training
1508
                and should be a Optimizer instance. It can be None in eval
1509 1510
                and test mode. Default: None.
            loss (Loss|Callable|None, optional): Loss function can
1511
                be a `paddle.nn.Layer` instance or any callable function
1512
                taken the predicted values and ground truth values as input.
1513 1514 1515 1516
                It can be None when there is no loss. Default: None.
            metrics (Metric|list[Metric]|None, optional): If metrics is set, all
                metrics will be calculated and output in train/eval mode. Default: None.
            amp_configs (str|dict|None, optional): AMP configurations. If AMP or pure
J
Jiaqi Liu 已提交
1517 1518 1519
                float16 training is used, the key 'level' of 'amp_configs'
                should be set to 'O1' or 'O2' respectively. Otherwise, the
                value of 'level' defaults to 'O0', which means float32
1520 1521
                training. In addition to 'level', parameters consistent with
                mixed precision API could also be passed in. The supported
J
Jiaqi Liu 已提交
1522 1523 1524 1525
                keys are: 'init_loss_scaling', 'incr_ratio', 'decr_ratio',
                'incr_every_n_steps', 'decr_every_n_nan_or_inf',
                'use_dynamic_loss_scaling', 'custom_white_list',
                'custom_black_list', and 'custom_black_varnames'or
1526 1527 1528 1529 1530 1531
                'use_fp16_guard' is only supported in static mode. Mixed
                precision API documentations  :ref:`api_paddle_amp_auto_cast`
                and  :ref:`api_paddle_amp_GradScaler` could be referenced
                for details. For convenience, 'amp_configs' could be set to
                'O1' or 'O2' if no more parameters are needed. 'amp_configs'
                could be None in float32 training. Default: None.
1532

1533 1534 1535
        Returns:
            None
        """
1536 1537
        self._place = _get_device()
        if isinstance(self._place, fluid.CUDAPlace):
1538 1539
            global _parallel_context_initialized
            if ParallelEnv().nranks > 1 and not _parallel_context_initialized:
J
Jiabin Yang 已提交
1540
                if fluid._non_static_mode():
1541 1542 1543 1544
                    main_prog_seed = fluid.default_main_program().random_seed
                    startup_prog_seed = fluid.default_startup_program(
                    ).random_seed
                    fluid.disable_dygraph()
1545
                    paddle.disable_static(self._place)
1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
                    # enable_dygraph would create and switch to a new program,
                    # thus also copy seed to the new program
                    fluid.default_main_program().random_seed = main_prog_seed
                    fluid.default_startup_program(
                    ).random_seed = startup_prog_seed
                else:
                    prepare_distributed_context(self._place)
                _parallel_context_initialized = True

        self._optimizer = optimizer
1556 1557
        if loss is not None:
            if not isinstance(loss, paddle.nn.Layer) and not callable(loss):
1558 1559 1560
                raise TypeError(
                    "'loss' must be sub classes of `paddle.nn.Layer` or any callable function."
                )
1561
        self._loss = loss
1562 1563 1564 1565 1566 1567 1568

        metrics = metrics or []
        for metric in to_list(metrics):
            assert isinstance(metric, Metric), \
                "{} is not sub class of Metric".format(
                    metric.__class__.__name__)
        self._metrics = to_list(metrics)
J
Jiaqi Liu 已提交
1569
        self._prepare_amp(amp_configs)
1570

L
Leo Chen 已提交
1571
        self._adapter.prepare()
1572

1573
    def fit(self,
1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
            train_data=None,
            eval_data=None,
            batch_size=1,
            epochs=1,
            eval_freq=1,
            log_freq=10,
            save_dir=None,
            save_freq=1,
            verbose=2,
            drop_last=False,
            shuffle=True,
            num_workers=0,
L
update  
lyuwenyu 已提交
1586
            callbacks=None,
1587 1588
            accumulate_grad_batches=1,
            num_iters=None):
1589 1590 1591 1592 1593
        """
        Trains the model for a fixed number of epochs. If `eval_data` is set,
        evaluation will be done at the end of each epoch.

