matmul_op.cc 31.5 KB
Newer Older
1
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserved.
M
Markus Kliegl 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include <algorithm>
Y
Yu Yang 已提交
16
#include <utility>
17
#include <vector>
Y
Yu Yang 已提交
18 19
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/blas.h"
20 21 22
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
M
Markus Kliegl 已提交
23 24 25

namespace paddle {
namespace operators {
26 27 28 29 30 31 32 33 34 35 36

/**
 * Printing shape information into a string is easy to use.
 */
inline static std::string DumpMatrixShape(const math::MatDescriptor &desc) {
  std::stringstream buffer;
  buffer << "[" << desc.batch_size_ << ", " << desc.height_ << ", "
         << desc.width_ << "]";
  return buffer.str();
}

Y
Yu Yang 已提交
37 38 39 40
/**
 * Get row matrix shape from a vector shape. If the rank of x_dim > 1, the
 * original x_dim is returned.
 */
Y
yuyang18 已提交
41
static framework::DDim RowMatrixFromVector(const framework::DDim &x_dim) {
Y
Yu Yang 已提交
42 43 44 45 46 47 48 49 50 51
  if (x_dim.size() > 1) {
    return x_dim;
  }
  return framework::make_ddim({1, x_dim[0]});
}

/**
 * Get column matrix shape from a vector shape. If the ran of y_dim > 1, the
 * original y_dim is returned.
 */
Y
yuyang18 已提交
52
static framework::DDim ColumnMatrixFromVector(const framework::DDim &y_dim) {
Y
Yu Yang 已提交
53 54 55 56 57 58 59 60 61
  if (y_dim.size() > 1) {
    return y_dim;
  }
  return framework::make_ddim({y_dim[0], 1});
}

template <typename DeviceContext, typename T>
class MatMulKernel : public framework::OpKernel<T> {
 public:
Y
yuyang18 已提交
62
  void Compute(const framework::ExecutionContext &context) const override {
63 64 65 66
    auto &x = GET_DATA_SAFELY(context.Input<framework::Tensor>("X"), "Input",
                              "X", "MatMul");
    auto &y = GET_DATA_SAFELY(context.Input<framework::Tensor>("Y"), "Input",
                              "Y", "MatMul");
Y
yuyang18 已提交
67
    auto *out = context.Output<framework::Tensor>("Out");
Y
Yu Yang 已提交
68 69 70 71 72 73 74
    out->mutable_data<T>(context.GetPlace());

    auto blas = math::GetBlas<DeviceContext, T>(context);
    auto mat_dim_a = math::CreateMatrixDescriptor(
        RowMatrixFromVector(x.dims()), 0, context.Attr<bool>("transpose_X"));
    auto mat_dim_b = math::CreateMatrixDescriptor(
        ColumnMatrixFromVector(y.dims()), 0, context.Attr<bool>("transpose_Y"));
S
sneaxiy 已提交
75
    auto scale = static_cast<T>(context.Attr<float>("alpha"));
76

77 78 79 80 81 82 83 84 85 86 87 88 89 90
    int head_number = 1;
#if defined(PADDLE_WITH_MKLML) && !defined(PADDLE_WITH_CUDA)
    head_number = context.Attr<int>("head_number");
#endif

    const auto &x_dims = x.dims();
    const auto &y_dims = y.dims();
    if (head_number <= 1 && x_dims.size() == 3 && y_dims.size() <= 2) {
      // the transpose_X must be false, if is true, the transpose cost much time
      if (!context.Attr<bool>("transpose_X")) {
        mat_dim_a.height_ *= mat_dim_a.batch_size_;
        mat_dim_a.batch_size_ = 0;
      }
    }
91
#if defined(PADDLE_WITH_MKLML) && !defined(PADDLE_WITH_CUDA)
92 93 94
    bool split_vertical_y = (mat_dim_a.width_ != mat_dim_b.height_);

    if (head_number > 1) {
95
      blas.MatMulWithHead(x, mat_dim_a, y, mat_dim_b, scale, head_number, out,
96 97 98
                          T(0), split_vertical_y);
    } else {
      blas.MatMul(x, mat_dim_a, y, mat_dim_b, scale, out, T(0));
99 100
    }
#else
S
sneaxiy 已提交
101
    blas.MatMul(x, mat_dim_a, y, mat_dim_b, scale, out, T(0));
102
#endif
Y
Yu Yang 已提交
103 104 105 106 107
  }
};

// Reshape a rank-3 tensor from P x M x N to (P * M) x N.
// Identity op if the tensor is not of rank 3.
Y
yuyang18 已提交
108
static framework::Tensor FoldInitDims(const framework::Tensor &input) {
Y
Yu Yang 已提交
109 110 111 112 113 114 115 116 117 118 119 120
  auto output = input;
  auto in_dims = input.dims();
  if (in_dims.size() == 3) {
    output.Resize({in_dims[0] * in_dims[1], in_dims[2]});
  }
  return output;
}

