model.py 91.1 KB
Newer Older
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import inspect
import os
import pickle
import numpy as np
import six
import warnings
25 26 27
import time
import socket
import contextlib
28

29
import paddle
30
from paddle import fluid
31
from paddle.fluid import core
32
from paddle.fluid.framework import _non_static_mode, in_dygraph_mode
33 34
from paddle.fluid.framework import Variable
from paddle.fluid.framework import _get_paddle_place
35
from paddle.fluid.framework import _current_expected_place as _get_device
36 37 38 39
from paddle.fluid.executor import global_scope
from paddle.fluid.io import is_belong_to_optimizer
from paddle.fluid.dygraph.base import to_variable
from paddle.fluid.dygraph.parallel import ParallelEnv
40 41
from paddle.fluid.dygraph.io import INFER_MODEL_SUFFIX
from paddle.fluid.dygraph.io import INFER_PARAMS_SUFFIX
42
from paddle.fluid.layers.utils import flatten
43
from paddle.fluid.layers import collective
44

45 46 47
from paddle.io import DataLoader
from paddle.io import Dataset
from paddle.io import DistributedBatchSampler
48
from paddle.metric import Metric
49
from paddle.static import InputSpec as Input
50
import paddle.distributed as dist
J
Jiaqi Liu 已提交
51 52
import paddle.distributed.fleet as fleet
from paddle.distributed.fleet.base import role_maker
53
from paddle.autograd import no_grad
54

L
LiuChiachi 已提交
55
from .callbacks import config_callbacks, EarlyStopping
L
LielinJiang 已提交
56
from .model_summary import summary
57

58
__all__ = []
59 60 61 62 63 64 65 66 67 68 69 70 71

_parallel_context_initialized = False


def to_list(value):
    if value is None:
        return value
    if isinstance(value, (list, tuple)):
        return list(value)
    return [value]


def to_numpy(var):
H
hong 已提交
72 73 74
    assert isinstance(var, (Variable, fluid.core.VarBase,
                            fluid.core.eager.Tensor)), "not a variable"
    if isinstance(var, (fluid.core.VarBase, fluid.core.eager.Tensor)):
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
        return var.numpy()
    t = global_scope().find_var(var.name).get_tensor()
    return np.array(t)


def flatten_list(l):
    assert isinstance(l, list), "not a list"
    outl = []
    splits = []
    for sl in l:
        assert isinstance(sl, list), "sub content not a list"
        splits.append(len(sl))
        outl += sl
    return outl, splits


def restore_flatten_list(l, splits):
    outl = []
    for split in splits:
        assert len(l) >= split, "list length invalid"
        sl, l = l[:split], l[split:]
        outl.append(sl)
    return outl


def extract_args(func):
    if hasattr(inspect, 'getfullargspec'):
        return inspect.getfullargspec(func)[0]
    else:
        return inspect.getargspec(func)[0]


def _all_gather(x, nranks, ring_id=0, use_calc_stream=True):
108 109 110 111
    return collective._c_allgather(x,
                                   nranks,
                                   ring_id=ring_id,
                                   use_calc_stream=use_calc_stream)
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139


def wait_server_ready(endpoints):
    assert not isinstance(endpoints, six.string_types)
    while True:
        all_ok = True
        not_ready_endpoints = []
        for ep in endpoints:
            ip_port = ep.split(":")
            with contextlib.closing(
                    socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as sock:
                sock.settimeout(2)
                result = sock.connect_ex((ip_port[0], int(ip_port[1])))
                if result != 0:
                    all_ok = False
                    not_ready_endpoints.append(ep)
        if not all_ok:
            time.sleep(3)
        else:
            break


def init_communicator(program, rank, nranks, wait_port, current_endpoint,
                      endpoints):
    if nranks < 2:
        return
    other_endpoints = endpoints[:]
    other_endpoints.remove(current_endpoint)
140
    block = program.global_block()
141 142
    if rank == 0 and wait_port:
        wait_server_ready(other_endpoints)
143 144 145 146 147 148
    if core.is_compiled_with_cuda():
        nccl_id_var = block.create_var(
            name=fluid.unique_name.generate('nccl_id'),
            persistable=True,
            type=fluid.core.VarDesc.VarType.RAW)

149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
        block.append_op(type='c_gen_nccl_id',
                        inputs={},
                        outputs={'Out': nccl_id_var},
                        attrs={
                            'rank': rank,
                            'endpoint': current_endpoint,
                            'other_endpoints': other_endpoints
                        })

        block.append_op(type='c_comm_init',
                        inputs={'X': nccl_id_var},
                        outputs={},
                        attrs={
                            'nranks': nranks,
                            'rank': rank,
                            'ring_id': 0,
                        })
166 167
    elif core.is_compiled_with_npu():
        hccl_id_var = block.create_var(
Z
zhangchunle 已提交
168
            name=fluid.unique_name.generate('hccl_id'),
169 170
            persistable=True,
            type=core.VarDesc.VarType.RAW)
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
        block.append_op(type='c_gen_hccl_id',
                        inputs={},
                        outputs={'Out': hccl_id_var},
                        attrs={
                            'rank': rank,
                            'endpoint': current_endpoint,
                            'other_endpoints': other_endpoints
                        })
        block.append_op(type='c_comm_init_hccl',
                        inputs={'X': hccl_id_var},
                        outputs={},
                        attrs={
                            'rank': rank,
                            'ring_id': 0,
                            'device_id': int(os.getenv("FLAGS_selected_npus")),
                            'rank_ids': nranks
                        })
188 189 190 191 192 193 194


def prepare_distributed_context(place=None):
    if place is None:
        place = fluid.CUDAPlace(ParallelEnv().dev_id) if ParallelEnv().nranks > 1 \
            else fluid.CUDAPlace(0)

195
    place = _get_paddle_place(place)
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
    strategy = fluid.dygraph.parallel.ParallelStrategy()
    strategy.nranks = ParallelEnv().nranks
    strategy.local_rank = ParallelEnv().local_rank
    strategy.trainer_endpoints = ParallelEnv().trainer_endpoints
    strategy.current_endpoint = ParallelEnv().current_endpoint

    if strategy.nranks < 2:
        return

    global _parallel_context_initialized

    if not _parallel_context_initialized and isinstance(place, fluid.CUDAPlace):

        def _init_context():
            communicator_prog = fluid.Program()
            init_communicator(communicator_prog, strategy.local_rank,
                              strategy.nranks, True, strategy.current_endpoint,
                              strategy.trainer_endpoints)
            exe = fluid.Executor(place)
            exe.run(communicator_prog)

J
Jiabin Yang 已提交
217
        if fluid._non_static_mode():
218 219 220 221 222 223 224 225 226
            fluid.disable_dygraph()
            _init_context()
            fluid.enable_dygraph(place)

    else:
        assert ("Only support CUDAPlace for now.")

    _parallel_context_initialized = True
    return strategy
227 228


L
LiuChiachi 已提交
229
def _update_input_info(inputs):
L
LiuChiachi 已提交
230
    "Get input shape list by given inputs in Model initialization."
231
    shapes = None
L
LiuChiachi 已提交
232
    dtypes = None
L
LiuChiachi 已提交
233 234
    if isinstance(inputs, Input):
        shapes = [list(inputs.shape)]
L
LiuChiachi 已提交
235
        dtypes = [inputs.dtype]
236
    elif isinstance(inputs, (list, tuple)):
237
        shapes = [list(input.shape) for input in inputs]
L
LiuChiachi 已提交
238
        dtypes = [input.dtype for input in inputs]
239 240
    elif isinstance(inputs, dict):
        shapes = [list(inputs[name].shape) for name in inputs]
L
LiuChiachi 已提交
241 242 243 244
        dtypes = [inputs[name].dtype for name in inputs]
    else:
        return None
    return shapes, dtypes
245 246


247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
class StaticGraphAdapter(object):
    """
    Model traning/inference with a static graph.
    """

    def __init__(self, model):
        super(StaticGraphAdapter, self).__init__()
        self.model = model
        # with `_build_once` gone, parameters are now created in `__init__`
        # so we need to keep track of the parameters already created
        self._startup_prog = fluid.default_startup_program()
        self._orig_prog = fluid.default_main_program()

        self._label_vars = {}  # label variables
        self._input_vars = {}  # label variables
        self._endpoints = {}
        self._loss_endpoint = None
        self._executor = None
        self._progs = {}
        self._compiled_progs = {}

        self._merge_count = {
            'eval_total': 0,
            'test_total': 0,
            'eval_batch': 0,
            'test_batch': 0
        }

        self._nranks = ParallelEnv().nranks
        self._local_rank = ParallelEnv().local_rank

J
Jiaqi Liu 已提交
278 279 280
        self._amp_level = "O0"
        self._amp_configs = {}
        self._amp_custom_lists = {}
L
Leo Chen 已提交
281
        self._use_fp16_guard = None
J
Jiaqi Liu 已提交
282

283 284 285 286 287 288 289 290
    @property
    def mode(self):
        return self.model.mode

    @mode.setter
    def mode(self, value):
        self.model.mode = value

L
lyuwenyu 已提交
291
    def train_batch(self, inputs, labels=None, update=True):
292 293 294
        assert self.model._optimizer, \
            "model not ready, please call `model.prepare()` first"
        self.mode = 'train'
L
update  
lyuwenyu 已提交
295
        assert update is True, "Does not support `update == False` in static mode by now."
296 297 298 299 300 301
        return self._run(inputs, labels)

    def eval_batch(self, inputs, labels=None):
        self.mode = 'eval'
        return self._run(inputs, labels)

302
    def predict_batch(self, inputs):
303 304 305 306
        self.mode = 'test'
        return self._run(inputs, None)

    def parameters(self, *args, **kwargs):
307
        return self.model.network.parameters(*args, **kwargs)
308 309

    def save(self, path):
310

311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
        def _save(state, path):
            if not state:
                return
            state = {
                k: to_numpy(v) if isinstance(v, Variable) else v
                for k, v in state.items()
            }
            with open(path, 'wb') as f:
                pickle.dump(state, f)

        base = os.path.basename(path)
        assert base != "", "path should be of 'dirname/filename' format"
        dir_name = os.path.dirname(path)
        if dir_name and not os.path.exists(dir_name):
            os.makedirs(dir_name)
        param_path = path + ".pdparams"
327
        _save(self.model.network.state_dict(), param_path)
328 329 330 331 332 333 334 335 336 337 338 339 340 341
        prog = self._progs.get('train', None)
        if prog is None or self.model._optimizer is None:
            return
        # XXX `optimizer.state_dict()` only work in dygraph mode
        optim_path = path + ".pdopt"
        optim = {
            p.name: p
            for p in filter(is_belong_to_optimizer, prog.list_vars())
        }
        if not optim:
            return

        _save(optim, optim_path)

L
Leo Chen 已提交
342
    # TODO: support save/load scaler state in static graph
343 344 345 346 347 348 349 350
    def load(self, param_state_pairs, optim_state):
        if self._executor is None:
            executor = fluid.Executor(fluid.CPUPlace())._default_executor
        else:
            executor = self._executor._default_executor