        Args:
1594
            train_data (Dataset|DataLoader, optional): An iterable data loader is used for 
1595 1596
                train. An instance of paddle paddle.io.Dataset or 
                paddle.io.Dataloader is recomended. Default: None.
1597
            eval_data (Dataset|DataLoader, optional): An iterable data loader is used for
1598 1599 1600
                evaluation at the end of epoch. If None, will not do evaluation. 
                An instance of paddle.io.Dataset or paddle.io.Dataloader 
                is recomended. Default: None.
1601 1602 1603 1604 1605
            batch_size (int, optional): The batch size of train_data and eval_data. When 
                train_data and eval_data are both the instance of Dataloader, this
                parameter will be ignored. Default: 1.
            epochs (int, optional): The number of epochs to train the model. Default: 1.
            eval_freq (int, optional): The frequency, in number of epochs, an evalutation
1606
                is performed. Default: 1.
1607
            log_freq (int, optional): The frequency, in number of steps, the training logs
1608
                are printed. Default: 10.
1609
            save_dir(str|None, optional): The directory to save checkpoint during training.
1610
                If None, will not save checkpoint. Default: None.
1611
            save_freq (int, optional): The frequency, in number of epochs, to save
1612
                checkpoint. Default: 1.
1613
            verbose (int, optional): The verbosity mode, should be 0, 1, or 2. 0 = silent,
1614
                1 = progress bar, 2 = one line per epoch. Default: 2.
1615
            drop_last (bool, optional): Whether drop the last incomplete batch of
1616 1617 1618
                train_data when dataset size is not divisible by the batch size.
                When train_data is an instance of Dataloader, this parameter
                will be ignored. Default: False.
1619
            shuffle (bool, optional): Whther to shuffle train_data. When train_data is
1620 1621
                an instance of Dataloader, this parameter will be ignored.
                Default: True.
1622
            num_workers (int, optional): The number of subprocess to load data, 0 for no
1623 1624 1625
                subprocess used and loading data in main process.
                When train_data and eval_data are both the instance of
                Dataloader, this parameter will be ignored. Default: 0.
1626 1627 1628 1629
            callbacks (Callback|None, optional): A list of `Callback` instances to apply
                during training. If None, :ref:`api_paddle_callbacks_ProgBarLogger` and
                :ref:`api_paddle_callbacks_ModelCheckpoint` are automatically inserted. Default: None.
            accumulate_grad_batches (int, optional): The number of batches to accumulate gradident 
L
lyuwenyu 已提交
1630
                during training process before optimizer updates. It can mimic large batch
L
lyuwenyu 已提交
1631
                size. Default: 1.
1632 1633 1634 1635
            num_iters (int|None, optional): The number of iterations to evaluate the model.
                If None, evaluate on whole input dataset, otherwise, evaluate `num_iters` times.
                Default: None.

1636 1637 1638 1639
        Returns:
            None

        Examples:
1640
            1. An example use Dataset and set batch size, shuffle in fit.
1641 1642 1643
               How to make a batch is done internally.

            .. code-block:: python
1644
              :name: code-example1
1645

1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
                import paddle
                import paddle.vision.transforms as T
                from paddle.vision.datasets import MNIST
                from paddle.static import InputSpec

                dynamic = True
                if not dynamic:
                    paddle.enable_static()

                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                train_dataset = MNIST(mode='train', transform=transform)
                val_dataset = MNIST(mode='test', transform=transform)

                input = InputSpec([None, 1, 28, 28], 'float32', 'image')
                label = InputSpec([None, 1], 'int64', 'label')

                model = paddle.Model(
                    paddle.vision.models.LeNet(),
                    input, label)
                optim = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=model.parameters())
                model.prepare(
                    optim,
                    paddle.nn.CrossEntropyLoss(),
                    paddle.metric.Accuracy(topk=(1, 2)))
                model.fit(train_dataset,
                            val_dataset,
                            epochs=2,
                            batch_size=64,
                            save_dir='mnist_checkpoint')
1679 1680 1681 1682 1683

