device_context.cc 12.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
qijun 已提交
2 3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
6

Q
qijun 已提交
7 8 9 10 11
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yi Wang 已提交
12
#include "paddle/fluid/platform/device_context.h"
13
#include <set>
14
#include <string>
Y
Yu Yang 已提交
15
#include <unordered_set>
16 17
#include <vector>

Y
Yi Wang 已提交
18
#include "paddle/fluid/memory/memory.h"
19 20
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/framework/rw_lock.h"
S
sneaxiy 已提交
21
#include "paddle/fluid/platform/cuda_device_guard.h"
22
#endif
23

Q
qijun 已提交
24 25 26
namespace paddle {
namespace platform {

D
dzhwinter 已提交
27 28
DeviceContextPool* DeviceContextPool::pool = nullptr;

Y
Yu Yang 已提交
29
platform::DeviceContext* DeviceContextPool::Get(const platform::Place& place) {
D
dzhwinter 已提交
30 31 32 33 34 35
  auto it = device_contexts_.find(place);
  if (it == device_contexts_.end()) {
    PADDLE_THROW(
        "'Place' is not supported, Please re-compile with WITH_GPU "
        "option");
  }
36
  return it->second.get().get();
D
dzhwinter 已提交
37 38
}

39 40 41 42 43 44 45 46 47 48 49
template <typename DevCtx, typename PlaceType>
inline void EmplaceDeviceContext(
    std::map<Place, std::shared_future<std::unique_ptr<DeviceContext>>>*
        map_ptr,
    platform::Place p) {
  using PtrType = std::unique_ptr<DeviceContext>;
  map_ptr->emplace(p, std::async(std::launch::deferred, [=] {
                     // lazy evaluation. i.e., only create device context at
                     // first `Get`
                     return PtrType(new DevCtx(boost::get<PlaceType>(p)));
                   }));
C
chengduozh 已提交
50 51
}

D
dzhwinter 已提交
52 53 54
DeviceContextPool::DeviceContextPool(
    const std::vector<platform::Place>& places) {
  PADDLE_ENFORCE_GT(places.size(), 0);
55
  std::set<Place> set;
Y
Yu Yang 已提交
56 57 58 59 60 61
  for (auto& p : places) {
    set.insert(p);
  }

  for (auto& p : set) {
    if (platform::is_cpu_place(p)) {
62
#ifdef PADDLE_WITH_MKLDNN
63
      EmplaceDeviceContext<MKLDNNDeviceContext, CPUPlace>(&device_contexts_, p);
64
#else
65
      EmplaceDeviceContext<CPUDeviceContext, CPUPlace>(&device_contexts_, p);
66
#endif
Y
Yu Yang 已提交
67
    } else if (platform::is_gpu_place(p)) {
D
dzhwinter 已提交
68
#ifdef PADDLE_WITH_CUDA
69
      EmplaceDeviceContext<CUDADeviceContext, CUDAPlace>(&device_contexts_, p);
D
dzhwinter 已提交
70 71
#else
      PADDLE_THROW(
D
dzhwinter 已提交
72
          "'CUDAPlace' is not supported, Please re-compile with WITH_GPU "
D
dzhwinter 已提交
73
          "option");
C
chengduoZH 已提交
74 75 76
#endif
    } else if (platform::is_cuda_pinned_place(p)) {
#ifdef PADDLE_WITH_CUDA
77 78
      EmplaceDeviceContext<CUDAPinnedDeviceContext, CUDAPinnedPlace>(
          &device_contexts_, p);
C
chengduoZH 已提交
79 80 81 82
#else
      PADDLE_THROW(
          "'CUDAPlace' is not supported, Please re-compile with WITH_GPU "
          "option");
D
dzhwinter 已提交
83 84 85 86 87
#endif
    }
  }
}

88 89 90 91
CPUDeviceContext::CPUDeviceContext() {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

