test_imperative_mnist.py 9.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

M
minqiyang 已提交
15 16
from __future__ import print_function

17 18 19 20 21 22 23 24 25
import contextlib
import unittest
import numpy as np
import six

import paddle
import paddle.fluid as fluid
from paddle.fluid import core
from paddle.fluid.optimizer import SGDOptimizer
M
minqiyang 已提交
26 27
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, FC
from paddle.fluid.dygraph.base import to_variable
28
from test_imperative_base import new_program_scope
29 30
from utils import DyGraphProgramDescTracerTestHelper, is_equal_program
from paddle.fluid.dygraph.jit import TracedLayer
31 32


M
minqiyang 已提交
33
class SimpleImgConvPool(fluid.dygraph.Layer):
M
minqiyang 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
    def __init__(self,
                 name_scope,
                 num_filters,
                 filter_size,
                 pool_size,
                 pool_stride,
                 pool_padding=0,
                 pool_type='max',
                 global_pooling=False,
                 conv_stride=1,
                 conv_padding=0,
                 conv_dilation=1,
                 conv_groups=1,
                 act=None,
                 use_cudnn=False,
                 param_attr=None,
                 bias_attr=None):
        super(SimpleImgConvPool, self).__init__(name_scope)

        self._conv2d = Conv2D(
            self.full_name(),
            num_filters=num_filters,
            filter_size=filter_size,
            stride=conv_stride,
            padding=conv_padding,
            dilation=conv_dilation,
            groups=conv_groups,
            param_attr=None,
            bias_attr=None,
            use_cudnn=use_cudnn)

        self._pool2d = Pool2D(
            self.full_name(),
            pool_size=pool_size,
            pool_type=pool_type,
            pool_stride=pool_stride,
            pool_padding=pool_padding,
            global_pooling=global_pooling,
            use_cudnn=use_cudnn)
73

M
minqiyang 已提交
74
    def forward(self, inputs):
M
minqiyang 已提交
75 76 77
        x = self._conv2d(inputs)
        x = self._pool2d(x)
        return x
78 79


M
minqiyang 已提交
80
class MNIST(fluid.dygraph.Layer):
M
minqiyang 已提交
81 82
    def __init__(self, name_scope):
        super(MNIST, self).__init__(name_scope)
83

M
minqiyang 已提交
84
        self._simple_img_conv_pool_1 = SimpleImgConvPool(
85
            self.full_name(), 20, 5, 2, 2, act="relu")
86

M
minqiyang 已提交
87
        self._simple_img_conv_pool_2 = SimpleImgConvPool(
88
            self.full_name(), 50, 5, 2, 2, act="relu")
M
minqiyang 已提交
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107

        pool_2_shape = 50 * 4 * 4
        SIZE = 10
        scale = (2.0 / (pool_2_shape**2 * SIZE))**0.5
        self._fc = FC(self.full_name(),
                      10,
                      param_attr=fluid.param_attr.ParamAttr(
                          initializer=fluid.initializer.NormalInitializer(
                              loc=0.0, scale=scale)),
                      act="softmax")

    def forward(self, inputs):
        x = self._simple_img_conv_pool_1(inputs)
        x = self._simple_img_conv_pool_2(x)
        x = self._fc(x)
        return x


class TestImperativeMnist(unittest.TestCase):
108 109 110 111 112 113 114 115 116
    def reader_decorator(self, reader):
        def _reader_imple():
            for item in reader():
                image = np.array(item[0]).reshape(1, 28, 28)
                label = np.array(item[1]).astype('int64').reshape(1)
                yield image, label

        return _reader_imple

M
minqiyang 已提交
117
    def test_mnist_float32(self):
118
        seed = 90
M
minqiyang 已提交
119
        epoch_num = 1
120 121 122
        batch_size = 128
        batch_num = 50

123 124
        traced_layer = None

M
minqiyang 已提交
125
        with fluid.dygraph.guard():
126 127 128
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed

M
minqiyang 已提交
129 130
            mnist = MNIST("mnist")
            sgd = SGDOptimizer(learning_rate=1e-3)
131 132 133 134 135 136 137 138

            batch_py_reader = fluid.io.PyReader(capacity=1)
            batch_py_reader.decorate_sample_list_generator(
                paddle.batch(
                    self.reader_decorator(paddle.dataset.mnist.train()),
                    batch_size=batch_size,
                    drop_last=True),
                places=fluid.CPUPlace())
139

M
minqiyang 已提交
140
            mnist.train()
141
            dy_param_init_value = {}
142