// Reshape a rank-3 tensor from P x M x N to M x (P * N).
// (Warning: This requires transposing data and writes into new memory.)
// Identity op if the tensor is not of rank 3.
template <typename DeviceContext, typename T>
Y
yuyang18 已提交
121 122
static framework::Tensor FoldHeadAndLastDims(const DeviceContext &context,
                                             const framework::Tensor &input) {
Y
Yu Yang 已提交
123 124 125 126 127 128 129 130 131 132 133
  auto in_dims = input.dims();
  if (in_dims.size() != 3) {
    return input;
  }
  framework::Tensor output;
  output.Resize({in_dims[1], in_dims[0], in_dims[2]});
  output.mutable_data<T>(context.GetPlace());
  std::vector<int> axis = {1, 0, 2};
  math::Transpose<DeviceContext, T, 3> trans;
  trans(context, input, &output, axis);
  output.Resize({in_dims[1], in_dims[0] * in_dims[2]});
M
Markus Kliegl 已提交
134

Y
Yu Yang 已提交
135 136 137 138 139 140 141 142 143 144
  return output;
}

/**
 * Reshape a tensor to 3-D or 2-D tensor by matrix descriptor.
 *
 * The shape would be [BatchSize, H, W] or [H, W].
 * If transposed, `H,W` will be swapped.
 */
static void ReshapeTensorIntoMatrixSequence(
Y
yuyang18 已提交
145
    framework::Tensor *x, const math::MatDescriptor &descriptor) {
Y
Yu Yang 已提交
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
  int64_t h, w;
  h = descriptor.height_;
  w = descriptor.width_;
  if (descriptor.trans_) {
    std::swap(w, h);
  }
  if (descriptor.batch_size_) {
    x->Resize({descriptor.batch_size_, h, w});
  } else {
    x->Resize({h, w});
  }
}

/**
 * Reshape the x,y,out tensor to 3-D or 2-D tensor by matrix descriptor
 * Out = matmul(x, y)
 *
 * This method will first calculate X,Y matrix sequence, and then calculate
 * the out shape.
 *
 * Assume X = [BatchSize, H1, W1], Y = [BatchSize, H2, W2]
 * The out = [BatchSize, H1, W2]
 *
 * If there is no batch size in `X` and `Y`, the out will be [H1, W2]
 * If any of `X` and `Y` has batch size BatchSize, the out will have the
 * BatchSize.
 */
Y
yuyang18 已提交
173 174 175
static void ReshapeXYOutIntoMatrixSequence(framework::Tensor *x,
                                           framework::Tensor *y,
                                           framework::Tensor *out, bool trans_x,
Y
Yu Yang 已提交
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
                                           bool trans_y) {
  auto x_dim = RowMatrixFromVector(x->dims());
  auto y_dim = ColumnMatrixFromVector(y->dims());
  auto mat_dim_x = math::CreateMatrixDescriptor(x_dim, 0, trans_x);
  auto mat_dim_y = math::CreateMatrixDescriptor(y_dim, 0, trans_y);
  if (mat_dim_x.batch_size_ == 0 && mat_dim_y.batch_size_ == 0) {
    out->Resize({mat_dim_x.height_, mat_dim_y.width_});
  } else {
    out->Resize({std::max(mat_dim_x.batch_size_, mat_dim_y.batch_size_),
                 mat_dim_x.height_, mat_dim_y.width_});
  }

  ReshapeTensorIntoMatrixSequence(x, mat_dim_x);
  ReshapeTensorIntoMatrixSequence(y, mat_dim_y);
}

// Using dimensional constraints on matrix multiplication, it is
// straight-forward to check the following table for when X and Y
// are both matrices.
//
// transpose_X | False    | True     | False    | True
// transpose_Y | False    | False    | True     | True
// -----------+----------+----------+----------+-----------
//        dX = | dOut Y^T | Y dOut^T | dOut Y   | Y^T dOut^T
//        dY = | X^T dOut | X dOut   | dOut^T X | dOut^T X^T
//
// When X is a vector of size K, we treat it instead as a matrix of shape
// (1, K). Similarly, when Y is a vector of size K, we treat it instead as
// a matrix of shape (K, 1).
//
// When X and Y are both 3-dimensional tensors, then the first dimension
// the batch dimension can be ignored and the exact same formulas apply
// as for two matrices.
//
// Finally, when, e.g., X is a 3-dimensional tensor but Y is a matrix, we end
// up with formulas like
//
//   dY_{ij} = \sum_{p, m} X_{pmi} dOut_{pmj}
//
// To handle this sort of scenario, we reshape X : P x M x K, dOut: P x M x N
// to X: (P * M) x K, dOut: (P * M) x N.
template <typename DeviceContext, typename T>
class MatMulGradKernel : public framework::OpKernel<T> {
 public:
Y
yuyang18 已提交
220 221 222 223
  void MatMul(const framework::ExecutionContext &context,
              const framework::Tensor &a, bool trans_a,
              const framework::Tensor &b, bool trans_b,
              framework::Tensor *out) const {
Y
Yu Yang 已提交
224 225 226 227
    out->mutable_data<T>(context.GetPlace());
    auto blas = math::GetBlas<DeviceContext, T>(context);
    auto mat_dim_a = math::CreateMatrixDescriptor(a.dims(), 0, trans_a);
    auto mat_dim_b = math::CreateMatrixDescriptor(b.dims(), 0, trans_b);
228 229 230 231 232 233 234 235 236 237 238 239 240