        # restore parameter states
        fluid.core._create_loaded_parameter(
351 352
            [param for param, state in param_state_pairs], global_scope(),
            executor)
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
        for param, state in param_state_pairs:
            self._set_var(param, state)

        # restore optimizer states
        # FIXME what if a different optimizer is used?
        if not self.model._optimizer or not optim_state:
            return
        self._load_optimizer(optim_state, executor)

    def _load_optimizer(self, state, executor):
        prog = self._progs.get('train', None)
        optim = list(filter(is_belong_to_optimizer, prog.list_vars()))
        if not optim:
            return

        fluid.core._create_loaded_parameter(optim, global_scope(), executor)

        converted_state = dict(state)
        for var in optim:
            if var.name in ["@LR_DECAY_COUNTER@", "global_step"]:
                # When using learning rate scheduler, dygraph would name the
                # global step var as "global_step" to save, while static-graph
                # would has a state var named as "@LR_DECAY_COUNTER@".
                # NOTE: dygraph saved global_step is 1 larger than that in
                # static-graph, since the time of global_step to increase is
                # different.
                state_val = (
                    np.array(converted_state.pop("global_step")) - 1
                ) if "global_step" in converted_state else converted_state.pop(
                    "@LR_DECAY_COUNTER@", None)
                if state_val is not None:
                    converted_state[var.name] = state_val
            elif var.name.startswith("learning_rate_"):
                # When using static learning rate, static-graph would make it
                # a persistable var named 'unique_name.generate("learning_rate")',
                # However, dygraph wouldn't save it.
                if var.name not in state:
                    continue
            else:
                # moment and other accumulators
                if var.name not in converted_state:
                    # try to convert from dygraph name
                    opt_name = self.model._optimizer._name
                    opt_cls_name = self.model._optimizer.__class__.__name__
                    opt_unq_name = None
                    for name in self.model._optimizer._accumulators.keys():
399 400
                        accum_name = name if opt_name is None else name[
                            len(opt_name) + 1:]
401 402 403 404 405
                        for param_name, state_var in self.model._optimizer._accumulators[
                                name].items():
                            if opt_unq_name is None:
                                # can not infer out the exact unique(opt_name),
                                # thus try to extract rather than generate
406 407 408
                                for state_key in sorted(state.keys(),
                                                        key=lambda x: len(x),
                                                        reverse=True):
409 410 411 412 413 414
                                    prefix = param_name + "_" + (
                                        opt_cls_name
                                        if opt_name is None else opt_name) + "_"
                                    if state_key.startswith(prefix):
                                        prefix_offset = state_key[len(
                                            prefix):].find("_") + len(prefix)
415 416
                                        opt_unq_name = state_key[
                                            len(param_name + "_"):prefix_offset]
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
                                        # TODO: assert
                                        # assert opt_unq_name is None
                                    # gen(param.name + "_" + gen(opt_name) + "_" + accum_name)
                                    # always end with "_0" since the unique optimizer._name
                            dy_state_name = (param_name + "_" + opt_unq_name +
                                             "_" + accum_name + "_0")
                            converted_state[
                                state_var.name] = converted_state.pop(
                                    dy_state_name)

            assert var.name in converted_state, \
                "variable [{}] is not in optimizer state file".format(var.name)
            self._set_var(var, converted_state[var.name])

    def _set_var(self, var, ndarray):
        t = global_scope().find_var(var.name).get_tensor()
        p = t._place()
        if p.is_cpu_place():
            place = fluid.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = fluid.CUDAPinnedPlace()
        else:
            p = fluid.core.Place()
            p.set_place(t._place())
            place = fluid.CUDAPlace(p.gpu_device_id())

        t.set(ndarray, place)

    def _run(self, inputs, labels=None):
        compiled_prog = self._compiled_progs.get(self.mode, None)
        assert compiled_prog, \
            "Model is not ready, please call `model.prepare()` first"

        inputs = to_list(inputs)
        if labels is not None:
            labels = to_list(labels)
        assert len(inputs) == len(self._input_vars[self.mode]), \
            "number of inputs" \
            + " does not match number of arguments of `forward` method"

        feed = {}
        input_names = [v.name for v in self._input_vars[self.mode]]
L
Leo Chen 已提交
459 460
        input_dtypes = [v.dtype for v in self._input_vars[self.mode]]

461 462 463 464
        for idx, n in enumerate(input_names):
            # train and test may take different arguments
            if inputs[idx] is not None:
                feed[n] = inputs[idx]
L
Leo Chen 已提交
465 466 467 468
            if self._amp_level == 'O2' and input_dtypes[
                    idx] == core.VarDesc.VarType.FP16:
                if isinstance(feed[n], core.LoDTensor):
                    feed[n] = feed[n]._as_type(core.VarDesc.VarType.FP16)
L
Leo Chen 已提交
469
                elif isinstance(feed[n], np.array):
L
Leo Chen 已提交
470 471
                    feed[n] = feed[n].astype('float16')

472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
        if labels is not None:
            for idx, v in enumerate(self._label_vars[self.mode]):
                feed[v.name] = labels[idx]

        endpoints = self._endpoints[self.mode]
        if self.mode == 'test':
            fetch_list = endpoints['output']
        else:
            metric_list, metric_splits = flatten_list(endpoints['metric'])
            fetch_list = endpoints['loss'] + metric_list
            num_loss = len(endpoints['loss'])

        # if fetch Variable is same as input Variable, do not fetch
        # from program, get it from input directly
        pruned_fetch_list = []
        pruned_fetch_idx_name_map = [""] * len(fetch_list)
        for i, fetch_var in enumerate(fetch_list):
            if fetch_var.name in feed.keys():
                pruned_fetch_idx_name_map[i] = fetch_var.name
            else:
                pruned_fetch_list.append(fetch_var)

        rets = self._executor.run(compiled_prog,
                                  feed=feed,
                                  fetch_list=pruned_fetch_list,
                                  return_numpy=False)

        # restore pruned fetch_list Variable from feeds
        for i, name in enumerate(pruned_fetch_idx_name_map):
            if len(name) > 0:
                rets.insert(i, feed[name])

        # LoDTensor cannot be fetch as numpy directly
        rets = [np.array(v) for v in rets]
        if self.mode == 'test':
            return rets[:]
508

509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
        metric_states = restore_flatten_list(rets[num_loss:], metric_splits)
        metrics = []
        for metric, state in zip(self.model._metrics, metric_states):
            # cut off padding size
            if self.mode != 'train' and self.model._test_dataloader is not None \
                    and isinstance(self.model._test_dataloader, DataLoader) \
                    and self._nranks > 1:
                total_size = len(self.model._test_dataloader.dataset)
                # TODO: fixme if have better way to get batch size
                samples = state[0].shape[0]
                current_count = self._merge_count.get(self.mode + '_total', 0)
                if current_count + samples >= total_size:
                    state = [
                        s[:int(total_size - current_count), ...] for s in state
                    ]
                    self._merge_count[self.mode + '_total'] = 0
                    self._merge_count[self.mode + '_batch'] = int(total_size -
                                                                  current_count)
                else:
                    self._merge_count[self.mode + '_total'] += samples
                    self._merge_count[self.mode + '_batch'] = samples

            metrics.append(metric.update(*state))
532 533 534 535 536

        if num_loss and len(metrics):
            return rets[:num_loss], metrics
        else:
            return rets[:num_loss] if num_loss else metrics
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567

    def prepare(self):
        modes = ['train', 'eval', 'test']
        for mode in modes:
            self._make_program(mode)
            self._compile_and_initialize(self._progs[mode], mode)

    def _make_program(self, mode):
        prog = self._progs.get(mode, None)
        if prog is not None:
            return

        prog = self._orig_prog.clone()
        # NOTE: When defining learning rate scheduling in static-graph, ops to
        # increase the global step var and calculate learning rate would be
        # prepended into _orig_prog. test program maked by `_orig_prog.clone`
        # also would include these ops. Thus must prune these ops in test
        # program, otherwise the global step would be changed in test.
        if mode != 'train':
            for op in list(prog.global_block().ops):
                prog.global_block()._remove_op(0)
        if mode == 'train' and self.model._optimizer \
                and self.model._optimizer._learning_rate_map:
            # HACK workaround learning rate map issue
            lr_var = self.model._optimizer._learning_rate_map[self._orig_prog]
            new_lr_var = prog.global_block().vars[lr_var.name]
            self.model._optimizer._learning_rate_map[prog] = new_lr_var

        losses = []
        metrics = []
        with fluid.program_guard(prog, self._startup_prog):
568 569
            inputs = self.model._inputs
            labels = self.model._labels if self.model._labels else []
570 571
            inputs = [k._create_feed_layer() for k in to_list(inputs)]
            labels = [k._create_feed_layer() for k in to_list(labels)]
572
            self._label_vars[mode] = labels
573
            outputs = to_list(self.model.network.forward(*inputs))
574

575 576
            if mode != 'test' and self.model._loss:
                losses = self.model._loss(*(outputs + labels))
577 578 579 580 581 582 583 584

            if self._nranks > 1 and mode != 'train':
                outputs = [_all_gather(o, self._nranks) for o in outputs]
                if mode != 'test':
                    labels = [_all_gather(l, self._nranks) for l in labels]

            if mode != 'test':
                for metric in self.model._metrics:
585
                    metrics.append(to_list(metric.compute(*(outputs + labels))))
586 587 588 589 590 591

            if mode == 'train' and self.model._optimizer:
                self._loss_endpoint = fluid.layers.sum(losses)
                if self._nranks > 1:
                    role = role_maker.PaddleCloudRoleMaker(is_collective=True)
                    fleet.init(role)
J
Jiaqi Liu 已提交
592 593 594 595 596 597 598
                    dist_strategy = fleet.DistributedStrategy()
                    if self._amp_level != 'O0':
                        dist_strategy.amp = True
                        dist_strategy.amp_configs = self._amp_configs.copy()
                        dist_strategy.amp_configs.update(self._amp_custom_lists)
                        dist_strategy.amp_configs[
                            'use_pure_fp16'] = self._amp_level == 'O2'
599 600
                    self.model._optimizer = fleet.distributed_optimizer(
                        self.model._optimizer, strategy=dist_strategy)
J
Jiaqi Liu 已提交
601 602
                elif self._amp_level != "O0" and core.is_compiled_with_cuda:
                    amp_lists = paddle.static.amp.AutoMixedPrecisionLists(
603 604
                        **self._amp_custom_lists
                    ) if self._amp_custom_lists else None
J
Jiaqi Liu 已提交
605 606 607 608 609 610
                    self.model._optimizer = paddle.static.amp.decorate(
                        self.model._optimizer,
                        amp_lists=amp_lists,
                        use_pure_fp16=self._amp_level == "O2",
                        use_fp16_guard=self._use_fp16_guard,
                        **self._amp_configs)
611 612 613 614 615 616 617 618 619 620 621

                self.model._optimizer.minimize(self._loss_endpoint)

        if mode != 'train':  # clone again to put it in test mode
            prog = prog.clone(for_test=True)

        self._input_vars[mode] = inputs

        self._progs[mode] = prog
        self._endpoints[mode] = {
            "output": outputs,
622
            "loss": to_list(losses),
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
            "metric": metrics
        }

    def _compile_and_initialize(self, prog, mode):
        compiled_prog = self._compiled_progs.get(mode, None)
        if compiled_prog is not None:
            return compiled_prog

        assert self.model._place is not None, \
            "device is not set, please call `model.prepare()` first"

        place = self.model._place

        # XXX *ALL WEIGHTS* should be initialized upon model construction
        # even if `forward()` may run different code path for different mode
        # therefore startup program only needs to run once
        if self._executor is None:
            self._executor = fluid.Executor(place)
            # XXX incremental initialization
            uninitialized = []
            for var_py in self._startup_prog.list_vars():
                var = fluid.global_scope().find_var(var_py.name)
                if not var_py.name.startswith('nccl_id') and var and \
                        var.get_tensor()._is_initialized():
                    continue

                uninitialized.append(var_py)
            if uninitialized:
                startup_prog = self._startup_prog._prune(uninitialized)
                self._executor.run(startup_prog)

