linear_chain_crf_op.cc 12.0 KB
Newer Older
C
caoying03 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/linear_chain_crf_op.h"

namespace paddle {
namespace operators {

C
caoying03 已提交
20
class LinearChainCRFOpMaker : public framework::OpProtoAndCheckerMaker {
C
caoying03 已提交
21
 public:
22
  LinearChainCRFOpMaker(OpProto* proto, OpAttrChecker* op_checker)
C
caoying03 已提交
23
      : OpProtoAndCheckerMaker(proto, op_checker) {
C
Cao Ying 已提交
24
    AddInput("Emission",
K
kexinzhao 已提交
25 26
             "(LoDTensor, default LoDTensor<float>) "
             "A 2-D LoDTensor with shape [N x D], where N is the size of the "
C
Cao Ying 已提交
27 28 29
             "mini-batch and D is the total tag number. The unscaled emission "
             "weight matrix for the linear chain CRF. ");
    AddInput("Transition",
K
kexinzhao 已提交
30
             "(Tensor, default Tensor<float>) A 2-D Tensor with shape "
C
Cao Ying 已提交
31 32 33
             "[(D + 2) x D]. The learnable parameter for the linear_chain_crf "
             "operator. See more details in the operator's comments.");
    AddInput("Label",
34
             "(LoDTensor, default LoDTensor<int64_t>) A LoDTensor with shape "
C
Cao Ying 已提交
35 36
             "[N x 1], where N is the total element number in a mini-batch. "
             "The ground truth.");
C
caoying03 已提交
37 38
    AddOutput(
        "Alpha",
K
kexinzhao 已提交
39
        "(Tensor, default Tensor<float>) A 2-D Tensor with shape [N x D]. "
40 41 42
        "The forward vectors for the entire batch. Denote it as $\alpha$. "
        "$\alpha$ is a memo table used to calculate the normalization "
        "factor in CRF. $\alpha[k, v]$ stores the unnormalized "
C
Cao Ying 已提交
43
        "probabilites of all possible unfinished sequences of tags that end at "
44 45 46
        "position $k$ with tag $v$. For each $k$, "
        "$\alpha[k, v]$ is a vector of length $D$ with a component for "
        "each tag value $v$. This vector is called a forward vecotr and "
C
caoying03 已提交
47 48
        "will also be used in backward computations.")
        .AsIntermediate();
C
Cao Ying 已提交
49 50
    AddOutput(
        "EmissionExps",
K
kexinzhao 已提交
51
        "(Tensor, default Tensor<float>) A 2-D Tensor with shape [N x D]. "
C
Cao Ying 已提交
52 53 54
        "The exponentials of Input(Emission). This is an intermediate "
        "computational result in forward computation, and will be reused in "
        "backward computation.")
C
caoying03 已提交
55
        .AsIntermediate();
C
Cao Ying 已提交
56 57
    AddOutput(
        "TransitionExps",
K
kexinzhao 已提交
58
        "(Tensor, default Tensor<float>) A 2-D Tensor with shape "
C
Cao Ying 已提交
59 60 61
        "[(D + 2) x D]. The exponentials of Input(Transition). This is an "
        "intermediate computational result in forward computation, and "
        "will be reused in backward computation.")
C
caoying03 已提交
62
        .AsIntermediate();
C
caoying03 已提交
63 64
    AddOutput(
        "LogLikelihood",
K
kexinzhao 已提交
65
        "(Tensor, default Tensor<float>) The logarithm of the conditional "
C
caoying03 已提交
66 67
        "likelihood of each training sample in a mini-batch. This is a 2-D "
        "tensor with shape [S x 1], where S is the sequence number in a "
C
caoying03 已提交
68 69
        "mini-batch. Note: S is equal to the sequence number in a mini-batch. "
        "The output is no longer a LoDTensor.");
C
caoying03 已提交
70
    AddComment(R"DOC(
K
kexinzhao 已提交
71 72
LinearChainCRF Operator.

C
caoying03 已提交
73 74
Conditional Random Field defines an undirected probabilistic graph with nodes
denoting random variables and edges denoting dependencies between these
75 76 77
variables. CRF learns the conditional probability $P(Y|X)$, where
$X = (x_1, x_2, ... , x_n)$ are structured inputs and
$Y = (y_1, y_2, ... , y_n)$ are labels for the inputs.
C
caoying03 已提交
78 79 80

Linear chain CRF is a special case of CRF that is useful for sequence labeling
task. Sequence labeling tasks do not assume a lot of conditional
C
caoying03 已提交
81 82 83
independences among inputs. The only constraint they impose is that the input
and output must be linear sequences. Thus, the graph of such a CRF is a simple
chain or a line, which results in the linear chain CRF.
C
caoying03 已提交
84

C
caoying03 已提交
85
This operator implements the Forward-Backward algorithm for the linear chain
K
kexinzhao 已提交
86 87
CRF. Please refer to http://www.cs.columbia.edu/~mcollins/fb.pdf and
http://cseweb.ucsd.edu/~elkan/250Bwinter2012/loglinearCRFs.pdf for details.
C
caoying03 已提交
88 89