    int head_number = 1;
#if defined(PADDLE_WITH_MKLML) && !defined(PADDLE_WITH_CUDA)
    head_number = context.Attr<int>("head_number");
#endif

    if (head_number <= 1 && a.dims().size() == 3 && b.dims().size() <= 2) {
      // the transpose_X must be false, if is true, the transpose cost much time
      if (!trans_a) {
        mat_dim_a.height_ *= mat_dim_a.batch_size_;
        mat_dim_a.batch_size_ = 0;
      }
    }
S
sneaxiy 已提交
241
    blas.MatMul(a, mat_dim_a, b, mat_dim_b,
S
sneaxiy 已提交
242
                static_cast<T>(context.Attr<float>("alpha")), out, T(0));
Y
Yu Yang 已提交
243 244
  }

Y
yuyang18 已提交
245 246 247
  void CalcInputGrad(const framework::ExecutionContext &context,
                     const framework::Tensor &a, bool trans_a,
                     bool is_fold_init_dims_a, const framework::Tensor &b,
Y
Yu Yang 已提交
248
                     bool trans_b, bool is_fold_init_dims_b,
Y
yuyang18 已提交
249
                     framework::Tensor *out) const {
Y
Yu Yang 已提交
250 251 252 253 254 255
    if (out == nullptr) return;
    bool need_combine = (a.dims().size() == 3 || b.dims().size() == 3) &&
                        out->dims().size() == 2;
    if (!need_combine) {
      MatMul(context, a, trans_a, b, trans_b, out);
    } else {
Y
yuyang18 已提交
256
      auto &ctx = context.template device_context<DeviceContext>();
Y
Yu Yang 已提交
257 258 259 260 261 262 263 264 265 266
      MatMul(context, is_fold_init_dims_a
                          ? FoldInitDims(a)
                          : FoldHeadAndLastDims<DeviceContext, T>(ctx, a),
             trans_a, is_fold_init_dims_b
                          ? FoldInitDims(b)
                          : FoldHeadAndLastDims<DeviceContext, T>(ctx, b),
             trans_b, out);
    }
  }

Y
yuyang18 已提交
267
  void Compute(const framework::ExecutionContext &context) const override {
Y
Yu Yang 已提交
268 269 270 271
    auto x = *context.Input<framework::Tensor>("X");
    auto y = *context.Input<framework::Tensor>("Y");
    auto dout =
        *context.Input<framework::Tensor>(framework::GradVarName("Out"));
Y
yuyang18 已提交
272 273
    auto *dx = context.Output<framework::Tensor>(framework::GradVarName("X"));
    auto *dy = context.Output<framework::Tensor>(framework::GradVarName("Y"));
Y
Yu Yang 已提交
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
    bool transpose_x = context.Attr<bool>("transpose_X");
    bool transpose_y = context.Attr<bool>("transpose_Y");

    ReshapeXYOutIntoMatrixSequence(&x, &y, &dout, transpose_x, transpose_y);
    framework::DDim dx_dims;
    if (dx) {
      dx_dims = dx->dims();
      if (dx_dims != x.dims()) {
        dx->Resize(x.dims());
      }
    }

    framework::DDim dy_dims;
    if (dy) {
      dy_dims = dy->dims();
      if (dy_dims != y.dims()) {
        dy->Resize(y.dims());
      }
    }

    if (transpose_x && transpose_y) {
      CalcInputGrad(context, y, true, true, dout, true, false, dx);
      CalcInputGrad(context, dout, true, true, x, true, false, dy);
    } else if (transpose_x) {
      CalcInputGrad(context, y, false, false, dout, true, false, dx);
      CalcInputGrad(context, x, false, false, dout, false, true, dy);
    } else if (transpose_y) {
      CalcInputGrad(context, dout, false, false, y, false, true, dx);
      CalcInputGrad(context, dout, true, true, x, false, true, dy);
    } else {
      CalcInputGrad(context, dout, false, false, y, true, false, dx);
      CalcInputGrad(context, x, true, true, dout, false, true, dy);
    }

    if (dx) {
      if (dx_dims != x.dims()) {
        dx->Resize(dx_dims);
      }
    }
    if (dy) {
      if (dy_dims != y.dims()) {
        dy->Resize(dy_dims);
      }
    }
  }
};
M
Markus Kliegl 已提交
320