J
Jiaqi Liu 已提交
654 655 656 657
        if self._amp_level == "O2" and mode == 'train' and core.is_compiled_with_cuda(
        ):
            self.model._optimizer.amp_init(place)

658 659 660 661 662 663 664 665 666
        if self._nranks < 2:
            compiled_prog = fluid.CompiledProgram(prog)
        else:
            compiled_prog = prog

        self._compiled_progs[mode] = compiled_prog


class DynamicGraphAdapter(object):
667

668 669 670 671 672 673 674 675 676 677 678 679
    def __init__(self, model):
        super(DynamicGraphAdapter, self).__init__()
        self.model = model
        self._nranks = ParallelEnv().nranks
        self._local_rank = ParallelEnv().local_rank
        self._merge_count = {
            'eval_total': 0,
            'test_total': 0,
            'eval_batch': 0,
            'test_batch': 0
        }

L
LiuChiachi 已提交
680
        self._input_info = None
J
Jiaqi Liu 已提交
681 682 683 684 685
        self._amp_level = "O0"
        self._amp_configs = {}
        self._amp_custom_lists = {}
        self._use_fp16_guard = True

686
        if self._nranks > 1:
687
            dist.init_parallel_env()
688 689 690 691 692
            stradegy = fluid.dygraph.parallel.ParallelStrategy()
            stradegy.nranks = ParallelEnv().nranks
            stradegy.local_rank = ParallelEnv().local_rank
            stradegy.trainer_endpoints = ParallelEnv().trainer_endpoints
            stradegy.current_endpoint = ParallelEnv().current_endpoint
693 694
            self.ddp_model = fluid.dygraph.parallel.DataParallel(
                self.model.network, stradegy)
695 696 697 698 699 700 701 702 703 704

    @property
    def mode(self):
        return self.model.mode

    @mode.setter
    def mode(self, value):
        self.model.mode = value

    # TODO multi device in dygraph mode not implemented at present time
L
lyuwenyu 已提交
705
    def train_batch(self, inputs, labels=None, update=True):
706 707
        assert self.model._optimizer, \
            "model not ready, please call `model.prepare()` first"
708
        self.model.network.train()
709 710
        self.mode = 'train'
        inputs = to_list(inputs)
L
LiuChiachi 已提交
711
        self._input_info = _update_input_info(inputs)
712 713 714
        labels = labels or []
        labels = [to_variable(l) for l in to_list(labels)]

L
Leo Chen 已提交
715 716 717 718
        # scaler should be initialized only once
        if self._amp_level != "O0" and self.model._scaler is None:
            self.model._scaler = paddle.amp.GradScaler(**self._amp_configs)

719 720 721
        with paddle.amp.auto_cast(enable=self._amp_level != 'O0',
                                  **self._amp_custom_lists,
                                  level=self._amp_level):
J
Jiaqi Liu 已提交
722 723
            if self._nranks > 1:
                outputs = self.ddp_model.forward(
Z
zhangchunle 已提交
724
                    *[to_variable(x) for x in inputs])
J
Jiaqi Liu 已提交
725 726
            else:
                outputs = self.model.network.forward(
Z
zhangchunle 已提交
727
                    *[to_variable(x) for x in inputs])
728

L
Leo Chen 已提交
729 730 731
        losses = self.model._loss(*(to_list(outputs) + labels))
        losses = to_list(losses)
        final_loss = fluid.layers.sum(losses)
732

J
Jiaqi Liu 已提交
733
        if self._amp_level != "O0":
L
Leo Chen 已提交
734
            scaled = self.model._scaler.scale(final_loss)
J
Jiaqi Liu 已提交
735
            scaled.backward()
L
lyuwenyu 已提交
736
            if update:
L
Leo Chen 已提交
737
                self.model._scaler.minimize(self.model._optimizer, scaled)
L
lyuwenyu 已提交
738
                self.model.network.clear_gradients()
J
Jiaqi Liu 已提交
739 740
        else:
            final_loss.backward()
L
lyuwenyu 已提交
741 742 743
            if update:
                self.model._optimizer.minimize(final_loss)
                self.model.network.clear_gradients()
L
update  
lyuwenyu 已提交
744

745 746
        metrics = []
        for metric in self.model._metrics:
747
            metric_outs = metric.compute(*(to_list(outputs) + labels))
Z
zhangchunle 已提交
748
            m = metric.update(*[to_numpy(m) for m in to_list(metric_outs)])
749 750 751 752 753 754
            metrics.append(m)

        return ([to_numpy(l) for l in losses], metrics) \
            if len(metrics) > 0 else [to_numpy(l) for l in losses]

    def eval_batch(self, inputs, labels=None):
755
        self.model.network.eval()
756 757
        self.mode = 'eval'
        inputs = to_list(inputs)
L
LiuChiachi 已提交
758
        self._input_info = _update_input_info(inputs)
759 760 761
        labels = labels or []
        labels = [to_variable(l) for l in to_list(labels)]

Z
zhangchunle 已提交
762
        outputs = self.model.network.forward(*[to_variable(x) for x in inputs])
763 764 765 766 767 768 769 770 771

        # Transfrom data to expected device
        expected_device = paddle.device.get_device()
        for o in to_list(outputs):
            o._to(device=expected_device)

        for l in labels:
            l._to(device=expected_device)

772 773
        if self.model._loss:
            losses = self.model._loss(*(to_list(outputs) + labels))
774 775
            losses = to_list(losses)

776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
        if self._nranks > 1:
            outputs = [_all_gather(o, self._nranks) for o in to_list(outputs)]
            labels = [_all_gather(l, self._nranks) for l in labels]
        metrics = []
        for metric in self.model._metrics:
            # cut off padding value.
            if self.model._test_dataloader is not None and self._nranks > 1 \
                    and isinstance(self.model._test_dataloader, DataLoader):
                total_size = len(self.model._test_dataloader.dataset)
                samples = outputs[0].shape[0]
                current_count = self._merge_count.get(self.mode + '_total', 0)
                if current_count + samples >= total_size:
                    outputs = [
                        o[:int(total_size - current_count)] for o in outputs
                    ]
                    labels = [
                        l[:int(total_size - current_count)] for l in labels
                    ]
                    self._merge_count[self.mode + '_total'] = 0
                    self._merge_count[self.mode + '_batch'] = int(total_size -
                                                                  current_count)
                else:
                    self._merge_count[self.mode + '_total'] += samples
                    self._merge_count[self.mode + '_batch'] = samples

801
            metric_outs = metric.compute(*(to_list(outputs) + labels))
Z
zhangchunle 已提交
802
            m = metric.update(*[to_numpy(m) for m in to_list(metric_outs)])
803 804
            metrics.append(m)

805
        if self.model._loss and len(metrics):
806
            return [to_numpy(l) for l in losses], metrics
807
        elif self.model._loss:
808 809 810
            return [to_numpy(l) for l in losses]
        else:
            return metrics
811

812
    def predict_batch(self, inputs):
813
        self.model.network.eval()
814 815
        self.mode = 'test'
        inputs = [to_variable(x) for x in to_list(inputs)]
L
LiuChiachi 已提交
816
        self._input_info = _update_input_info(inputs)
817
        outputs = self.model.network.forward(*inputs)
818 819 820 821 822 823
        if self._nranks > 1 and isinstance(self.model._place, fluid.CUDAPlace):
            outputs = [_all_gather(o, self._nranks) for o in to_list(outputs)]

        return [to_numpy(o) for o in to_list(outputs)]

    def parameters(self, *args, **kwargs):
824
        return self.model.network.parameters(*args, **kwargs)
825 826

    def save(self, path):
827
        params = self.model.network.state_dict()
828
        fluid.save_dygraph(params, path)
L
Leo Chen 已提交
829 830 831 832 833 834 835 836 837 838
        if self.model._optimizer is not None:
            if self.model._optimizer.state_dict():
                optim = self.model._optimizer.state_dict()
                fluid.save_dygraph(optim, path)
        if hasattr(self.model, '_scaler') and self.model._scaler is not None:
            if self.model._scaler.state_dict():
                scaler = self.model._scaler.state_dict()
                paddle.save(scaler, path + '.pdscaler')

    def load(self, param_state_pairs, optim_state, scaler_state=None):
839 840 841 842
        # restore parameter states
        for param, state in param_state_pairs:
            param.set_value(state)

L
Leo Chen 已提交
843 844 845 846
        if hasattr(self.model, '_scaler') and self.model._scaler is not None:
            if scaler_state:
                self.model._scaler.load_state_dict(scaler_state)

847 848 849 850
        # resotre optimizer states
        if not self.model._optimizer or not optim_state:
            return

851 852
        # If optimizer performs set_state_dict when state vars haven't been created,
        # which would happen when set_state_dict before minimize, the state would be
853 854 855 856 857 858 859 860 861 862 863
        # stored in optimizer._accumulators_holder and loaded lazily.
        # To contrive this when loading from static-graph saved states, extend
        # state dict to include keys named accoring to dygraph naming rules.
        # TODO: if len(self.model._optimizer._accumulators) > 0
        converted_state = dict(optim_state)
        opt_unq_name = self.model._optimizer._name
        if opt_unq_name is None:
            opt_unq_name = ''

        opt_cls_name = self.model._optimizer.__class__.__name__
        opt_name = opt_unq_name[:opt_unq_name.rfind("_")]  # remove suffix idx
864
        param_names = [param.name for param in self.model.network.parameters()]
865 866 867
        for var_name, state_var in sorted(optim_state.items(),
                                          key=lambda x: len(x[0]),
                                          reverse=True):
868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
            if var_name in ["@LR_DECAY_COUNTER@", "global_step"]:
                # NOTE: dygraph saved global_step is 1 larger than that in
                # static-graph, since the time of global_step to increase is
                # different.
                if var_name == "@LR_DECAY_COUNTER@":
                    converted_state["global_step"] = np.array(
                        converted_state.pop("@LR_DECAY_COUNTER@")) + 1
            else:
                # moment and other accumulators
                # extend state dict to include promising dygraph names
                for param_name in param_names:
                    if var_name.startswith(param_name + "_" + opt_name):
                        # when init optimizer with name
                        accum_name = var_name[len(param_name + "_" + opt_name +
                                                  "_"):]
                    elif var_name.startswith(param_name +
                                             "_") and opt_name == opt_cls_name:
                        # when init optimizer without name
                        accum_name = var_name[len(param_name + "_"):]
                    else:
                        continue
                    # remove suffix idx
                    accum_name = accum_name[:accum_name.rfind("_")]
                    # state names always end with "_0" in dygraph because of the
                    # unique optimizer._name
                    dy_state_name = (param_name + "_" + opt_unq_name + "_" +
                                     accum_name + "_0")
                    converted_state[dy_state_name] = state_var