Equation:
90
1. Denote Input(Emission) to this operator as $x$ here.
K
kexinzhao 已提交
91
2. The first D values of Input(Transition) to this operator are for starting
92
weights, denoted as $a$ here.
K
kexinzhao 已提交
93
3. The next D values of Input(Transition) of this operator are for ending
94
weights, denoted as $b$ here.
K
kexinzhao 已提交
95
4. The remaning values of Input(Transition) are for transition weights,
96 97
denoted as $w$ here.
5. Denote Input(Label) as $s$ here.
C
caoying03 已提交
98

99 100 101 102 103 104 105
The probability of a sequence $s$ of length $L$ is defined as:
$$P(s) = (1/Z) \exp(a_{s_1} + b_{s_L}
                + \sum_{l=1}^L x_{s_l}
                + \sum_{l=2}^L w_{s_{l-1},s_l})$$

where $Z$ is a normalization value so that the sum of $P(s)$ over
all possible sequences is 1, and $x$ is the emission feature weight
C
caoying03 已提交
106 107
to the linear chain CRF.

K
kexinzhao 已提交
108
Finally, the linear chain CRF operator outputs the logarithm of the conditional
C
caoying03 已提交
109 110 111 112 113 114 115
likelihood of each training sample in a mini-batch.

NOTE:
1. The feature function for a CRF is made up of the emission features and the
transition features. The emission feature weights are NOT computed in
this operator. They MUST be computed first before this operator is called.

C
caoying03 已提交
116
2. Because this operator performs global normalization over all possible
C
caoying03 已提交
117 118 119 120
sequences internally, it expects UNSCALED emission feature weights.
Please do not call this op with the emission feature being output of any
nonlinear activation.

121
3. The 2nd dimension of Input(Emission) MUST be equal to the tag number.
C
caoying03 已提交
122 123 124 125 126

)DOC");
  }
};

C
caoying03 已提交
127
class LinearChainCRFOp : public framework::OperatorWithKernel {
C
caoying03 已提交
128 129 130
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

C
caoying03 已提交
131 132 133 134 135 136 137 138 139
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("Emission"),
                   "Input(Emission) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput("Transition"),
                   "Input(Transition) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) should be not null.");

    PADDLE_ENFORCE(ctx->HasOutput("Alpha"),
                   "Output(Alpha) should be not null.");
C
caoying03 已提交
140 141 142 143
    PADDLE_ENFORCE(ctx->HasOutput("EmissionExps"),
                   "Output(EmissionExps) should be not null.");
    PADDLE_ENFORCE(ctx->HasOutput("TransitionExps"),
                   "Output(TransitionExps) should be not null.");
C
caoying03 已提交
144 145 146 147 148
    PADDLE_ENFORCE(ctx->HasOutput("LogLikelihood"),
                   "Output(LogLikelihood) should be not null.");

    auto emission_dims = ctx->GetInputDim("Emission");
    PADDLE_ENFORCE_EQ(emission_dims.size(), 2UL,
149
                      "The Input(Emission) should be a 2-D tensor.");
C
caoying03 已提交
150 151 152
    PADDLE_ENFORCE(emission_dims[0], "An empty mini-batch is not allowed.");

    auto transition_dims = ctx->GetInputDim("Transition");
C
caoying03 已提交
153
    PADDLE_ENFORCE_EQ(transition_dims.size(), 2UL,
154
                      "The Input(Transition) should be a 2-D tensor.");
C
caoying03 已提交
155
    PADDLE_ENFORCE_EQ(
156 157
        transition_dims[0] - 2, transition_dims[1],
        "An invalid dimension for the Input(Transition), which should "
C
caoying03 已提交
158
        "be a 2-D tensor with shape [(D + 2) x D].");
C
caoying03 已提交
159 160
    PADDLE_ENFORCE_EQ(
        emission_dims[1], transition_dims[1],
161
        "The 2nd dimension of the Input(Emission) and the Input(Transition) "
C
caoying03 已提交
162
        "should be equal to the tag number.");
C
caoying03 已提交
163 164

    auto label_dims = ctx->GetInputDim("Label");
C
caoying03 已提交
165
    PADDLE_ENFORCE(label_dims.size() == 2UL && label_dims[1] == 1UL,
166 167 168 169 170 171
                   "The Input(Label) should be a 2-D tensor with the 2nd "
                   "dimensions fixed to 1.");
    PADDLE_ENFORCE_EQ(
        emission_dims[0], label_dims[0],
        "The height of Input(Emission) and the height of Input(Label) "
        "should be the same.");
C
caoying03 已提交
172 173

    ctx->SetOutputDim("Alpha", emission_dims);
C
caoying03 已提交
174 175
    ctx->SetOutputDim("EmissionExps", emission_dims);
    ctx->SetOutputDim("TransitionExps", transition_dims);
C
caoying03 已提交
176
    // TODO(caoying) This is tricky. The 1st dimension of Output(LogLikelihood)
177
    // is the sequence number in a mini-batch. The dimension set here should be
C
caoying03 已提交
178 179
    // resized to its correct size in the function Compute. Fix this once we can
    // get LoD information in the InferShape interface.
C
caoying03 已提交
180 181 182
    ctx->SetOutputDim("LogLikelihood", {emission_dims[0], 1});
  }