321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
template <typename DeviceContext, typename T>
class MatMulDoubleGradKernel : public framework::OpKernel<T> {
 public:
  void MatMul(const framework::ExecutionContext &context,
              const framework::Tensor &a, bool trans_a,
              const framework::Tensor &b, bool trans_b, bool flag,
              framework::Tensor *out) const {
    out->mutable_data<T>(context.GetPlace());
    auto blas = math::GetBlas<DeviceContext, T>(context);
    auto mat_dim_a = math::CreateMatrixDescriptor(a.dims(), 0, trans_a);
    auto mat_dim_b = math::CreateMatrixDescriptor(b.dims(), 0, trans_b);

    int head_number = 1;
#if defined(PADDLE_WITH_MKLML) && !defined(PADDLE_WITH_CUDA)
    head_number = context.Attr<int>("head_number");
#endif

    if (head_number <= 1 && a.dims().size() == 3 && b.dims().size() <= 2) {
      // the transpose_X must be false, if is true, the transpose cost much time
      if (!trans_a) {
        mat_dim_a.height_ *= mat_dim_a.batch_size_;
        mat_dim_a.batch_size_ = 0;
      }
    }
    blas.MatMul(a, mat_dim_a, b, mat_dim_b,
                static_cast<T>(context.Attr<float>("alpha")), out,
                static_cast<T>(flag));
  }

  void CalcInputGrad(const framework::ExecutionContext &context,
                     const framework::Tensor &a, bool trans_a,
                     bool is_fold_init_dims_a, const framework::Tensor &b,
                     bool trans_b, bool is_fold_init_dims_b, bool flag,
                     framework::Tensor *out) const {
    if (out == nullptr) return;
    bool need_combine = (a.dims().size() == 3 || b.dims().size() == 3) &&
                        out->dims().size() == 2;
    if (!need_combine) {
      MatMul(context, a, trans_a, b, trans_b, flag, out);
    } else {
      auto &ctx = context.template device_context<DeviceContext>();
      MatMul(context, is_fold_init_dims_a
                          ? FoldInitDims(a)
                          : FoldHeadAndLastDims<DeviceContext, T>(ctx, a),
             trans_a, is_fold_init_dims_b
                          ? FoldInitDims(b)
                          : FoldHeadAndLastDims<DeviceContext, T>(ctx, b),
             trans_b, flag, out);
    }
  }

  void Compute(const framework::ExecutionContext &context) const override {
    auto x = *context.Input<framework::Tensor>("X");
    auto y = *context.Input<framework::Tensor>("Y");
    auto dout = *context.Input<framework::LoDTensor>("DOut");
    auto *ddx = context.Input<framework::LoDTensor>("DDX");
    auto *ddy = context.Input<framework::LoDTensor>("DDY");

    auto *dx = context.Output<framework::LoDTensor>("DX");
    auto *dy = context.Output<framework::LoDTensor>("DY");
    auto *ddout = context.Output<framework::LoDTensor>("DDOut");

    bool transpose_x = context.Attr<bool>("transpose_X");
    bool transpose_y = context.Attr<bool>("transpose_Y");

    ReshapeXYOutIntoMatrixSequence(&x, &y, &dout, transpose_x, transpose_y);

    framework::DDim dx_dims;
    if (dx) {
      dx_dims = dx->dims();
      if (dx_dims != x.dims()) {
        dx->Resize(x.dims());
      }
    }

    framework::DDim dy_dims;
    if (dy) {
      dy_dims = dy->dims();
      if (dy_dims != y.dims()) {
        dy->Resize(y.dims());
      }
    }

    framework::DDim ddout_dims;
    if (ddout) {
      ddout_dims = ddout->dims();
      if (ddout_dims != dout.dims()) {
        ddout->Resize(dout.dims());
      }
    }

    bool ddout_flag = false;
    if (ddx) {
      auto ddx_mat = *ddx;
      if (ddx_mat.dims() != x.dims()) {
        ddx_mat.Resize(x.dims());
      }
      if (dy) {
        if (transpose_x && transpose_y) {
          // dy = dout' * ddx'
          CalcInputGrad(context, dout, true, true, ddx_mat, true, false, false,
                        dy);
        } else if (transpose_x) {
          // dy = ddx * dout
          CalcInputGrad(context, ddx_mat, false, false, dout, false, true,
                        false, dy);
        } else if (transpose_y) {
          // dy = dout' * ddx
          CalcInputGrad(context, dout, true, true, ddx_mat, false, true, false,
                        dy);
        } else {
          // dy = ddx' * dout
          CalcInputGrad(context, ddx_mat, true, true, dout, false, true, false,
                        dy);
        }
      }

      if (ddout) {
        CalcInputGrad(context, ddx_mat, transpose_x, true, y, transpose_y,
                      false, ddout_flag, ddout);
        ddout_flag = true;
      }
    }