897 898
        if not hasattr(self.model._optimizer, 'set_state_dict'):
            warnings.warn(
899
                "paddle.fluid.optimizer is deprecated in API 2.0, please use paddle.optimizer instead."
900 901 902 903
            )
            self.model._optimizer.set_dict(converted_state)
        else:
            self.model._optimizer.set_state_dict(converted_state)
904

L
Leo Chen 已提交
905 906 907 908 909 910 911 912 913 914
    def prepare(self):
        if self._amp_level == "O2" and self.model.mode == 'train' and core.is_compiled_with_cuda(
        ):
            self.model.network, self.model._optimizer = paddle.amp.decorate(
                models=self.model.network,
                optimizers=self.model._optimizer,
                level='O2')
        if self._amp_level != "O0":
            self.model._scaler = None

915

916
class Model(object):
917 918 919
    """
    An Model object is network with training and inference features.
    Dynamic graph and static graph are supported at the same time,
920
    switched by `paddle.enable_static()`. The usage is as follows.
921
    But note, the switching between dynamic and static should be before
922
    instantiating a Model. The input description, i.e, paddle.static.InputSpec,
923
    must be required for static graph.
924

L
Leo Chen 已提交
925 926
    When training on GPU, auto mixed precision (AMP O1) and pure float16 
    (AMP O2) training are both supported in static mode and dynamic mode.
927
    In static graph mode, before training with pure float16 (AMP O2),
J
Jiaqi Liu 已提交
928 929
    `multi_precision` could be set to True when creating optimizer, which can
    avoid poor accuracy or slow convergence in a way, and inputs of dtype float
930 931 932 933
    should be cast to float16 by users. `paddle.static.amp.fp16_guard` API
    should be also used to limit the range of pure float16 training, otherwise,
    'use_fp16_guard' should be set to False by users. However, limiting the
    range of is not supported during training using AMP.
J
Jiaqi Liu 已提交
934

935
    Args:
936 937
        network (paddle.nn.Layer): The network is an instance of
            paddle.nn.Layer.
938
        inputs (InputSpec|list|tuple|dict|None, optional): `inputs`, entry points of network,
939
            could be a InputSpec instance, or list/tuple of InputSpec instances,
940
            or dict ({name: InputSpec}), and it couldn't be None in static
941 942
            graph. Default: None.
        labels (InputSpec|list|tuple|None, optional): `labels`, entry points of network,
943
            could be a InputSpec instnace or list/tuple of InputSpec instances,
944
            or None. For static graph, if labels is required in loss,
945
            labels must be set. Otherwise, it could be None. Default: None.
946 947


948
    Examples:
J
Jiaqi Liu 已提交
949 950
        1. A common example

951
        .. code-block:: python
952
          :name: code-example1
953

954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975
            import paddle
            import paddle.nn as nn
            import paddle.vision.transforms as T
            from paddle.static import InputSpec

            device = paddle.set_device('cpu') # or 'gpu'

            net = nn.Sequential(
                nn.Flatten(1),
                nn.Linear(784, 200),
                nn.Tanh(),
                nn.Linear(200, 10))

            # inputs and labels are not required for dynamic graph.
            input = InputSpec([None, 784], 'float32', 'x')
            label = InputSpec([None, 1], 'int64', 'label')
            
            model = paddle.Model(net, input, label)
            optim = paddle.optimizer.SGD(learning_rate=1e-3,
                parameters=model.parameters())

            model.prepare(optim,
976 977
                        paddle.nn.CrossEntropyLoss(),
                        paddle.metric.Accuracy())
978 979 980 981 982 983 984

            transform = T.Compose([
                T.Transpose(),
                T.Normalize([127.5], [127.5])
            ])
            data = paddle.vision.datasets.MNIST(mode='train', transform=transform)
            model.fit(data, epochs=2, batch_size=32, verbose=1)
J
Jiaqi Liu 已提交
985 986 987 988 989


        2. An example using mixed precision training.

        .. code-block:: python
990
          :name: code-example2
J
Jiaqi Liu 已提交
991

992 993 994 995
            # required: gpu
            import paddle
            import paddle.nn as nn
            import paddle.vision.transforms as T
J
Jiaqi Liu 已提交
996

997 998
            def run_example_code():
                device = paddle.set_device('gpu')
J
Jiaqi Liu 已提交
999

1000 1001
                net = nn.Sequential(nn.Flatten(1), nn.Linear(784, 200), nn.Tanh(),
                                    nn.Linear(200, 10))
J
Jiaqi Liu 已提交
1002

1003 1004
                model = paddle.Model(net)
                optim = paddle.optimizer.SGD(learning_rate=1e-3, parameters=model.parameters())
J
Jiaqi Liu 已提交
1005

1006 1007 1008 1009 1010 1011 1012 1013 1014
                amp_configs = {
                    "level": "O1",
                    "custom_white_list": {'conv2d'},
                    "use_dynamic_loss_scaling": True
                }
                model.prepare(optim,
                    paddle.nn.CrossEntropyLoss(),
                    paddle.metric.Accuracy(),
                    amp_configs=amp_configs)
J
Jiaqi Liu 已提交
1015

1016 1017 1018 1019 1020 1021 1022
                transform = T.Compose([T.Transpose(), T.Normalize([127.5], [127.5])])
                data = paddle.vision.datasets.MNIST(mode='train', transform=transform)
                model.fit(data, epochs=2, batch_size=32, verbose=1)

            # mixed precision training is only supported on GPU now.
            if paddle.is_compiled_with_cuda():
                run_example_code()
J
Jiaqi Liu 已提交
1023

1024 1025
    """

1026
    def __init__(self, network, inputs=None, labels=None):
1027
        self.mode = 'train'
1028
        self.network = network
1029 1030
        self._inputs = None
        self._labels = None
1031
        self._loss = None
1032 1033
        self._loss_weights = None
        self._optimizer = None
L
LiuChiachi 已提交
1034
        self._input_info = None
1035
        self._is_shape_inferred = False
1036
        self._test_dataloader = None
L
LiuChiachi 已提交
1037
        self.stop_training = False
1038

J
Jiabin Yang 已提交
1039
        if not _non_static_mode():
1040
            if not isinstance(inputs, (list, tuple, dict, Input)):
1041
                raise TypeError(
1042 1043
                    "'inputs' must be list or tuple or dict, and couldn't be None."
                )
1044
        elif inputs:
L
LiuChiachi 已提交
1045
            self._input_info = _update_input_info(inputs)
L
LielinJiang 已提交
1046

1047
        self._inputs = self._verify_spec(inputs, is_input=True)
1048
        self._labels = self._verify_spec(labels)
1049

1050
        # init backend
J
Jiabin Yang 已提交
1051
        if fluid._non_static_mode():
1052 1053 1054 1055
            self._adapter = DynamicGraphAdapter(self)
        else:
            self._adapter = StaticGraphAdapter(self)

L
lyuwenyu 已提交
1056
    def train_batch(self, inputs, labels=None, update=True):
1057
        """
L
lyuwenyu 已提交
1058 1059
        Run one training step on one batch of data. And using `update` indicates
        whether optimizer update gradients computing by this batch.
1060 1061

        Args:
1062 1063 1064
            inputs (numpy.ndarray|Tensor|list): Batch of input data. It could 
                be a numpy array or paddle.Tensor, or a list of arrays or 
                tensors (in case the model has multiple inputs).
1065
            labels (numpy.ndarray|Tensor|list, optional): Batch of labels. It could be 
1066 1067
                a numpy array or paddle.Tensor, or a list of arrays or tensors 
                (in case the model has multiple labels). If has no labels, 
1068 1069 1070
                set None. Default: None.
            update (bool, optional): Whether update parameters after loss.backward() computing.
                Set it to False to accumulate gradients. Default: True.
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080

        Returns:
            A list of scalar training loss if the model has no metrics,
            or a tuple (list of scalar loss, list of metrics) if the model
            set metrics.

        Examples:

            .. code-block:: python
            
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
                import paddle
                import paddle.nn as nn
                from paddle.static import InputSpec

                device = paddle.set_device('cpu') # or 'gpu'

                net = nn.Sequential(
                    nn.Linear(784, 200),
                    nn.Tanh(),
                    nn.Linear(200, 10))

                input = InputSpec([None, 784], 'float32', 'x')
                label = InputSpec([None, 1], 'int64', 'label')
                model = paddle.Model(net, input, label)
                optim = paddle.optimizer.SGD(learning_rate=1e-3,
                    parameters=model.parameters())
                model.prepare(optim, paddle.nn.CrossEntropyLoss())
                data = paddle.rand((4, 784), dtype="float32")
                label = paddle.randint(0, 10, (4, 1), dtype="int64")
                loss = model.train_batch([data], [label])
                print(loss)
                # [array([2.192784], dtype=float32)]
1103
        """
L
lyuwenyu 已提交
1104
        loss = self._adapter.train_batch(inputs, labels, update)
J
Jiabin Yang 已提交
1105
        if fluid._non_static_mode() and self._input_info is None:
L
LiuChiachi 已提交
1106
            self._update_inputs()
1107
        return loss
1108

1109
    @no_grad()
1110 1111 1112 1113 1114
    def eval_batch(self, inputs, labels=None):
        """
        Run one evaluating step on a batch of data.

        Args:
1115 1116 1117
            inputs (numpy.ndarray|Tensor|list): Batch of input data. It could 
                be a numpy array or paddle.Tensor, or a list of arrays or 
                tensors (in case the model has multiple inputs).
1118
            labels (numpy.ndarray|Tensor|list, optional): Batch of labels. It could be 
1119 1120
                a numpy array or paddle.Tensor, or a list of arrays or tensors 
                (in case the model has multiple labels). If has no labels, 
1121
                set None. Default: None.
1122 1123 1124 1125 1126 1127 1128 1129 1130

        Returns:
            A list of scalar testing loss if the model has no metrics,
            or a tuple (list of scalar loss, list of metrics) if the model
            set metrics.