            2. An example use DataLoader, batch size and shuffle is set in
               DataLoader.

            .. code-block:: python
1684
              :name: code-example2
1685 1686 1687 1688 1689

                import paddle
                import paddle.vision.transforms as T
                from paddle.vision.datasets import MNIST
                from paddle.static import InputSpec
1690

1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
                dynamic = True
                if not dynamic:
                    paddle.enable_static()
                
                transform = T.Compose([
                        T.Transpose(),
                        T.Normalize([127.5], [127.5])
                    ])
                train_dataset = MNIST(mode='train', transform=transform)
                train_loader = paddle.io.DataLoader(train_dataset,
                    batch_size=64)
                val_dataset = MNIST(mode='test', transform=transform)
                val_loader = paddle.io.DataLoader(val_dataset,
                    batch_size=64)

                input = InputSpec([None, 1, 28, 28], 'float32', 'image')
                label = InputSpec([None, 1], 'int64', 'label')
1708

1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
                model = paddle.Model(
                    paddle.vision.models.LeNet(), input, label)
                optim = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=model.parameters())
                model.prepare(
                    optim,
                    paddle.nn.CrossEntropyLoss(),
                    paddle.metric.Accuracy(topk=(1, 2)))
                model.fit(train_loader,
                            val_loader,
                            epochs=2,
                            save_dir='mnist_checkpoint')
1721 1722 1723 1724 1725
        """
        assert train_data is not None, \
                "train_data must be given!"

        if isinstance(train_data, Dataset):
1726 1727 1728 1729 1730 1731 1732 1733 1734
            train_sampler = DistributedBatchSampler(train_data,
                                                    batch_size=batch_size,
                                                    shuffle=shuffle,
                                                    drop_last=drop_last)
            train_loader = DataLoader(train_data,
                                      batch_sampler=train_sampler,
                                      places=self._place,
                                      num_workers=num_workers,
                                      return_list=True)
1735 1736 1737 1738
        else:
            train_loader = train_data

        if eval_data is not None and isinstance(eval_data, Dataset):
1739 1740 1741 1742 1743 1744 1745
            eval_sampler = DistributedBatchSampler(eval_data,
                                                   batch_size=batch_size)
            eval_loader = DataLoader(eval_data,
                                     batch_sampler=eval_sampler,
                                     places=self._place,
                                     num_workers=num_workers,
                                     return_list=True)
1746 1747 1748 1749 1750 1751 1752
        elif eval_data is not None:
            eval_loader = eval_data
        else:
            eval_loader = None

        do_eval = eval_loader is not None
        self._test_dataloader = eval_loader
L
update  
lyuwenyu 已提交
1753

L
lyuwenyu 已提交
1754
        self._accumulate = accumulate_grad_batches
L
update  
lyuwenyu 已提交
1755

1756
        steps = self._len_data_loader(train_loader)
1757
        self.num_iters = num_iters
1758 1759
        if num_iters is not None and isinstance(num_iters, int) and isinstance(
                steps, int):
1760 1761 1762
            assert num_iters > 0, "num_iters must be greater than 0!"
            epochs = (num_iters // steps) + 1
            steps = min(num_iters, steps)
1763 1764 1765 1766 1767 1768 1769 1770 1771
        cbks = config_callbacks(
            callbacks,
            model=self,
            epochs=epochs,
            steps=steps,
            log_freq=log_freq,
            save_freq=save_freq,
            save_dir=save_dir,
            verbose=verbose,
1772 1773
            metrics=self._metrics_name(),
        )
1774

L
LiuChiachi 已提交
1775 1776 1777
        if any(isinstance(k, EarlyStopping) for k in cbks) and not do_eval:
            warnings.warn("EarlyStopping needs validation data.")