    if (ddy) {
      auto ddy_mat = *ddy;
      if (ddy_mat.dims() != y.dims()) {
        ddy_mat.Resize(y.dims());
      }
      if (dx) {
        if (transpose_x && transpose_y) {
          // dx = ddy' * dout'
          CalcInputGrad(context, ddy_mat, true, true, dout, true, false, false,
                        dx);
        } else if (transpose_x) {
          // dx = ddy * dout'
          CalcInputGrad(context, ddy_mat, false, false, dout, true, false,
                        false, dx);
        } else if (transpose_y) {
          // dx = dout * ddy
          CalcInputGrad(context, dout, false, false, ddy_mat, false, true,
                        false, dx);
        } else {
          // dx = dout * ddy'
          CalcInputGrad(context, dout, false, false, ddy_mat, true, false,
                        false, dx);
        }
      }

      if (ddout) {
        CalcInputGrad(context, x, transpose_x, true, ddy_mat, transpose_y,
                      false, ddout_flag, ddout);
      }
    }

    if (dx) {
      if (dx_dims != x.dims()) {
        dx->Resize(dx_dims);
      }
    }

    if (dy) {
      if (dy_dims != y.dims()) {
        dy->Resize(dy_dims);
      }
    }

    if (ddout) {
      if (ddout_dims != dout.dims()) {
        ddout->Resize(ddout_dims);
      }
    }
  }
};

M
Markus Kliegl 已提交
496 497 498 499 500
class MatMulOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
Y
yuyang18 已提交
501
  void InferShape(framework::InferShapeContext *context) const override {
502 503 504
    OP_INOUT_CHECK(context->HasInput("X"), "Input", "X", "matmul");
    OP_INOUT_CHECK(context->HasInput("Y"), "Input", "Y", "matmul");
    OP_INOUT_CHECK(context->HasOutput("Out"), "Output", "Out", "matmul");
M
Markus Kliegl 已提交
505 506 507 508

    auto dim_x = context->GetInputDim("X");
    auto dim_y = context->GetInputDim("Y");

Y
Yu Yang 已提交
509 510
    auto mat_dim_x =
        math::CreateMatrixDescriptor(RowMatrixFromVector(dim_x), 0,
Y
Yu Yang 已提交
511
                                     context->Attrs().Get<bool>("transpose_X"));
Y
Yu Yang 已提交
512 513
    auto mat_dim_y =
        math::CreateMatrixDescriptor(ColumnMatrixFromVector(dim_y), 0,
Y
Yu Yang 已提交
514
                                     context->Attrs().Get<bool>("transpose_Y"));
C
chengduoZH 已提交
515

516 517 518 519 520 521 522
    if (mat_dim_x.width_ == -1) {
      mat_dim_x.width_ = mat_dim_y.height_;
    }
    if (mat_dim_y.height_ == -1) {
      mat_dim_y.height_ = mat_dim_x.width_;
    }

P
phlrain 已提交
523
    if (context->IsRuntime()) {
524
      PADDLE_ENFORCE_EQ(
525 526
          mat_dim_x.batch_size_ == mat_dim_y.batch_size_ ||
              mat_dim_x.batch_size_ == 0 || mat_dim_y.batch_size_ == 0,
527 528 529 530 531 532
          true, platform::errors::InvalidArgument(
                    "The batch size of the two matrices should be equal, or "
                    "at least one is zero.\n"
                    "But received X's shape: %s, Y's shape: %s.",
                    DumpMatrixShape(mat_dim_x).c_str(),
                    DumpMatrixShape(mat_dim_y).c_str()));
P
phlrain 已提交
533
    }
534
    int64_t dim_out_y = mat_dim_y.width_;
535 536
#if defined(PADDLE_WITH_MKLML) && !defined(PADDLE_WITH_CUDA)
    int head_number = context->Attrs().Get<int>("head_number");
537
    bool split_vertical_y = (mat_dim_x.width_ != mat_dim_y.height_);
538 539 540
    if (context->IsRuntime()) {
      PADDLE_ENFORCE_LE(
          head_number, mat_dim_x.width_,
541 542 543 544 545
          platform::errors::InvalidArgument(
              "Unsatisfied mkl acceleration library requirements: "
              "The number of heads "
              "(%d) must be equal to X's width. But received X's shape: %s.",
              head_number, DumpMatrixShape(mat_dim_x).c_str()));
546 547 548 549

      if (!split_vertical_y && head_number > 0) {
        dim_out_y = head_number * mat_dim_y.width_;
      }
550
    }
551
#else
552 553 554 555 556 557
    PADDLE_ENFORCE_EQ(mat_dim_x.width_, mat_dim_y.height_,
                      platform::errors::InvalidArgument(
                          "Input X's width should be equal to the Y's height, "
                          "but received X's shape: [%s],"
                          "Y's shape: [%s].",
                          dim_x, dim_y));
558 559
#endif