D
dzhwinter 已提交
92
CPUDeviceContext::CPUDeviceContext(CPUPlace place) : place_(place) {
93 94 95 96 97 98 99
  eigen_device_.reset(new Eigen::DefaultDevice());
}

Eigen::DefaultDevice* CPUDeviceContext::eigen_device() const {
  return eigen_device_.get();
}

D
dzhwinter 已提交
100
Place CPUDeviceContext::GetPlace() const { return place_; }
101

102
#ifdef PADDLE_WITH_CUDA
103

Q
init  
qijun 已提交
104 105 106 107 108 109 110
class EigenCudaStreamDevice : public Eigen::StreamInterface {
 public:
  EigenCudaStreamDevice() : scratch_(nullptr), semaphore_(nullptr) {
    Eigen::initializeDeviceProp();
  }
  ~EigenCudaStreamDevice() override {}

D
dzhwinter 已提交
111
  void Reinitialize(const cudaStream_t* cuda_stream, CUDAPlace place) {
Q
init  
qijun 已提交
112 113 114 115 116 117 118 119 120 121 122 123
    stream_ = cuda_stream;
    place_ = place;
    device_prop_ = &Eigen::m_deviceProperties[place.device];
  }

  const cudaStream_t& stream() const override { return *stream_; }

  const cudaDeviceProp& deviceProperties() const override {
    return *device_prop_;
  }

  void* allocate(size_t num_bytes) const override {
S
sneaxiy 已提交
124 125 126
    if (UNLIKELY(num_bytes == 0)) {
      return nullptr;
    }
Y
Yu Yang 已提交
127 128
    auto buf = paddle::memory::Alloc(place_, num_bytes,
                                     memory::Allocator::kScratchpad);
129
    void* retv = buf->ptr();
S
sneaxiy 已提交
130 131 132 133
    {
      std::lock_guard<std::mutex> lock(mtx_);
      allocations_.emplace(retv, std::move(buf));
    }
134
    return retv;
Q
init  
qijun 已提交
135 136
  }

S
sneaxiy 已提交
137 138 139 140 141 142
  void deallocate(void* buffer) const override {
    if (LIKELY(buffer)) {
      std::lock_guard<std::mutex> lock(mtx_);
      allocations_.erase(buffer);
    }
  }
Q
init  
qijun 已提交
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162

  void* scratchpad() const override {
    if (scratch_ == NULL) {
      scratch_ = allocate(Eigen::kCudaScratchSize + sizeof(unsigned int));
    }
    return scratch_;
  }

  unsigned int* semaphore() const override {
    if (semaphore_ == NULL) {
      char* scratch =
          static_cast<char*>(scratchpad()) + Eigen::kCudaScratchSize;
      semaphore_ = reinterpret_cast<unsigned int*>(scratch);
      PADDLE_ENFORCE(
          cudaMemsetAsync(semaphore_, 0, sizeof(unsigned int), *stream_));
    }
    return semaphore_;
  }

 private:
D
dzhwinter 已提交
163
  CUDAPlace place_;
Q
init  
qijun 已提交
164 165
  const cudaStream_t* stream_;         // not owned;
  const cudaDeviceProp* device_prop_;  // not owned;
Q
qijun 已提交
166
  mutable void* scratch_;
Q
init  
qijun 已提交
167
  mutable unsigned int* semaphore_;
S
sneaxiy 已提交
168
  mutable std::mutex mtx_;  // to protect allocations_
Y
Yu Yang 已提交
169
  mutable std::unordered_map<void*, memory::AllocationPtr> allocations_;
Q
init  
qijun 已提交
170 171
};

S
sneaxiy 已提交
172
CudnnHolder::CudnnHolder(const cudaStream_t* stream, const CUDAPlace& place)
Y
Yu Yang 已提交
173
    : workspace_(nullptr), stream_(stream), place_(place) {
S
sneaxiy 已提交
174 175 176
  PADDLE_ENFORCE(dynload::cudnnCreate(&cudnn_handle_));
  PADDLE_ENFORCE(dynload::cudnnSetStream(cudnn_handle_, *stream_));
}
177