        Examples:

            .. code-block:: python
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154

                import paddle
                import paddle.nn as nn
                from paddle.static import InputSpec

                device = paddle.set_device('cpu') # or 'gpu'

                net = nn.Sequential(
                    nn.Linear(784, 200),
                    nn.Tanh(),
                    nn.Linear(200, 10))

                input = InputSpec([None, 784], 'float32', 'x')
                label = InputSpec([None, 1], 'int64', 'label')
                model = paddle.Model(net, input, label)
                optim = paddle.optimizer.SGD(learning_rate=1e-3,
                    parameters=model.parameters())
                model.prepare(optim,
                            paddle.nn.CrossEntropyLoss(), metrics=paddle.metric.Accuracy())
                data = paddle.rand((4, 784), dtype="float32")
                label = paddle.randint(0, 10, (4, 1), dtype="int64")
                loss, acc = model.eval_batch([data], [label])
                print(loss, acc)
                # [array([2.8825705], dtype=float32)] [0.0]
1155
        """
1156
        loss = self._adapter.eval_batch(inputs, labels)
J
Jiabin Yang 已提交
1157
        if fluid._non_static_mode() and self._input_info is None:
L
LiuChiachi 已提交
1158
            self._update_inputs()
1159
        return loss
1160

1161
    @no_grad()
1162
    def predict_batch(self, inputs):
1163
        """
1164
        Run one predicting step on a batch of data.
1165 1166

        Args:
1167 1168 1169
            inputs (numpy.ndarray|Tensor|list): Batch of input data. It could 
                be a numpy array or paddle.Tensor, or a list of arrays or 
                tensors (in case the model has multiple inputs).
1170 1171 1172 1173 1174 1175 1176 1177

        Returns:
            A list of numpy.ndarray of predictions, that is the outputs
            of Model forward.

        Examples:

            .. code-block:: python
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201

                import paddle
                import paddle.nn as nn
                from paddle.static import InputSpec

                device = paddle.set_device('cpu') # or 'gpu'
                
                input = InputSpec([None, 784], 'float32', 'x')
                label = InputSpec([None, 1], 'int64', 'label')

                net = nn.Sequential(
                    nn.Linear(784, 200),
                    nn.Tanh(),
                    nn.Linear(200, 10),
                    nn.Softmax())

                model = paddle.Model(net, input, label)
                model.prepare()
                data = paddle.rand((1, 784), dtype="float32")
                out = model.predict_batch([data])
                print(out)
                # [array([[0.08189095, 0.16740078, 0.06889386, 0.05085445, 0.10729759,
                #          0.02217775, 0.14518553, 0.1591538 , 0.01808308, 0.17906217]],
                #          dtype=float32)]
1202
        """
1203
        loss = self._adapter.predict_batch(inputs)
J
Jiabin Yang 已提交
1204
        if fluid._non_static_mode() and self._input_info is None:
L
LiuChiachi 已提交
1205
            self._update_inputs()
1206
        return loss
1207

1208 1209 1210 1211 1212
    def save(self, path, training=True):
        """  
        This function saves parameters, optimizer information or model and 
        paramters only for inference to path. It depends on the parameter
        `training`.
1213

1214 1215
        If `training` is set to True, the parameters saved contain all 
        the trainable Variable, will save to a file with suffix ".pdparams".
1216 1217 1218 1219
        The optimizer information contains all the variable used by optimizer.
        For Adam optimizer, contains beta1, beta2, momentum etc. All the
        information will save to a file with suffix ".pdopt". (If the optimizer
        have no variable need to save (like SGD), the fill will not generated).
1220
        This function will silently overwrite existing file at the target location.
1221

1222
        If `training` is set to False, only inference model will be saved.
1223 1224

        Args:
1225 1226 1227
            path (str): The file prefix to save model. The format
                is 'dirname/file_prefix' or 'file_prefix'. if empty str.
                A exception will be raised.
1228 1229
            training (bool, optional): Whether to save for training. If not, save
                for inference only. Default: True.
1230 1231 1232 1233 1234 1235 1236

        Returns:
            None

        Examples:

            .. code-block:: python
1237

1238
                import paddle
1239
                import paddle.nn as nn
1240
                import paddle.vision.transforms as T
1241
                from paddle.static import InputSpec
1242

1243
                class Mnist(nn.Layer):
1244
                    def __init__(self):
1245
                        super(Mnist, self).__init__()
1246
                        self.net = nn.Sequential(
L
LielinJiang 已提交
1247
                            nn.Flatten(1),
1248 1249 1250 1251
                            nn.Linear(784, 200),
                            nn.Tanh(),
                            nn.Linear(200, 10),
                            nn.Softmax())
1252

1253
                    def forward(self, x):
1254
                        return self.net(x)
1255

1256
                dynamic = True  # False
1257
                # if use static graph, do not set
1258 1259
                if not dynamic:
                    paddle.enable_static()
1260

1261 1262 1263
                input = InputSpec([None, 784], 'float32', 'x')
                label = InputSpec([None, 1], 'int64', 'label')
                model = paddle.Model(Mnist(), input, label)
1264
                optim = paddle.optimizer.SGD(learning_rate=1e-3,
1265
                    parameters=model.parameters())
1266
                model.prepare(optim, paddle.nn.CrossEntropyLoss())
1267

1268 1269 1270 1271 1272 1273
                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                data = paddle.vision.datasets.MNIST(mode='train', transform=transform)
                
1274
                model.fit(data, epochs=1, batch_size=32, verbose=0)
1275 1276
                model.save('checkpoint/test')  # save for training
                model.save('inference_model', False)  # save for inference
1277
        """
1278

1279
        if ParallelEnv().local_rank == 0:
1280 1281 1282 1283
            if not training:
                self._save_inference_model(path)
            else:
                self._adapter.save(path)
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301

    def load(self, path, skip_mismatch=False, reset_optimizer=False):
        """
        Load from files storing the model states and optimizer states. The file
        for optimizer states is not necessary if no need to restore the optimizer.

        NOTE: parameters are retrieved out from the file storing model states
        accoring to their structured names.

        For fine-tuning or transfer-learning models where some of the layers have
        changed, keep parameters needed to restore have same structured names in
        the pre-trained model and fine-tuning model.

        Args:
            path (str): The prefix of files storing the model states and
                optimizer states. The files would be `path.pdparams` and
                `path.pdopt` separately, and the latter is not necessary
                when no need to restore.
1302
            skip_mismatch (bool, optional): Whether to skip the loading of mismatch
1303 1304
                parameter or raise an error when mismatch happens (not found
                the parameter in file storing model states of or receives a
1305 1306
                mismatch shape). Default: False.
            reset_optimizer (bool, optional): If True, ignore the providing file storing
1307 1308
                optimizer states and initialize optimizer states from scratch.
                Otherwise, restore optimizer states from `path.pdopt` if
1309
                a optimizer has been set to the model. Default: False.
1310 1311 1312 1313 1314 1315 1316

        Returns:
            None

        Examples:

            .. code-block:: python
1317 1318 1319 1320

                import paddle
                import paddle.nn as nn
                from paddle.static import InputSpec
L
LielinJiang 已提交
1321

1322
                device = paddle.set_device('cpu')
L
LielinJiang 已提交
1323

1324
                input = InputSpec([None, 784], 'float32', 'x')
1325

1326 1327 1328 1329 1330
                model = paddle.Model(nn.Sequential(
                    nn.Linear(784, 200),
                    nn.Tanh(),
                    nn.Linear(200, 10),
                    nn.Softmax()), input)
L
LielinJiang 已提交
1331

1332 1333
                model.save('checkpoint/test')
                model.load('checkpoint/test')
1334 1335 1336 1337 1338 1339
        """

        def _load_state_from_path(path):
            if not os.path.exists(path):
                return
            with open(path, 'rb') as f:
T
tianshuo78520a 已提交
1340
                return pickle.load(f, encoding='latin1')
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363

        def _check_match(key, param):
            state = param_state.get(key, None)
            if state is None:
                raise ValueError(
                    "{} is not found in the providing file.".format(key))
            if list(state.shape) != list(param.shape):
                raise ValueError(
                    "{} receives a shape {}, but the expected shape is {}.".
                    format(key, list(state.shape), list(param.shape)))
            return param, state

        def _strip_postfix(path):
            path, ext = os.path.splitext(path)
            assert ext in ['', '.pdparams', '.pdopt', '.pdmodel'], \
                    "Unknown postfix {} from weights".format(ext)
            return path

        path = _strip_postfix(path)
        param_state = _load_state_from_path(path + ".pdparams")
        assert param_state, "Failed to load parameters, please check path."

        matched_param_state = []
1364
        for key, param in self.network.state_dict().items():
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
            try:
                match_res = _check_match(key, param)
            except ValueError as err:
                if skip_mismatch:
                    warnings.warn(
                        ("Skip loading for {}. ".format(key) + str(err)))
                    # reset optimizer when mismatch happens
                    reset_optimizer = True
                else:
                    raise err
            matched_param_state.append(match_res)

        optim_state = None if reset_optimizer else _load_state_from_path(
            path + ".pdopt")
L
Leo Chen 已提交
1379 1380

        # TODO: support save/load scaler state in static graph
J
Jiabin Yang 已提交
1381
        if _non_static_mode():
L
Leo Chen 已提交
1382 1383 1384 1385 1386 1387 1388 1389 1390
            scaler_state = None
            if hasattr(self, '_scaler') and self._scaler is not None:
                if os.path.exists(path + '.pdscaler'):
                    scaler_state = paddle.load(path + '.pdscaler')

            return self._adapter.load(matched_param_state, optim_state,
                                      scaler_state)
        else:
            return self._adapter.load(matched_param_state, optim_state)
1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402

    def parameters(self, *args, **kwargs):
        """
        Returns a list of parameters of the model.

        Returns:
            A list of Parameter in static graph.
            A list of ParamBase in dynamic graph.

        Examples:

            .. code-block:: python
1403 1404 1405 1406
            
                import paddle
                import paddle.nn as nn
                from paddle.static import InputSpec
1407

1408 1409 1410 1411 1412 1413
                input = InputSpec([None, 784], 'float32', 'x')
                
                model = paddle.Model(nn.Sequential(
                    nn.Linear(784, 200),
                    nn.Tanh(),
                    nn.Linear(200, 10)), input)
L
LielinJiang 已提交
1414

1415
                params = model.parameters()
1416 1417 1418
        """
        return self._adapter.parameters()

J
Jiaqi Liu 已提交
1419
    def _prepare_amp(self, amp_configs):
1420

J
Jiaqi Liu 已提交
1421 1422
        def _check_pure_fp16_configs():
            # pure float16 training has some restricts now
L
Leo Chen 已提交
1423 1424 1425 1426
            if self._adapter._amp_level == "O2" and self._optimizer._grad_clip:
                # clip by value is not supported
                assert isinstance(self._optimizer._grad_clip, (paddle.nn.ClipGradByGlobalNorm, paddle.nn.ClipGradByNorm)), \
                     "Only GradientClipByNorm and GradientClipByGlobalNorm are supported in amp training with level=O2 currently."
J
Jiaqi Liu 已提交
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455

        self._adapter._amp_custom_lists = {}
        self._adapter._amp_configs = {}

        # check and get level of mixed precision training
        if not amp_configs:
            self._adapter._amp_level = 'O0'
            return
        elif isinstance(amp_configs, str):
            if amp_configs not in ('O0', 'O1', 'O2'):
                raise ValueError(
                    "The level of amp_configs should be 'O0', 'O1' or 'O2'.")
            self._adapter._amp_level = amp_configs
            _check_pure_fp16_configs()
            return
        else:
            if 'level' not in amp_configs:
                self._adapter._amp_level = 'O1'
            elif amp_configs['level'] not in ('O0', 'O1', 'O2'):
                raise ValueError(
                    "amp_configs['level'] should be 'O0', 'O1' or 'O2'.")
            else:
                self._adapter._amp_level = amp_configs['level']
        amp_config_key_set = set(amp_configs.keys()) - {'level'}
        if not amp_config_key_set or self._adapter._amp_level == 'O0':
            return

        if 'use_pure_fp16' in amp_configs:
            raise ValueError(
1456
                "'use_pure_fp16' is an invalid parameter, the level of mixed precision training only depends on 'O1' or 'O2'."
J
Jiaqi Liu 已提交
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
            )