1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
        cbks.on_begin('train')
        for epoch in range(epochs):
            cbks.on_epoch_begin(epoch)
            logs = self._run_one_epoch(train_loader, cbks, 'train')
            cbks.on_epoch_end(epoch, logs)

            if do_eval and epoch % eval_freq == 0:

                eval_steps = self._len_data_loader(eval_loader)
                cbks.on_begin('eval', {
                    'steps': eval_steps,
                    'metrics': self._metrics_name()
                })

                eval_logs = self._run_one_epoch(eval_loader, cbks, 'eval')

                cbks.on_end('eval', eval_logs)
1795 1796
            if self.stop_training:
                break
1797 1798 1799

        cbks.on_end('train', logs)
        self._test_dataloader = None
L
update  
lyuwenyu 已提交
1800

1801 1802 1803 1804 1805 1806 1807 1808
    def evaluate(self,
                 eval_data,
                 batch_size=1,
                 log_freq=10,
                 verbose=2,
                 num_workers=0,
                 callbacks=None,
                 num_iters=None):
1809 1810 1811 1812 1813 1814 1815
        """
        Evaluate the loss and metrics of the model on input dataset.

        Args:
            eval_data (Dataset|DataLoader): An iterable data loader is used for
                evaluation. An instance of paddle.io.Dataset or 
                paddle.io.Dataloader is recomended.
1816 1817 1818 1819
            batch_size (int, optional): The batch size of train_data and eval_data.
                When eval_data is the instance of Dataloader, this argument will be
                ignored. Default: 1.
            log_freq (int, optional): The frequency, in number of steps, the eval logs
1820
                are printed. Default: 10.
1821
            verbose (int, optional): The verbosity mode, should be 0, 1, or 2. 0 = silent,
1822
                1 = progress bar, 2 = one line per epoch. Default: 2.
1823
            num_workers (int, optional): The number of subprocess to load data,
1824 1825 1826
                0 for no subprocess used and loading data in main process. When
                train_data and eval_data are both the instance of Dataloader,
                this parameter will be ignored. Default: 0.
1827
            callbacks (Callback|None, optional): A list of `Callback` instances to apply
1828 1829
                during training. If None, `ProgBarLogger` and `ModelCheckpoint`
                are automatically inserted. Default: None.
1830 1831 1832
            num_iters (int|None, optional): The number of iterations to evaluate the model.
                If None, evaluate on whole input dataset, otherwise, evaluate `num_iters` times.
                Default: None.
1833 1834 1835 1836 1837
        Returns:
            dict: Result of metric. The key is the names of Metric,
                value is a scalar or numpy.array.

        Examples:
1838 1839

          .. code-block:: python
1840

1841 1842 1843
                import paddle
                import paddle.vision.transforms as T
                from paddle.static import InputSpec
1844

1845 1846 1847 1848 1849 1850
                # declarative mode
                transform = T.Compose([
                        T.Transpose(),
                        T.Normalize([127.5], [127.5])
                    ])
                val_dataset = paddle.vision.datasets.MNIST(mode='test', transform=transform)
1851

1852 1853 1854 1855 1856 1857 1858
                input = InputSpec([-1, 1, 28, 28], 'float32', 'image')
                label = InputSpec([None, 1], 'int64', 'label')
                model = paddle.Model(paddle.vision.models.LeNet(), input, label)
                model.prepare(metrics=paddle.metric.Accuracy())
                result = model.evaluate(val_dataset, batch_size=64)
                print(result)
                # {'acc': 0.0699}
1859 1860 1861
        """

        if eval_data is not None and isinstance(eval_data, Dataset):
1862 1863 1864 1865 1866 1867 1868
            eval_sampler = DistributedBatchSampler(eval_data,
                                                   batch_size=batch_size)
            eval_loader = DataLoader(eval_data,
                                     batch_sampler=eval_sampler,
                                     places=self._place,
                                     num_workers=num_workers,
                                     return_list=True)
1869 1870 1871 1872 1873 1874 1875 1876 1877 1878
        else:
            eval_loader = eval_data