560
    std::vector<int64_t> dim_out;
Y
Yu Yang 已提交
561 562 563
    if (mat_dim_x.batch_size_ != 0) {
      dim_out = framework::vectorize(dim_x);
      dim_out[dim_out.size() - 2] = mat_dim_x.height_;
564
      dim_out[dim_out.size() - 1] = dim_out_y;
Y
Yu Yang 已提交
565 566 567
    } else if (mat_dim_y.batch_size_ != 0) {
      dim_out = framework::vectorize(dim_y);
      dim_out[dim_out.size() - 2] = mat_dim_x.height_;
568
      dim_out[dim_out.size() - 1] = dim_out_y;
Y
Yu Yang 已提交
569
    } else {
570
      dim_out = {mat_dim_x.height_, dim_out_y};
M
Markus Kliegl 已提交
571 572
    }

Y
Yu Yang 已提交
573 574 575
    if (dim_x.size() == 1 && dim_out[dim_out.size() - 2] == 1) {
      std::swap(dim_out[dim_out.size() - 2], dim_out[dim_out.size() - 1]);
      dim_out.resize(dim_out.size() - 1);
M
Markus Kliegl 已提交
576 577
    }

Y
Yu Yang 已提交
578 579
    if (dim_y.size() == 1 && dim_out[dim_out.size() - 1] == 1) {
      dim_out.resize(dim_out.size() - 1);
M
Markus Kliegl 已提交
580 581
    }

Y
Yu Yang 已提交
582 583
    if (dim_out.empty()) {
      dim_out = {1};
M
Markus Kliegl 已提交
584
    }
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623

    framework::DDim ddim_out = framework::make_ddim(dim_out);

#ifdef PADDLE_WITH_MKLDNN
    //  if mkldnn matmul+transpose+reshape fuse activated
    auto reshape_out =
        context->Attrs().Get<std::vector<int>>("fused_reshape_Out");
    auto transpose_out =
        context->Attrs().Get<std::vector<int>>("fused_transpose_Out");

    if (!reshape_out.empty() && !transpose_out.empty()) {
      auto reshape_out_size = reshape_out.size();
      auto transpose_out_size = transpose_out.size();
      PADDLE_ENFORCE_EQ(transpose_out_size, 4,
                        platform::errors::InvalidArgument(
                            "transpose_out supported rank is 4, "
                            "received %d",
                            transpose_out_size));
      const std::vector<int> supported_axis{0, 2, 1, 3};
      const bool supported_transpose_axis = std::equal(
          transpose_out.begin(), transpose_out.end(), supported_axis.begin());
      PADDLE_ENFORCE_EQ(
          supported_transpose_axis, true,
          platform::errors::InvalidArgument(
              "supported transpose axis for the fuse are {0, 2, 1, 3}"));
      PADDLE_ENFORCE_EQ(
          reshape_out_size, 3,
          platform::errors::InvalidArgument("reshape_out supported rank is 3, "
                                            "received %d",
                                            reshape_out_size));
      framework::DDim shape_out =
          ddim_out.transpose(transpose_out).reshape(reshape_out);
      context->SetOutputDim("Out", shape_out);
    } else {
      context->SetOutputDim("Out", ddim_out);
    }
#else
    context->SetOutputDim("Out", ddim_out);
#endif
M
Markus Kliegl 已提交
624 625
    context->ShareLoD("X", /*->*/ "Out");
  }
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");

#ifdef PADDLE_WITH_MKLDNN
    using mkldnn::memory;
    if (platform::CanMKLDNNBeUsed(ctx)) {
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
M
Markus Kliegl 已提交
641 642 643 644
};

class MatMulOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
645
  void Make() override {
M
Markus Kliegl 已提交
646 647 648 649 650 651 652 653 654 655 656
    AddInput("X", "The first input of MatMul op");
    AddInput("Y", "The second input of MatMul op");
    AddOutput("Out", "The output of MatMul op");
    AddAttr<bool>("transpose_X",
                  R"DOC(If true, use the transpose of `X`.
        )DOC")
        .SetDefault(false);
    AddAttr<bool>("transpose_Y",
                  R"DOC(If true, use the transpose of `Y`.
        )DOC")
        .SetDefault(false);
S
sneaxiy 已提交
657
    AddAttr<float>("alpha", "The scale of Out").SetDefault(1.0f);
658 659 660 661
    AddAttr<bool>(
        "use_mkldnn",
        "(bool, default false) Indicates if MKL-DNN kernel will be used")
        .SetDefault(false);
662 663 664 665 666 667 668 669 670 671
    AddAttr<std::vector<int>>(
        "fused_reshape_Out",
        R"DOC(When MKLDNN MatMul_transpose_reshape fuse activated, "
              "it's a shape atribute of fused reshape for `Out` output.)DOC")
        .SetDefault({});
    AddAttr<std::vector<int>>(
        "fused_transpose_Out",
        R"DOC(When MKLDNN MatMul_transpose_reshape fuse activated, "
              "it's a axis atribute of fused transpose for `Out` output.)DOC")
        .SetDefault({});
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
    /* int8 parameters */
    AddAttr<bool>("use_quantizer",
                  "(bool, default false) "
                  "Set to true for operators that should be quantized and use "
                  "int8 kernel. "
                  "Only used on CPU.")
        .SetDefault(false);
    AddAttr<float>("Scale_x",
                   "(float, default 1.0f), The quantize scale of X tensor")
        .SetDefault(1.0f);
    AddAttr<float>("Scale_y",
                   "(float, default 1.0f), The quantize scale of Y tensor")
        .SetDefault(1.0f);
    AddAttr<float>("Scale_out",
                   "(float, default 1.0f), The quantize scale of output data")
        .SetDefault(1.0f);
    AddAttr<bool>("force_fp32_output",
                  "(bool, default false) Force INT8 kernel output FP32, only "
                  "used in MKL-DNN INT8")
        .SetDefault(false);
692