        _check_pure_fp16_configs()

        # construct amp_custom_lists
        if self._adapter._amp_level != 'O0' and amp_config_key_set:
            for param_name in [
                    'custom_white_list', 'custom_black_list',
                    'custom_black_varnames'
            ]:
                if param_name in amp_config_key_set:
                    self._adapter._amp_custom_lists[param_name] = amp_configs[
                        param_name]
                    amp_config_key_set -= {param_name}

        def _check_amp_configs(amp_config_key_set):
            accepted_param_set = {
                'init_loss_scaling',
                'incr_ratio',
                'decr_ratio',
                'incr_every_n_steps',
                'decr_every_n_nan_or_inf',
                'use_dynamic_loss_scaling',
                'use_fp16_guard',
            }
            if amp_config_key_set - accepted_param_set:
                raise ValueError(
1484 1485
                    "Except for 'level', the keys of 'amp_configs' must be accepted by mixed precision APIs, but {} could not be recognized."
                    .format(tuple(amp_config_key_set - accepted_param_set)))
J
Jiaqi Liu 已提交
1486 1487

            if 'use_fp16_guard' in amp_config_key_set:
J
Jiabin Yang 已提交
1488
                if _non_static_mode():
J
Jiaqi Liu 已提交
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
                    raise ValueError(
                        "'use_fp16_guard' is supported in static mode only.")
                self._adapter._use_fp16_guard = amp_configs['use_fp16_guard']
                amp_config_key_set.remove('use_fp16_guard')

            return amp_config_key_set

        amp_configs_set = _check_amp_configs(amp_config_key_set)
        for key in amp_configs_set:
            self._adapter._amp_configs[key] = amp_configs[key]

1500 1501 1502 1503
    def prepare(self,
                optimizer=None,
                loss=None,
                metrics=None,
J
Jiaqi Liu 已提交
1504
                amp_configs=None):
1505 1506 1507 1508
        """
        Configures the model before runing.

        Args:
1509
            optimizer (Optimizer|None, optional): Optimizer must be set in training
1510
                and should be a Optimizer instance. It can be None in eval
1511 1512
                and test mode. Default: None.
            loss (Loss|Callable|None, optional): Loss function can
1513
                be a `paddle.nn.Layer` instance or any callable function
1514
                taken the predicted values and ground truth values as input.
1515 1516 1517 1518
                It can be None when there is no loss. Default: None.
            metrics (Metric|list[Metric]|None, optional): If metrics is set, all
                metrics will be calculated and output in train/eval mode. Default: None.
            amp_configs (str|dict|None, optional): AMP configurations. If AMP or pure
J
Jiaqi Liu 已提交
1519 1520 1521
                float16 training is used, the key 'level' of 'amp_configs'
                should be set to 'O1' or 'O2' respectively. Otherwise, the
                value of 'level' defaults to 'O0', which means float32
1522 1523
                training. In addition to 'level', parameters consistent with
                mixed precision API could also be passed in. The supported
J
Jiaqi Liu 已提交
1524 1525 1526 1527
                keys are: 'init_loss_scaling', 'incr_ratio', 'decr_ratio',
                'incr_every_n_steps', 'decr_every_n_nan_or_inf',
                'use_dynamic_loss_scaling', 'custom_white_list',
                'custom_black_list', and 'custom_black_varnames'or
1528 1529 1530 1531 1532 1533
                'use_fp16_guard' is only supported in static mode. Mixed
                precision API documentations  :ref:`api_paddle_amp_auto_cast`
                and  :ref:`api_paddle_amp_GradScaler` could be referenced
                for details. For convenience, 'amp_configs' could be set to
                'O1' or 'O2' if no more parameters are needed. 'amp_configs'
                could be None in float32 training. Default: None.
1534

1535 1536 1537
        Returns:
            None
        """
1538 1539
        self._place = _get_device()
        if isinstance(self._place, fluid.CUDAPlace):
1540 1541
            global _parallel_context_initialized
            if ParallelEnv().nranks > 1 and not _parallel_context_initialized:
J
Jiabin Yang 已提交
1542
                if fluid._non_static_mode():
1543 1544 1545 1546
                    main_prog_seed = fluid.default_main_program().random_seed
                    startup_prog_seed = fluid.default_startup_program(
                    ).random_seed
                    fluid.disable_dygraph()
1547
                    paddle.disable_static(self._place)
1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
                    # enable_dygraph would create and switch to a new program,
                    # thus also copy seed to the new program
                    fluid.default_main_program().random_seed = main_prog_seed
                    fluid.default_startup_program(
                    ).random_seed = startup_prog_seed
                else:
                    prepare_distributed_context(self._place)
                _parallel_context_initialized = True

        self._optimizer = optimizer
1558 1559
        if loss is not None:
            if not isinstance(loss, paddle.nn.Layer) and not callable(loss):
1560 1561 1562
                raise TypeError(
                    "'loss' must be sub classes of `paddle.nn.Layer` or any callable function."
                )
1563
        self._loss = loss
1564 1565 1566 1567 1568 1569 1570

        metrics = metrics or []
        for metric in to_list(metrics):
            assert isinstance(metric, Metric), \
                "{} is not sub class of Metric".format(
                    metric.__class__.__name__)
        self._metrics = to_list(metrics)
J
Jiaqi Liu 已提交
1571
        self._prepare_amp(amp_configs)
1572

L
Leo Chen 已提交
1573
        self._adapter.prepare()
1574

1575
    def fit(self,
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
            train_data=None,
            eval_data=None,
            batch_size=1,
            epochs=1,
            eval_freq=1,
            log_freq=10,
            save_dir=None,
            save_freq=1,
            verbose=2,
            drop_last=False,
            shuffle=True,
            num_workers=0,
L
update  
lyuwenyu 已提交
1588
            callbacks=None,
1589 1590
            accumulate_grad_batches=1,
            num_iters=None):
1591 1592 1593 1594 1595
        """
        Trains the model for a fixed number of epochs. If `eval_data` is set,
        evaluation will be done at the end of each epoch.

        Args:
1596
            train_data (Dataset|DataLoader, optional): An iterable data loader is used for 
1597 1598
                train. An instance of paddle paddle.io.Dataset or 
                paddle.io.Dataloader is recomended. Default: None.
1599
            eval_data (Dataset|DataLoader, optional): An iterable data loader is used for
1600 1601 1602
                evaluation at the end of epoch. If None, will not do evaluation. 
                An instance of paddle.io.Dataset or paddle.io.Dataloader 
                is recomended. Default: None.
1603 1604 1605 1606 1607
            batch_size (int, optional): The batch size of train_data and eval_data. When 
                train_data and eval_data are both the instance of Dataloader, this
                parameter will be ignored. Default: 1.
            epochs (int, optional): The number of epochs to train the model. Default: 1.
            eval_freq (int, optional): The frequency, in number of epochs, an evalutation
1608
                is performed. Default: 1.
1609
            log_freq (int, optional): The frequency, in number of steps, the training logs
1610
                are printed. Default: 10.
1611
            save_dir(str|None, optional): The directory to save checkpoint during training.
1612
                If None, will not save checkpoint. Default: None.
1613
            save_freq (int, optional): The frequency, in number of epochs, to save
1614
                checkpoint. Default: 1.
1615
            verbose (int, optional): The verbosity mode, should be 0, 1, or 2. 0 = silent,
1616
                1 = progress bar, 2 = one line per epoch. Default: 2.
1617
            drop_last (bool, optional): Whether drop the last incomplete batch of
1618 1619 1620
                train_data when dataset size is not divisible by the batch size.
                When train_data is an instance of Dataloader, this parameter
                will be ignored. Default: False.
1621
            shuffle (bool, optional): Whther to shuffle train_data. When train_data is
1622 1623
                an instance of Dataloader, this parameter will be ignored.
                Default: True.
1624
            num_workers (int, optional): The number of subprocess to load data, 0 for no
1625 1626 1627
                subprocess used and loading data in main process.
                When train_data and eval_data are both the instance of
                Dataloader, this parameter will be ignored. Default: 0.
1628 1629 1630 1631
            callbacks (Callback|None, optional): A list of `Callback` instances to apply
                during training. If None, :ref:`api_paddle_callbacks_ProgBarLogger` and
                :ref:`api_paddle_callbacks_ModelCheckpoint` are automatically inserted. Default: None.
            accumulate_grad_batches (int, optional): The number of batches to accumulate gradident 
L
lyuwenyu 已提交
1632
                during training process before optimizer updates. It can mimic large batch
L
lyuwenyu 已提交
1633
                size. Default: 1.
1634 1635 1636 1637
            num_iters (int|None, optional): The number of iterations to evaluate the model.
                If None, evaluate on whole input dataset, otherwise, evaluate `num_iters` times.
                Default: None.

1638 1639 1640 1641
        Returns:
            None

        Examples:
1642
            1. An example use Dataset and set batch size, shuffle in fit.
1643 1644 1645
               How to make a batch is done internally.

            .. code-block:: python
1646
              :name: code-example1
1647

1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
                import paddle
                import paddle.vision.transforms as T
                from paddle.vision.datasets import MNIST
                from paddle.static import InputSpec

                dynamic = True
                if not dynamic:
                    paddle.enable_static()

                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                train_dataset = MNIST(mode='train', transform=transform)
                val_dataset = MNIST(mode='test', transform=transform)

                input = InputSpec([None, 1, 28, 28], 'float32', 'image')
                label = InputSpec([None, 1], 'int64', 'label')

                model = paddle.Model(
                    paddle.vision.models.LeNet(),
                    input, label)
                optim = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=model.parameters())
                model.prepare(
                    optim,
                    paddle.nn.CrossEntropyLoss(),
                    paddle.metric.Accuracy(topk=(1, 2)))
                model.fit(train_dataset,
                            val_dataset,
                            epochs=2,
                            batch_size=64,
                            save_dir='mnist_checkpoint')
1681 1682 1683 1684 1685

            2. An example use DataLoader, batch size and shuffle is set in
               DataLoader.

            .. code-block:: python
1686
              :name: code-example2
1687 1688 1689 1690 1691

                import paddle
                import paddle.vision.transforms as T
                from paddle.vision.datasets import MNIST
                from paddle.static import InputSpec
1692

1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
                dynamic = True
                if not dynamic:
                    paddle.enable_static()
                
                transform = T.Compose([
                        T.Transpose(),
                        T.Normalize([127.5], [127.5])
                    ])
                train_dataset = MNIST(mode='train', transform=transform)
                train_loader = paddle.io.DataLoader(train_dataset,
                    batch_size=64)
                val_dataset = MNIST(mode='test', transform=transform)
                val_loader = paddle.io.DataLoader(val_dataset,
                    batch_size=64)

                input = InputSpec([None, 1, 28, 28], 'float32', 'image')
                label = InputSpec([None, 1], 'int64', 'label')
1710