        self._test_dataloader = eval_loader

        cbks = config_callbacks(
            callbacks,
            model=self,
            log_freq=log_freq,
            verbose=verbose,
1879 1880
            metrics=self._metrics_name(),
        )
1881 1882

        eval_steps = self._len_data_loader(eval_loader)
1883
        self.num_iters = num_iters
1884 1885
        if num_iters is not None and isinstance(num_iters, int) and isinstance(
                eval_steps, int):
1886 1887 1888
            assert num_iters > 0, "num_iters must be greater than 0!"
            eval_steps = min(num_iters, eval_steps)
            self.num_iters = eval_steps
1889 1890 1891 1892
        cbks.on_begin('eval', {
            'steps': eval_steps,
            'metrics': self._metrics_name()
        })
1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910

        logs = self._run_one_epoch(eval_loader, cbks, 'eval')

        cbks.on_end('eval', logs)

        self._test_dataloader = None

        eval_result = {}
        for k in self._metrics_name():
            eval_result[k] = logs[k]

        return eval_result

    def predict(self,
                test_data,
                batch_size=1,
                num_workers=0,
                stack_outputs=False,
1911
                verbose=1,
1912 1913 1914 1915 1916 1917 1918 1919
                callbacks=None):
        """
        Compute the output predictions on testing data.

        Args:
            test_data (Dataset|DataLoader): An iterable data loader is used for
                predict. An instance of paddle.io.Dataset or paddle.io.Dataloader
                is recomended.
1920 1921 1922 1923 1924 1925 1926
            batch_size (int, optional): The batch size of test_data. When test_data is the
                instance of Dataloader, this argument will be ignored. Default: 1.
            num_workers (int, optional): The number of subprocess to load data, 0 for no subprocess 
                used and loading data in main process. When test_data is the instance of Dataloader,
                this argument will be ignored. Default: 0.
            stack_outputs (bool, optional): Whether stack output field like a batch, as for an output
                field of a sample is in shape [X, Y], test_data contains N samples, predict
1927
                output field will be in shape [N, X, Y] if stack_output is True, and will
1928
                be a length N list in shape [[X, Y], [X, Y], ..., [X, Y]] if stack_outputs
1929 1930
                is False. stack_outputs as False is used for LoDTensor output situation,
                it is recommended set as True if outputs contains no LoDTensor. Default: False.
1931
            verbose (int, optional): The verbosity mode, should be 0, 1, or 2. 0 = silent,
1932
                1 = progress bar, 2 = one line per batch. Default: 1.
1933
            callbacks(Callback, optional): A Callback instance, Default: None.
1934

1935 1936 1937 1938
        Returns:
            list: output of models.

        Examples:
1939 1940

          .. code-block:: python
1941

1942 1943 1944
                import numpy as np
                import paddle
                from paddle.static import InputSpec
1945

1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
                class MnistDataset(paddle.vision.datasets.MNIST):
                    def __init__(self, mode, return_label=True):
                        super(MnistDataset, self).__init__(mode=mode)
                        self.return_label = return_label

                    def __getitem__(self, idx):
                        img = np.reshape(self.images[idx], [1, 28, 28])
                        if self.return_label:
                            return img, np.array(self.labels[idx]).astype('int64')
                        return img,

                    def __len__(self):
                        return len(self.images)

                test_dataset = MnistDataset(mode='test', return_label=False)

                # imperative mode
                input = InputSpec([-1, 1, 28, 28], 'float32', 'image')
                model = paddle.Model(paddle.vision.models.LeNet(), input)
                model.prepare()
                result = model.predict(test_dataset, batch_size=64)
                print(len(result[0]), result[0][0].shape)
                # 157 (64, 10)