693 694 695 696
#if defined(PADDLE_WITH_MKLML) && !defined(PADDLE_WITH_CUDA)
    AddAttr<int>("head_number", "The number of heads of the matrix")
        .SetDefault(1);
#endif
M
Markus Kliegl 已提交
697
    AddComment(R"DOC(
K
kexinzhao 已提交
698 699 700 701
MatMul Operator.


This operator is used to perform (batched) matrix multiplication
M
Markus Kliegl 已提交
702 703 704 705 706 707 708 709 710 711 712 713 714 715
over the last two dimensions of the input tensors `X` and `Y`.

If a transpose flag is specified, the last two dimensions of the
tensor are transposed. If the tensor is rank-1 of shape [D], then
for `X` it is treated as [1, D] in nontransposed form and as [D, 1]
in transposed form, whereas for `Y` it is the opposite: It is treated
as [D, 1] in nontransposed form and as [1, D] in transposed form.

Examples without transpose:
- X: [K], Y: [K] => Out: [1]
- X: [K], Y: [K, N] => Out: [N]
- X: [B, M, K], Y: [K] => Out: [B, M]
- X: [M, K], Y: [B, K, N] => Out: [B, M, N]
- X: [B, M, K], Y: [B, K, N] => Out: [B, M, N]
C
chengduoZH 已提交
716
- X: [B, ..., M, K], Y: [B, ..., K, N] => Out: [B, ..., M, N]
M
Markus Kliegl 已提交
717

718 719 720
Example of matrix multiplication with head_number of H
- X: [B, M, K], Y: [B, K, N] => Out: [B, M, H * N]

M
Markus Kliegl 已提交
721 722
The behavior is designed to be similar to the `numpy.matmul` function.
The differences are:
C
chengduoZH 已提交
723 724
- When the rank of the input data is less than or equal to 3, it
  is similar to the `numpy.matmul` function.
C
chengduoZH 已提交
725
- When the rank of the input is greater than 3, the rank of X and
C
chengduoZH 已提交
726
  Y must be equal, and the first `rank - 2` dimensions must be equal.
M
Markus Kliegl 已提交
727
- We add `transpose_X` and `transpose_Y` flags.
728 729 730
- We add `head_number` attribute, which is used to multiple two matrixes head
  by head, and eventually concatenates the output of several (head_number)
  small matrixes multiplication.
M
Markus Kliegl 已提交
731 732

Both the input `X` and `Y` can carry the LoD (Level of Details) information,
K
kexinzhao 已提交
733 734
or not. But the output only shares the LoD information with input `X`.

M
Markus Kliegl 已提交
735 736 737 738 739 740 741 742 743
)DOC");
  }
};

class MatMulOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
Y
yuyang18 已提交
744
  void InferShape(framework::InferShapeContext *context) const override {
745 746 747 748
    OP_INOUT_CHECK(context->HasInput("X"), "Input", "X", "matmul");
    OP_INOUT_CHECK(context->HasInput("Y"), "Input", "Y", "matmul");
    OP_INOUT_CHECK(context->HasInput(framework::GradVarName("Out")), "Input",
                   "Out@GRAD", "matmul");
M
Markus Kliegl 已提交
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
    auto x_dims = context->GetInputDim("X");
    auto y_dims = context->GetInputDim("Y");

    auto x_grad_name = framework::GradVarName("X");
    auto y_grad_name = framework::GradVarName("Y");

    if (context->HasOutput(x_grad_name)) {
      context->SetOutputDim(x_grad_name, x_dims);
    }
    if (context->HasOutput(y_grad_name)) {
      context->SetOutputDim(y_grad_name, y_dims);
    }
  }
};