1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722
                model = paddle.Model(
                    paddle.vision.models.LeNet(), input, label)
                optim = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=model.parameters())
                model.prepare(
                    optim,
                    paddle.nn.CrossEntropyLoss(),
                    paddle.metric.Accuracy(topk=(1, 2)))
                model.fit(train_loader,
                            val_loader,
                            epochs=2,
                            save_dir='mnist_checkpoint')
1723 1724 1725 1726 1727
        """
        assert train_data is not None, \
                "train_data must be given!"

        if isinstance(train_data, Dataset):
1728 1729 1730 1731 1732 1733 1734 1735 1736
            train_sampler = DistributedBatchSampler(train_data,
                                                    batch_size=batch_size,
                                                    shuffle=shuffle,
                                                    drop_last=drop_last)
            train_loader = DataLoader(train_data,
                                      batch_sampler=train_sampler,
                                      places=self._place,
                                      num_workers=num_workers,
                                      return_list=True)
1737 1738 1739 1740
        else:
            train_loader = train_data

        if eval_data is not None and isinstance(eval_data, Dataset):
1741 1742 1743 1744 1745 1746 1747
            eval_sampler = DistributedBatchSampler(eval_data,
                                                   batch_size=batch_size)
            eval_loader = DataLoader(eval_data,
                                     batch_sampler=eval_sampler,
                                     places=self._place,
                                     num_workers=num_workers,
                                     return_list=True)
1748 1749 1750 1751 1752 1753 1754
        elif eval_data is not None:
            eval_loader = eval_data
        else:
            eval_loader = None

        do_eval = eval_loader is not None
        self._test_dataloader = eval_loader
L
update  
lyuwenyu 已提交
1755

L
lyuwenyu 已提交
1756
        self._accumulate = accumulate_grad_batches
L
update  
lyuwenyu 已提交
1757

1758
        steps = self._len_data_loader(train_loader)
1759
        self.num_iters = num_iters
1760 1761
        if num_iters is not None and isinstance(num_iters, int) and isinstance(
                steps, int):
1762 1763 1764
            assert num_iters > 0, "num_iters must be greater than 0!"
            epochs = (num_iters // steps) + 1
            steps = min(num_iters, steps)
1765 1766 1767 1768 1769 1770 1771 1772 1773
        cbks = config_callbacks(
            callbacks,
            model=self,
            epochs=epochs,
            steps=steps,
            log_freq=log_freq,
            save_freq=save_freq,
            save_dir=save_dir,
            verbose=verbose,
1774 1775
            metrics=self._metrics_name(),
        )
1776

L
LiuChiachi 已提交
1777 1778 1779
        if any(isinstance(k, EarlyStopping) for k in cbks) and not do_eval:
            warnings.warn("EarlyStopping needs validation data.")

1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796
        cbks.on_begin('train')
        for epoch in range(epochs):
            cbks.on_epoch_begin(epoch)
            logs = self._run_one_epoch(train_loader, cbks, 'train')
            cbks.on_epoch_end(epoch, logs)

            if do_eval and epoch % eval_freq == 0:

                eval_steps = self._len_data_loader(eval_loader)
                cbks.on_begin('eval', {
                    'steps': eval_steps,
                    'metrics': self._metrics_name()
                })

                eval_logs = self._run_one_epoch(eval_loader, cbks, 'eval')

                cbks.on_end('eval', eval_logs)
1797 1798
            if self.stop_training:
                break
1799 1800 1801

        cbks.on_end('train', logs)
        self._test_dataloader = None
L
update  
lyuwenyu 已提交
1802

1803 1804 1805 1806 1807 1808 1809 1810
    def evaluate(self,
                 eval_data,
                 batch_size=1,
                 log_freq=10,
                 verbose=2,
                 num_workers=0,
                 callbacks=None,
                 num_iters=None):
1811 1812 1813 1814 1815 1816 1817
        """
        Evaluate the loss and metrics of the model on input dataset.

        Args:
            eval_data (Dataset|DataLoader): An iterable data loader is used for
                evaluation. An instance of paddle.io.Dataset or 
                paddle.io.Dataloader is recomended.
1818 1819 1820 1821
            batch_size (int, optional): The batch size of train_data and eval_data.
                When eval_data is the instance of Dataloader, this argument will be
                ignored. Default: 1.
            log_freq (int, optional): The frequency, in number of steps, the eval logs
1822
                are printed. Default: 10.
1823
            verbose (int, optional): The verbosity mode, should be 0, 1, or 2. 0 = silent,
1824
                1 = progress bar, 2 = one line per epoch. Default: 2.
1825
            num_workers (int, optional): The number of subprocess to load data,
1826 1827 1828
                0 for no subprocess used and loading data in main process. When
                train_data and eval_data are both the instance of Dataloader,
                this parameter will be ignored. Default: 0.
1829
            callbacks (Callback|None, optional): A list of `Callback` instances to apply
1830 1831
                during training. If None, `ProgBarLogger` and `ModelCheckpoint`
                are automatically inserted. Default: None.
1832 1833 1834
            num_iters (int|None, optional): The number of iterations to evaluate the model.
                If None, evaluate on whole input dataset, otherwise, evaluate `num_iters` times.
                Default: None.
1835 1836 1837 1838 1839
        Returns:
            dict: Result of metric. The key is the names of Metric,
                value is a scalar or numpy.array.

        Examples:
1840 1841

          .. code-block:: python
1842

1843 1844 1845
                import paddle
                import paddle.vision.transforms as T
                from paddle.static import InputSpec
1846

1847 1848 1849 1850 1851 1852
                # declarative mode
                transform = T.Compose([
                        T.Transpose(),
                        T.Normalize([127.5], [127.5])
                    ])
                val_dataset = paddle.vision.datasets.MNIST(mode='test', transform=transform)
1853

1854 1855 1856 1857 1858 1859 1860
                input = InputSpec([-1, 1, 28, 28], 'float32', 'image')
                label = InputSpec([None, 1], 'int64', 'label')
                model = paddle.Model(paddle.vision.models.LeNet(), input, label)
                model.prepare(metrics=paddle.metric.Accuracy())
                result = model.evaluate(val_dataset, batch_size=64)
                print(result)
                # {'acc': 0.0699}
1861 1862 1863
        """

        if eval_data is not None and isinstance(eval_data, Dataset):
1864 1865 1866 1867 1868 1869 1870
            eval_sampler = DistributedBatchSampler(eval_data,
                                                   batch_size=batch_size)
            eval_loader = DataLoader(eval_data,
                                     batch_sampler=eval_sampler,
                                     places=self._place,
                                     num_workers=num_workers,
                                     return_list=True)
1871 1872 1873 1874 1875 1876 1877 1878 1879 1880
        else:
            eval_loader = eval_data

        self._test_dataloader = eval_loader

        cbks = config_callbacks(
            callbacks,
            model=self,
            log_freq=log_freq,
            verbose=verbose,
1881 1882
            metrics=self._metrics_name(),
        )
1883 1884

        eval_steps = self._len_data_loader(eval_loader)
1885
        self.num_iters = num_iters
1886 1887
        if num_iters is not None and isinstance(num_iters, int) and isinstance(
                eval_steps, int):
1888 1889 1890
            assert num_iters > 0, "num_iters must be greater than 0!"
            eval_steps = min(num_iters, eval_steps)
            self.num_iters = eval_steps
1891 1892 1893 1894
        cbks.on_begin('eval', {
            'steps': eval_steps,
            'metrics': self._metrics_name()
        })
1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912

        logs = self._run_one_epoch(eval_loader, cbks, 'eval')

        cbks.on_end('eval', logs)

        self._test_dataloader = None

        eval_result = {}
        for k in self._metrics_name():
            eval_result[k] = logs[k]

        return eval_result

    def predict(self,
                test_data,
                batch_size=1,
                num_workers=0,
                stack_outputs=False,
1913
                verbose=1,
1914 1915 1916 1917 1918 1919 1920 1921
                callbacks=None):
        """
        Compute the output predictions on testing data.

        Args:
            test_data (Dataset|DataLoader): An iterable data loader is used for
                predict. An instance of paddle.io.Dataset or paddle.io.Dataloader
                is recomended.
1922 1923 1924 1925 1926 1927 1928
            batch_size (int, optional): The batch size of test_data. When test_data is the
                instance of Dataloader, this argument will be ignored. Default: 1.
            num_workers (int, optional): The number of subprocess to load data, 0 for no subprocess 
                used and loading data in main process. When test_data is the instance of Dataloader,
                this argument will be ignored. Default: 0.
            stack_outputs (bool, optional): Whether stack output field like a batch, as for an output
                field of a sample is in shape [X, Y], test_data contains N samples, predict
1929
                output field will be in shape [N, X, Y] if stack_output is True, and will
1930
                be a length N list in shape [[X, Y], [X, Y], ..., [X, Y]] if stack_outputs
1931 1932
                is False. stack_outputs as False is used for LoDTensor output situation,
                it is recommended set as True if outputs contains no LoDTensor. Default: False.
1933
            verbose (int, optional): The verbosity mode, should be 0, 1, or 2. 0 = silent,
1934
                1 = progress bar, 2 = one line per batch. Default: 1.
1935
            callbacks(Callback, optional): A Callback instance, Default: None.
1936

1937 1938 1939 1940
        Returns:
            list: output of models.

        Examples:
1941 1942

          .. code-block:: python
1943

1944 1945 1946
                import numpy as np
                import paddle
                from paddle.static import InputSpec
1947

1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
                class MnistDataset(paddle.vision.datasets.MNIST):
                    def __init__(self, mode, return_label=True):
                        super(MnistDataset, self).__init__(mode=mode)
                        self.return_label = return_label

                    def __getitem__(self, idx):
                        img = np.reshape(self.images[idx], [1, 28, 28])
                        if self.return_label:
                            return img, np.array(self.labels[idx]).astype('int64')
                        return img,

                    def __len__(self):
                        return len(self.images)

                test_dataset = MnistDataset(mode='test', return_label=False)

                # imperative mode
                input = InputSpec([-1, 1, 28, 28], 'float32', 'image')
                model = paddle.Model(paddle.vision.models.LeNet(), input)
                model.prepare()
                result = model.predict(test_dataset, batch_size=64)
                print(len(result[0]), result[0][0].shape)
                # 157 (64, 10)

                # declarative mode
                device = paddle.set_device('cpu')
                paddle.enable_static()
                input = InputSpec([-1, 1, 28, 28], 'float32', 'image')
                model = paddle.Model(paddle.vision.models.LeNet(), input)
                model.prepare()

                result = model.predict(test_dataset, batch_size=64)
                print(len(result[0]), result[0][0].shape)
                # 157 (64, 10)
1982 1983 1984
        """

        if test_data is not None and isinstance(test_data, Dataset):
1985 1986 1987 1988 1989 1990 1991
            test_sampler = DistributedBatchSampler(test_data,
                                                   batch_size=batch_size)
            test_loader = DataLoader(test_data,
                                     batch_sampler=test_sampler,
                                     places=self._place,
                                     num_workers=num_workers,
                                     return_list=True)
1992 1993 1994 1995 1996
        else:
            test_loader = test_data

        self._test_dataloader = test_loader

1997
        cbks = config_callbacks(callbacks, model=self, verbose=verbose)
1998 1999 2000 2001

        test_steps = self._len_data_loader(test_loader)
        logs = {'steps': test_steps}