                # declarative mode
                device = paddle.set_device('cpu')
                paddle.enable_static()
                input = InputSpec([-1, 1, 28, 28], 'float32', 'image')
                model = paddle.Model(paddle.vision.models.LeNet(), input)
                model.prepare()

                result = model.predict(test_dataset, batch_size=64)
                print(len(result[0]), result[0][0].shape)
                # 157 (64, 10)
1980 1981 1982
        """

        if test_data is not None and isinstance(test_data, Dataset):
1983 1984 1985 1986 1987 1988 1989
            test_sampler = DistributedBatchSampler(test_data,
                                                   batch_size=batch_size)
            test_loader = DataLoader(test_data,
                                     batch_sampler=test_sampler,
                                     places=self._place,
                                     num_workers=num_workers,
                                     return_list=True)
1990 1991 1992 1993 1994
        else:
            test_loader = test_data

        self._test_dataloader = test_loader

1995
        cbks = config_callbacks(callbacks, model=self, verbose=verbose)
1996 1997 1998 1999

        test_steps = self._len_data_loader(test_loader)
        logs = {'steps': test_steps}

2000
        cbks.on_begin('predict', logs)
2001 2002 2003

        outputs = []

2004
        logs, outputs = self._run_one_epoch(test_loader, cbks, 'predict')
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

        outputs = list(zip(*outputs))

        # NOTE: for lod tensor output, we should not stack outputs
        # for stacking may lose its detail info
        if stack_outputs:
            outputs = [np.vstack(outs) for outs in outputs]

        self._test_dataloader = None

2015
        cbks.on_end('predict', logs)
2016 2017
        return outputs

2018
    def _save_inference_model(self, path):
2019
        """
2020
        Save inference model can be used in static or dynamic mode.
2021 2022

        Args:
2023 2024
            path (str): The path prefix to save model. The format is
                ``dirname/file_prefix`` or ``file_prefix``.
2025
        Returns:
2026
            None
2027 2028
        """

J
Jiabin Yang 已提交
2029
        if fluid._non_static_mode():
2030 2031
            with fluid.framework._dygraph_guard(None):
                layer = self.network
L
LiuChiachi 已提交
2032
                if self._input_info is None:  # No provided or inferred
2033
                    raise RuntimeError(
L
LiuChiachi 已提交
2034
                        "Saving inference model needs 'inputs' or running before saving. Please specify 'inputs' in Model initialization or input training data and perform a training for shape derivation."
2035 2036 2037 2038
                    )
                if self._is_shape_inferred:
                    warnings.warn(
                        "'inputs' was not specified when Model initialization, so the input shape to be saved will be the shape derived from the user's actual inputs. The input shape to be saved is %s. For saving correct input shapes, please provide 'inputs' for Model initialization."
L
LiuChiachi 已提交
2039 2040
                        % self._input_info[0])

2041
                paddle.jit.save(layer, path, input_spec=self._inputs)
2042

2043
        else:
2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059
            # path check
            file_prefix = os.path.basename(path)
            if file_prefix == "":
                raise ValueError(
                    "The input path MUST be format of dirname/file_prefix "
                    "[dirname\\file_prefix in Windows system], but received "
                    "file_prefix is empty string.")

            dirname = os.path.dirname(path)
            if dirname and not os.path.exists(dirname):
                os.makedirs(dirname)

            model_path = dirname
            model_filename = file_prefix + INFER_MODEL_SUFFIX
            params_filename = file_prefix + INFER_PARAMS_SUFFIX

2060 2061 2062 2063 2064 2065 2066 2067 2068
            prog = self._adapter._progs.get('test', None)
            assert prog, \
                "Model is not ready, please call `model.prepare()` first"

            infer_prog = prog.clone(for_test=True)

            input_names = [v.name for v in self._adapter._input_vars['test']]
            endpoints = self._adapter._endpoints['test']['output']

2069 2070 2071 2072 2073 2074 2075
            fluid.io.save_inference_model(model_path,
                                          input_names,
                                          endpoints,
                                          self._adapter._executor,
                                          main_program=infer_prog,
                                          model_filename=model_filename,
                                          params_filename=params_filename)
2076