C
caoying03 已提交
183
 protected:
C
Cao Ying 已提交
184 185
  // Explicitly set that the data type of computation kernel of linear_chain_crf
  // is determined by its input "Emission".
186
  framework::OpKernelType GetExpectedKernelType(
C
caoying03 已提交
187
      const framework::ExecutionContext& ctx) const override {
Y
Yu Yang 已提交
188 189 190
    return framework::OpKernelType(
        framework::ToDataType(ctx.Input<LoDTensor>("Emission")->type()),
        ctx.device_context());
C
caoying03 已提交
191
  }
C
caoying03 已提交
192 193
};

C
caoying03 已提交
194
class LinearChainCRFGradOp : public framework::OperatorWithKernel {
C
caoying03 已提交
195 196 197
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

C
caoying03 已提交
198 199 200 201 202 203 204 205 206 207 208
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("EmissionExps"),
                   "Input(EmissionExps) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput("TransitionExps"),
                   "Input(TransitionExps) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("LogLikelihood")),
                   "Input(LogLikelihood@GRAD) shoudl be not null.");

    auto emission_exps_dims = ctx->GetInputDim("EmissionExps");
    PADDLE_ENFORCE_EQ(emission_exps_dims.size(), 2UL,
                      "The Input(EmissionExps) should be a 2-D tensor.");
C
caoying03 已提交
209 210 211
    PADDLE_ENFORCE(emission_exps_dims[0],
                   "An empty mini-batch is not allowed.");

212
    auto transition_exps_dims = ctx->GetInputDim("TransitionExps");
C
caoying03 已提交
213 214 215 216 217 218 219 220 221 222
    PADDLE_ENFORCE_EQ(transition_exps_dims.size(), 2UL,
                      "The Input(TransitionExps) should be a 2-D tensor.");
    PADDLE_ENFORCE_EQ(
        transition_exps_dims[0] - 2, transition_exps_dims[1],
        "An invalid dimension for the Input(TransitionExps), which should "
        "be a 2-D tensor with shape [(D + 2) x D].");
    PADDLE_ENFORCE_EQ(
        emission_exps_dims[1], transition_exps_dims[1],
        "The 2nd dimension of the Input(EmissionExps) and the "
        "Input(TransitionExps) should be equal to the tag number.");
C
caoying03 已提交
223 224

    auto label_dims = ctx->GetInputDim("Label");
C
caoying03 已提交
225 226 227 228 229 230 231 232
    PADDLE_ENFORCE(label_dims.size() == 2UL && label_dims[1] == 1UL,
                   "The Input(Label) should be a 2-D tensor with the 2nd "
                   "dimensions fixed to 1.");
    PADDLE_ENFORCE_EQ(
        emission_exps_dims[0], label_dims[0],
        "The height of Input(EmissionExps) and the height of Input(Label) "
        "should be the same.");

C
caoying03 已提交
233 234 235 236 237 238 239
    if (ctx->HasOutput(framework::GradVarName("Emission"))) {
      ctx->SetOutputDim(framework::GradVarName("Emission"), emission_exps_dims);
    }
    if (ctx->HasOutput(framework::GradVarName("Transition"))) {
      ctx->SetOutputDim(framework::GradVarName("Transition"),
                        transition_exps_dims);
    }
C
caoying03 已提交
240
  }
C
caoying03 已提交
241 242 243

 protected:
  // Explicitly set that the data type of output of the linear_chain_crf_grad
C
caoying03 已提交
244
  // operator is determined by its input: gradients of LogLikelihood.
245
  framework::OpKernelType GetExpectedKernelType(
C
caoying03 已提交
246
      const framework::ExecutionContext& ctx) const override {
Y
Yu Yang 已提交
247 248 249 250 251
    return framework::OpKernelType(
        framework::ToDataType(
            ctx.Input<LoDTensor>(framework::GradVarName("LogLikelihood"))
                ->type()),
        ctx.device_context());
C
caoying03 已提交
252
  }
C
caoying03 已提交
253 254 255 256 257 258
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
C
caoying03 已提交
259 260
REGISTER_OP(linear_chain_crf, ops::LinearChainCRFOp, ops::LinearChainCRFOpMaker,
            linear_chain_crf_grad, ops::LinearChainCRFGradOp);
261 262
REGISTER_OP_CPU_KERNEL(
    linear_chain_crf,
Q
QI JUN 已提交
263 264
    ops::LinearChainCRFOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::LinearChainCRFOpKernel<paddle::platform::CPUDeviceContext, double>);
265 266
REGISTER_OP_CPU_KERNEL(
    linear_chain_crf_grad,
Q
QI JUN 已提交
267 268 269
    ops::LinearChainCRFGradOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::LinearChainCRFGradOpKernel<paddle::platform::CPUDeviceContext,
                                    double>);