2002
        cbks.on_begin('predict', logs)
2003 2004 2005

        outputs = []

2006
        logs, outputs = self._run_one_epoch(test_loader, cbks, 'predict')
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

        outputs = list(zip(*outputs))

        # NOTE: for lod tensor output, we should not stack outputs
        # for stacking may lose its detail info
        if stack_outputs:
            outputs = [np.vstack(outs) for outs in outputs]

        self._test_dataloader = None

2017
        cbks.on_end('predict', logs)
2018 2019
        return outputs

2020
    def _save_inference_model(self, path):
2021
        """
2022
        Save inference model can be used in static or dynamic mode.
2023 2024

        Args:
2025 2026
            path (str): The path prefix to save model. The format is
                ``dirname/file_prefix`` or ``file_prefix``.
2027
        Returns:
2028
            None
2029 2030
        """

J
Jiabin Yang 已提交
2031
        if fluid._non_static_mode():
2032 2033
            with fluid.framework._dygraph_guard(None):
                layer = self.network
L
LiuChiachi 已提交
2034
                if self._input_info is None:  # No provided or inferred
2035
                    raise RuntimeError(
L
LiuChiachi 已提交
2036
                        "Saving inference model needs 'inputs' or running before saving. Please specify 'inputs' in Model initialization or input training data and perform a training for shape derivation."
2037 2038 2039 2040
                    )
                if self._is_shape_inferred:
                    warnings.warn(
                        "'inputs' was not specified when Model initialization, so the input shape to be saved will be the shape derived from the user's actual inputs. The input shape to be saved is %s. For saving correct input shapes, please provide 'inputs' for Model initialization."
L
LiuChiachi 已提交
2041 2042
                        % self._input_info[0])

2043
                paddle.jit.save(layer, path, input_spec=self._inputs)
2044

2045
        else:
2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061
            # path check
            file_prefix = os.path.basename(path)
            if file_prefix == "":
                raise ValueError(
                    "The input path MUST be format of dirname/file_prefix "
                    "[dirname\\file_prefix in Windows system], but received "
                    "file_prefix is empty string.")

            dirname = os.path.dirname(path)
            if dirname and not os.path.exists(dirname):
                os.makedirs(dirname)

            model_path = dirname
            model_filename = file_prefix + INFER_MODEL_SUFFIX
            params_filename = file_prefix + INFER_PARAMS_SUFFIX

2062 2063 2064 2065 2066 2067 2068 2069 2070
            prog = self._adapter._progs.get('test', None)
            assert prog, \
                "Model is not ready, please call `model.prepare()` first"

            infer_prog = prog.clone(for_test=True)

            input_names = [v.name for v in self._adapter._input_vars['test']]
            endpoints = self._adapter._endpoints['test']['output']

2071 2072 2073 2074 2075 2076 2077
            fluid.io.save_inference_model(model_path,
                                          input_names,
                                          endpoints,
                                          self._adapter._executor,
                                          main_program=infer_prog,
                                          model_filename=model_filename,
                                          params_filename=params_filename)
2078

L
update  
lyuwenyu 已提交
2079
    def _run_one_epoch(
2080 2081 2082 2083 2084 2085
        self,
        data_loader,
        callbacks,
        mode,
        logs={},
    ):
2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
        outputs = []
        for step, data in enumerate(data_loader):
            # data might come from different types of data_loader and have
            # different format, as following:
            # 1. DataLoader in static graph:
            #    [[input1, input2, ..., label1, lable2, ...]]
            # 2. DataLoader in dygraph
            #    [input1, input2, ..., label1, lable2, ...]
            # 3. custumed iterator yield concated inputs and labels:
            #   [input1, input2, ..., label1, lable2, ...]
2096
            # 4. custumed iterator yield separated inputs and labels:
2097 2098 2099 2100 2101
            #   ([input1, input2, ...], [label1, lable2, ...])
            # To handle all of these, flatten (nested) list to list.
            data = flatten(data)
            # LoDTensor.shape is callable, where LoDTensor comes from
            # DataLoader in static graph
2102

2103 2104
            batch_size = data[0].shape()[0] if callable(
                data[0].shape) else data[0].shape[0]
2105 2106 2107

            callbacks.on_batch_begin(mode, step, logs)

2108
            if mode != 'predict':
L
lyuwenyu 已提交
2109 2110
                _inputs = [data[:len(self._inputs)], data[len(self._inputs):]]
                if mode == 'train':
2111 2112
                    _inputs.append((step + 1) % self._accumulate == 0
                                   or step + 1 == len(data_loader))
L
update  
lyuwenyu 已提交
2113

L
lyuwenyu 已提交
2114
                outs = getattr(self, mode + '_batch')(*_inputs)
L
update  
lyuwenyu 已提交
2115

2116
                if self._metrics and self._loss:
2117
                    metrics = [[l[0] for l in outs[0]]]
2118
                elif self._loss:
2119 2120 2121
                    metrics = [[l[0] for l in outs]]
                else:
                    metrics = []
2122 2123 2124 2125 2126 2127 2128 2129 2130 2131

                # metrics
                for metric in self._metrics:
                    res = metric.accumulate()
                    metrics.extend(to_list(res))

                assert len(self._metrics_name()) == len(metrics)
                for k, v in zip(self._metrics_name(), metrics):
                    logs[k] = v
            else:
L
LielinJiang 已提交
2132
                if self._inputs is not None:
2133
                    outs = self.predict_batch(data[:len(self._inputs)])
L
LielinJiang 已提交
2134
                else:
2135
                    outs = self.predict_batch(data)
L
LielinJiang 已提交
2136

2137 2138 2139 2140 2141 2142 2143 2144 2145 2146
                outputs.append(outs)

            logs['step'] = step
            if mode == 'train' or self._adapter._merge_count.get(
                    mode + '_batch', 0) <= 0:
                logs['batch_size'] = batch_size * ParallelEnv().nranks
            else:
                logs['batch_size'] = self._adapter._merge_count[mode + '_batch']

            callbacks.on_batch_end(mode, step, logs)
2147 2148
            if hasattr(self, 'num_iters') and self.num_iters is not None:
                self.num_iters -= 1
2149 2150 2151
                if self.num_iters <= 0:
                    self.stop_training = True
                    del self.num_iters
2152
                    break
2153 2154
        self._reset_metrics()

2155
        if mode == 'predict':
2156 2157 2158
            return logs, outputs
        return logs

L
LielinJiang 已提交
2159
    def summary(self, input_size=None, dtype=None):
L
LielinJiang 已提交
2160 2161 2162 2163 2164 2165 2166 2167
        """Prints a string summary of the network.

        Args:
            input_size (tuple|InputSpec|list[tuple|InputSpec], optional): size of input tensor. 
                    if not set, input_size will get from ``self._inputs`` if network only have 
                    one input, input_size can be tuple or InputSpec. if model have multiple 
                    input, input_size must be a list which contain every input's shape. 
                    Default: None.
2168
            dtype (str, optional): if dtype is None, 'float32' will be used, Default: None.
L
LielinJiang 已提交
2169 2170 2171 2172 2173 2174

        Returns:
            Dict: a summary of the network including total params and total trainable params.

        Examples:
            .. code-block:: python
2175 2176 2177 2178 2179 2180

                import paddle
                from paddle.static import InputSpec

                input = InputSpec([None, 1, 28, 28], 'float32', 'image')
                label = InputSpec([None, 1], 'int64', 'label')
L
LielinJiang 已提交
2181

2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192
                model = paddle.Model(paddle.vision.models.LeNet(),
                    input, label)
                optim = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=model.parameters())
                model.prepare(
                    optim,
                    paddle.nn.CrossEntropyLoss())

                params_info = model.summary()
                print(params_info)
                # {'total_params': 61610, 'trainable_params': 61610}
L
LielinJiang 已提交
2193 2194

        """
2195 2196
        assert (input_size is not None or self._inputs
                is not None), "'input_size' or 'self._input' must be set"
2197 2198 2199 2200
        if input_size is not None:
            _input_size = input_size
        else:
            _input_size = self._inputs
2201
        return summary(self.network, _input_size, dtypes=dtype)
L
LielinJiang 已提交
2202

L
LiuChiachi 已提交
2203
    def _verify_spec(self, specs, shapes=None, dtypes=None, is_input=False):
2204 2205
        out_specs = []

2206 2207 2208 2209 2210 2211
        if specs is None:
            # Note(Aurelius84): If not specific specs of `Input`, using argument names of `forward` function
            # to generate `Input`. But how can we know the actual shape of each input tensor?

            if is_input:
                arg_names = extract_args(self.network.forward)[1:]
L
LiuChiachi 已提交
2212
                # While Saving inference model in dygraph, and providing inputs only in running.
J
Jiabin Yang 已提交
2213
                if shapes is not None and dtypes is not None and fluid._non_static_mode(
L
LiuChiachi 已提交
2214
                ):
2215
                    out_specs = [
2216
                        Input(name=n, dtype=dtypes[i], shape=shapes[i])
2217 2218 2219 2220 2221 2222 2223
                        for i, n in enumerate(arg_names)
                    ]
                else:
                    out_specs = [Input(name=n, shape=[None]) for n in arg_names]
            else:
                out_specs = to_list(specs)
        elif isinstance(specs, dict):
2224 2225 2226 2227 2228
            assert is_input is False
            out_specs = [
                specs[n] for n in extract_args(self.network.forward)
                if n != 'self'
            ]
2229 2230 2231 2232 2233 2234 2235 2236
        else:
            out_specs = to_list(specs)
        # Note: checks each element has specificed `name`.
        if out_specs is not None:
            for i, spec in enumerate(out_specs):
                assert isinstance(spec, Input)
                if spec.name is None:
                    raise ValueError(
2237 2238
                        "Requires Input[{}].name != None, but receive `None` with {}."
                        .format(i, spec))
2239 2240 2241

        return out_specs

2242 2243 2244 2245 2246
    def _reset_metrics(self):
        for metric in self._metrics:
            metric.reset()

    def _metrics_name(self):
2247
        metrics_name = ['loss'] if self._loss else []
2248 2249 2250 2251 2252 2253 2254 2255 2256 2257
        for m in self._metrics:
            metrics_name.extend(to_list(m.name()))
        return metrics_name

    def _len_data_loader(self, data_loader):
        try:
            steps = len(data_loader)
        except Exception:
            steps = None
        return steps
L
LiuChiachi 已提交
2258 2259 2260

    def _update_inputs(self):
        "Update self._inputs according to given inputs."
L
LiuChiachi 已提交
2261 2262 2263 2264 2265
        self._input_info = self._adapter._input_info
        if self._input_info is not None and len(self._input_info) == 2:
            self._inputs = self._verify_spec(None, self._input_info[0],
                                             self._input_info[1], True)
            self._is_shape_inferred = True