L
update  
lyuwenyu 已提交
2077
    def _run_one_epoch(
2078 2079 2080 2081 2082 2083
        self,
        data_loader,
        callbacks,
        mode,
        logs={},
    ):
2084 2085 2086 2087 2088 2089 2090 2091 2092 2093
        outputs = []
        for step, data in enumerate(data_loader):
            # data might come from different types of data_loader and have
            # different format, as following:
            # 1. DataLoader in static graph:
            #    [[input1, input2, ..., label1, lable2, ...]]
            # 2. DataLoader in dygraph
            #    [input1, input2, ..., label1, lable2, ...]
            # 3. custumed iterator yield concated inputs and labels:
            #   [input1, input2, ..., label1, lable2, ...]
2094
            # 4. custumed iterator yield separated inputs and labels:
2095 2096 2097 2098 2099
            #   ([input1, input2, ...], [label1, lable2, ...])
            # To handle all of these, flatten (nested) list to list.
            data = flatten(data)
            # LoDTensor.shape is callable, where LoDTensor comes from
            # DataLoader in static graph
2100

2101 2102
            batch_size = data[0].shape()[0] if callable(
                data[0].shape) else data[0].shape[0]
2103 2104 2105

            callbacks.on_batch_begin(mode, step, logs)

2106
            if mode != 'predict':
L
lyuwenyu 已提交
2107 2108
                _inputs = [data[:len(self._inputs)], data[len(self._inputs):]]
                if mode == 'train':
2109 2110
                    _inputs.append((step + 1) % self._accumulate == 0
                                   or step + 1 == len(data_loader))
L
update  
lyuwenyu 已提交
2111

L
lyuwenyu 已提交
2112
                outs = getattr(self, mode + '_batch')(*_inputs)
L
update  
lyuwenyu 已提交
2113

2114
                if self._metrics and self._loss:
2115
                    metrics = [[l[0] for l in outs[0]]]
2116
                elif self._loss:
2117 2118 2119
                    metrics = [[l[0] for l in outs]]
                else:
                    metrics = []
2120 2121 2122 2123 2124 2125 2126 2127 2128 2129

                # metrics
                for metric in self._metrics:
                    res = metric.accumulate()
                    metrics.extend(to_list(res))

                assert len(self._metrics_name()) == len(metrics)
                for k, v in zip(self._metrics_name(), metrics):
                    logs[k] = v
            else:
L
LielinJiang 已提交
2130
                if self._inputs is not None:
2131
                    outs = self.predict_batch(data[:len(self._inputs)])
L
LielinJiang 已提交
2132
                else:
2133
                    outs = self.predict_batch(data)
L
LielinJiang 已提交
2134

2135 2136 2137 2138 2139 2140 2141 2142 2143 2144
                outputs.append(outs)

            logs['step'] = step
            if mode == 'train' or self._adapter._merge_count.get(
                    mode + '_batch', 0) <= 0:
                logs['batch_size'] = batch_size * ParallelEnv().nranks
            else:
                logs['batch_size'] = self._adapter._merge_count[mode + '_batch']

            callbacks.on_batch_end(mode, step, logs)
2145 2146
            if hasattr(self, 'num_iters') and self.num_iters is not None:
                self.num_iters -= 1
2147 2148 2149
                if self.num_iters <= 0:
                    self.stop_training = True
                    del self.num_iters
2150
                    break
2151 2152
        self._reset_metrics()

2153
        if mode == 'predict':
2154 2155 2156
            return logs, outputs
        return logs

L
LielinJiang 已提交
2157
    def summary(self, input_size=None, dtype=None):
L
LielinJiang 已提交
2158 2159 2160 2161 2162 2163 2164 2165
        """Prints a string summary of the network.

        Args:
            input_size (tuple|InputSpec|list[tuple|InputSpec], optional): size of input tensor. 
                    if not set, input_size will get from ``self._inputs`` if network only have 
                    one input, input_size can be tuple or InputSpec. if model have multiple 
                    input, input_size must be a list which contain every input's shape. 
                    Default: None.
2166
            dtype (str, optional): if dtype is None, 'float32' will be used, Default: None.
L
LielinJiang 已提交
2167 2168 2169 2170 2171 2172

        Returns:
            Dict: a summary of the network including total params and total trainable params.