H
hong 已提交
764 765
template <typename T>
class MatMulOpGradMaker : public framework::SingleGradOpMaker<T> {
Y
Yu Yang 已提交
766
 public:
H
hong 已提交
767
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
Y
Yu Yang 已提交
768 769

 protected:
770
  void Apply(GradOpPtr<T> retv) const override {
Y
Yu Yang 已提交
771
    retv->SetType("matmul_grad");
H
hong 已提交
772 773 774 775 776 777
    retv->SetInput("X", this->Input("X"));
    retv->SetInput("Y", this->Input("Y"));
    retv->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    retv->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    retv->SetOutput(framework::GradVarName("Y"), this->InputGrad("Y"));
    retv->SetAttrMap(this->Attrs());
Y
Yu Yang 已提交
778 779
  }
};
780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834

class MatMulOpDoubleGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext *context) const override {
    OP_INOUT_CHECK(context->HasInput("X"), "Input", "X", "matmul");
    OP_INOUT_CHECK(context->HasInput("Y"), "Input", "Y", "matmul");
    OP_INOUT_CHECK(context->HasInput("DOut"), "Input", "DOut", "matmul");

    if (context->HasOutput("DX") && context->HasInput("DDY")) {
      context->ShareDim("X", "DX");
    }

    if (context->HasOutput("DY") && context->HasInput("DDX")) {
      context->ShareDim("Y", "DY");
    }

    if (context->HasOutput("DDOut") &&
        (context->HasInput("DDY") || context->HasInput("DDX"))) {
      context->ShareDim("DOut", "DDOut");
    }
  }
};

template <typename T>
class MatMulOpDoubleGradMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> retv) const override {
    retv->SetType("matmul_grad_grad");
    retv->SetInput("X", this->Input("X"));
    retv->SetInput("Y", this->Input("Y"));
    retv->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    retv->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    retv->SetInput("DDY", this->OutputGrad(framework::GradVarName("Y")));

    auto ddx = this->OutputGrad(framework::GradVarName("X"));
    auto ddy = this->OutputGrad(framework::GradVarName("Y"));

    if (!ddx.empty() || !ddy.empty()) {
      retv->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
    }
    retv->SetOutput(
        "DX", ddy.empty() ? this->EmptyInputGrad() : this->InputGrad("X"));
    retv->SetOutput(
        "DY", ddx.empty() ? this->EmptyInputGrad() : this->InputGrad("Y"));

    retv->SetAttrMap(this->Attrs());
  }
};

M
Markus Kliegl 已提交
835 836 837 838
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
839
REGISTER_OPERATOR(matmul, ops::MatMulOp, ops::MatMulOpMaker,
H
hong 已提交
840 841
                  ops::MatMulOpGradMaker<paddle::framework::OpDesc>,
                  ops::MatMulOpGradMaker<paddle::imperative::OpBase>);
842 843 844 845
REGISTER_OPERATOR(matmul_grad, ops::MatMulOpGrad,
                  ops::MatMulOpDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::MatMulOpDoubleGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(matmul_grad_grad, ops::MatMulOpDoubleGrad);
M
Markus Kliegl 已提交
846
REGISTER_OP_CPU_KERNEL(
Y
yuyang18 已提交
847
    matmul, ops::MatMulKernel<paddle::platform::CPUDeviceContext, float>,
848
    ops::MatMulKernel<paddle::platform::CPUDeviceContext, double>);
Q
QI JUN 已提交
849 850
REGISTER_OP_CPU_KERNEL(
    matmul_grad,
Y
yuyang18 已提交
851
    ops::MatMulGradKernel<paddle::platform::CPUDeviceContext, float>,
852
    ops::MatMulGradKernel<paddle::platform::CPUDeviceContext, double>);
Y
Yu Yang 已提交
853

854 855 856 857 858
REGISTER_OP_CPU_KERNEL(
    matmul_grad_grad,
    ops::MatMulDoubleGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::MatMulDoubleGradKernel<paddle::platform::CPUDeviceContext, double>);

Y
Yu Yang 已提交
859 860
#ifdef PADDLE_WITH_CUDA
REGISTER_OP_CUDA_KERNEL(
Y
yuyang18 已提交
861 862 863 864
    matmul, ops::MatMulKernel<paddle::platform::CUDADeviceContext, float>,
    ops::MatMulKernel<paddle::platform::CUDADeviceContext, double>,
    ops::MatMulKernel<paddle::platform::CUDADeviceContext,
                      paddle::platform::float16>);
Y
Yu Yang 已提交
865 866
REGISTER_OP_CUDA_KERNEL(
    matmul_grad,
Y
yuyang18 已提交
867 868 869 870
    ops::MatMulGradKernel<paddle::platform::CUDADeviceContext, float>,
    ops::MatMulGradKernel<paddle::platform::CUDADeviceContext, double>,
    ops::MatMulGradKernel<paddle::platform::CUDADeviceContext,
                          paddle::platform::float16>);
871 872 873 874
REGISTER_OP_CUDA_KERNEL(
    matmul_grad_grad,
    ops::MatMulDoubleGradKernel<paddle::platform::CUDADeviceContext, float>,
    ops::MatMulDoubleGradKernel<paddle::platform::CUDADeviceContext, double>);
Y
Yu Yang 已提交
875
#endif