143 144
            helper = DyGraphProgramDescTracerTestHelper(self)
            program = None
M
minqiyang 已提交
145
            for epoch in range(epoch_num):
146 147 148 149 150 151
                for batch_id, data in enumerate(batch_py_reader()):
                    if batch_id >= batch_num:
                        break
                    img = data[0]
                    dy_x_data = img.numpy()
                    label = data[1]
L
lujun 已提交
152
                    label.stop_gradient = True
M
minqiyang 已提交
153

154
                    if batch_id % 10 == 0:
155 156 157 158 159 160 161
                        cost, traced_layer = TracedLayer.trace(
                            mnist, inputs=img)
                        if program is not None:
                            self.assertTrue(program, traced_layer.program)
                        program = traced_layer.program
                        traced_layer.save_inference_model(
                            './infer_imperative_mnist')
162 163 164
                    else:
                        cost = mnist(img)

165 166 167 168
                    if traced_layer is not None:
                        cost_static = traced_layer([img])
                        helper.assertEachVar(cost, cost_static)

M
minqiyang 已提交
169 170 171
                    loss = fluid.layers.cross_entropy(cost, label)
                    avg_loss = fluid.layers.mean(loss)

L
lujun 已提交
172
                    dy_out = avg_loss.numpy()
M
minqiyang 已提交
173 174 175

                    if epoch == 0 and batch_id == 0:
                        for param in mnist.parameters():
L
lujun 已提交
176
                            dy_param_init_value[param.name] = param.numpy()
M
minqiyang 已提交
177

L
lujun 已提交
178
                    avg_loss.backward()
M
minqiyang 已提交
179 180 181 182 183
                    sgd.minimize(avg_loss)
                    mnist.clear_gradients()

                    dy_param_value = {}
                    for param in mnist.parameters():
L
lujun 已提交
184
                        dy_param_value[param.name] = param.numpy()
185 186 187 188 189 190 191 192

        with new_program_scope():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed

            exe = fluid.Executor(fluid.CPUPlace(
            ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))

M
minqiyang 已提交
193 194
            mnist = MNIST("mnist")
            sgd = SGDOptimizer(learning_rate=1e-3)
195
            train_reader = paddle.batch(
196 197 198
                paddle.dataset.mnist.train(),
                batch_size=batch_size,
                drop_last=True)
199 200 201 202 203

            img = fluid.layers.data(
                name='pixel', shape=[1, 28, 28], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            cost = mnist(img)
M
minqiyang 已提交
204 205 206
            loss = fluid.layers.cross_entropy(cost, label)
            avg_loss = fluid.layers.mean(loss)
            sgd.minimize(avg_loss)
207 208 209 210

            # initialize params and fetch them
            static_param_init_value = {}
            static_param_name_list = []
M
minqiyang 已提交
211
            for param in mnist.parameters():
212 213 214 215 216 217 218 219
                static_param_name_list.append(param.name)

            out = exe.run(fluid.default_startup_program(),
                          fetch_list=static_param_name_list)

            for i in range(len(static_param_name_list)):
                static_param_init_value[static_param_name_list[i]] = out[i]

M
minqiyang 已提交
220 221
            for epoch in range(epoch_num):
                for batch_id, data in enumerate(train_reader()):
222 223
                    if batch_id >= batch_num:
                        break
M
minqiyang 已提交
224 225 226 227
                    static_x_data = np.array(
                        [x[0].reshape(1, 28, 28)
                         for x in data]).astype('float32')
                    y_data = np.array(
228 229
                        [x[1] for x in data]).astype('int64').reshape(
                            [batch_size, 1])
M
minqiyang 已提交
230 231 232

                    fetch_list = [avg_loss.name]
                    fetch_list.extend(static_param_name_list)
233 234 235 236

                    if traced_layer is not None:
                        traced_layer([static_x_data])

M
minqiyang 已提交
237 238 239 240 241 242 243 244 245 246 247 248 249
                    out = exe.run(
                        fluid.default_main_program(),
                        feed={"pixel": static_x_data,
                              "label": y_data},
                        fetch_list=fetch_list)

                    static_param_value = {}
                    static_out = out[0]
                    for i in range(1, len(out)):
                        static_param_value[static_param_name_list[i - 1]] = out[
                            i]

        self.assertTrue(np.allclose(dy_x_data.all(), static_x_data.all()))
250 251

        for key, value in six.iteritems(static_param_init_value):
M
minqiyang 已提交
252 253 254 255
            self.assertTrue(np.allclose(value, dy_param_init_value[key]))

        self.assertTrue(np.allclose(static_out, dy_out))

256
        for key, value in six.iteritems(static_param_value):
M
minqiyang 已提交
257
            self.assertTrue(np.allclose(value, dy_param_value[key], atol=1e-5))
258 259 260 261


if __name__ == '__main__':
    unittest.main()