        Examples:
            .. code-block:: python
2173 2174 2175 2176 2177 2178

                import paddle
                from paddle.static import InputSpec

                input = InputSpec([None, 1, 28, 28], 'float32', 'image')
                label = InputSpec([None, 1], 'int64', 'label')
L
LielinJiang 已提交
2179

2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190
                model = paddle.Model(paddle.vision.models.LeNet(),
                    input, label)
                optim = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=model.parameters())
                model.prepare(
                    optim,
                    paddle.nn.CrossEntropyLoss())

                params_info = model.summary()
                print(params_info)
                # {'total_params': 61610, 'trainable_params': 61610}
L
LielinJiang 已提交
2191 2192

        """
2193 2194
        assert (input_size is not None or self._inputs
                is not None), "'input_size' or 'self._input' must be set"
2195 2196 2197 2198
        if input_size is not None:
            _input_size = input_size
        else:
            _input_size = self._inputs
2199
        return summary(self.network, _input_size, dtypes=dtype)
L
LielinJiang 已提交
2200

L
LiuChiachi 已提交
2201
    def _verify_spec(self, specs, shapes=None, dtypes=None, is_input=False):
2202 2203
        out_specs = []

2204 2205 2206 2207 2208 2209
        if specs is None:
            # Note(Aurelius84): If not specific specs of `Input`, using argument names of `forward` function
            # to generate `Input`. But how can we know the actual shape of each input tensor?

            if is_input:
                arg_names = extract_args(self.network.forward)[1:]
L
LiuChiachi 已提交
2210
                # While Saving inference model in dygraph, and providing inputs only in running.
J
Jiabin Yang 已提交
2211
                if shapes is not None and dtypes is not None and fluid._non_static_mode(
L
LiuChiachi 已提交
2212
                ):
2213
                    out_specs = [
2214
                        Input(name=n, dtype=dtypes[i], shape=shapes[i])
2215 2216 2217 2218 2219 2220 2221
                        for i, n in enumerate(arg_names)
                    ]
                else:
                    out_specs = [Input(name=n, shape=[None]) for n in arg_names]
            else:
                out_specs = to_list(specs)
        elif isinstance(specs, dict):
2222 2223 2224 2225 2226
            assert is_input is False
            out_specs = [
                specs[n] for n in extract_args(self.network.forward)
                if n != 'self'
            ]
2227 2228 2229 2230 2231 2232 2233 2234
        else:
            out_specs = to_list(specs)
        # Note: checks each element has specificed `name`.
        if out_specs is not None:
            for i, spec in enumerate(out_specs):
                assert isinstance(spec, Input)
                if spec.name is None:
                    raise ValueError(
2235 2236
                        "Requires Input[{}].name != None, but receive `None` with {}."
                        .format(i, spec))
2237 2238 2239

        return out_specs

2240 2241 2242 2243 2244
    def _reset_metrics(self):
        for metric in self._metrics:
            metric.reset()

    def _metrics_name(self):
2245
        metrics_name = ['loss'] if self._loss else []
2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
        for m in self._metrics:
            metrics_name.extend(to_list(m.name()))
        return metrics_name

    def _len_data_loader(self, data_loader):
        try:
            steps = len(data_loader)
        except Exception:
            steps = None
        return steps
L
LiuChiachi 已提交
2256 2257 2258

    def _update_inputs(self):
        "Update self._inputs according to given inputs."
L
LiuChiachi 已提交
2259 2260 2261 2262 2263
        self._input_info = self._adapter._input_info
        if self._input_info is not None and len(self._input_info) == 2:
            self._inputs = self._verify_spec(None, self._input_info[0],
                                             self._input_info[1], True)
            self._is_shape_inferred = True