S
sneaxiy 已提交
178 179
CudnnHolder::~CudnnHolder() {
  PADDLE_ENFORCE(dynload::cudnnDestroy(cudnn_handle_));
S
sneaxiy 已提交
180
}
181

S
sneaxiy 已提交
182
void CudnnHolder::ReallocateWorkspace(size_t required_workspace_len) {
Y
Yu Yang 已提交
183
  if (required_workspace_len <= WorkspaceSize()) {
S
sneaxiy 已提交
184
    return;
Y
Yu Yang 已提交
185
  }
S
sneaxiy 已提交
186 187 188
  if (workspace_ != nullptr) {
    // Maybe someone is using the current workspace
    PADDLE_ENFORCE(cudaStreamSynchronize(*stream_));
Y
Yu Yang 已提交
189
    workspace_.reset();
190
  }
Y
Yu Yang 已提交
191 192
  workspace_ = paddle::memory::Alloc(place_, required_workspace_len,
                                     paddle::memory::Allocator::kScratchpad);
S
sneaxiy 已提交
193
}
194 195 196

CUDADeviceContext::CUDADeviceContext(CUDAPlace place)
    : place_(place), cudnn_holder_(nullptr) {
Y
Yu Yang 已提交
197
  CUDADeviceGuard guard(place_.device);
C
chengduo 已提交
198 199 200
  compute_capability_ = GetCUDAComputeCapability(place_.device);
  multi_process_ = GetCUDAMultiProcessors(place_.device);
  max_threads_per_mp_ = GetCUDAMaxThreadsPerMultiProcessor(place_.device);
Q
init  
qijun 已提交
201 202 203
  PADDLE_ENFORCE(cudaStreamCreate(&stream_));
  eigen_stream_.reset(new EigenCudaStreamDevice());
  eigen_stream_->Reinitialize(&stream_, place);
204
  eigen_device_.reset(new Eigen::GpuDevice(eigen_stream_.get()));
205 206
  PADDLE_ENFORCE(dynload::cublasCreate(&cublas_handle_));
  PADDLE_ENFORCE(dynload::cublasSetStream(cublas_handle_, stream_));
D
dzhwinter 已提交
207
  if (dynload::HasCUDNN()) {
208
    cudnn_holder_.reset(new CudnnHolder(&stream_, place));
D
dzhwinter 已提交
209
  }
S
sneaxiy 已提交
210

C
chengduo 已提交
211 212 213
  driver_version_ = GetCUDADriverVersion(place_.device);
  runtime_version_ = GetCUDARuntimeVersion(place_.device);

214 215 216 217 218 219
  LOG_FIRST_N(WARNING, 1) << "Please NOTE: device: " << place_.device
                          << ", CUDA Capability: " << compute_capability_
                          << ", Driver Version: " << driver_version_ / 1000
                          << "." << (driver_version_ % 100) / 10
                          << ", Runtime Version: " << runtime_version_ / 1000
                          << "." << (runtime_version_ % 100) / 10;
220 221 222 223
  size_t cudnn_dso_ver = dynload::cudnnGetVersion();
  LOG_FIRST_N(WARNING, 1) << "device: " << place_.device
                          << ", cuDNN Version: " << cudnn_dso_ver / 1000 << "."
                          << (cudnn_dso_ver % 100) / 10 << ".";
S
sneaxiy 已提交
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257

  {
    // Check CUDA/CUDNN version compatiblity
    auto local_cuda_version = runtime_version_ / 100;
    auto compile_cuda_version = CUDA_VERSION / 100;
    if (local_cuda_version < compile_cuda_version) {
      LOG_FIRST_N(WARNING, 1)
          << "WARNING: device: " << place_.device
          << ". The installed Paddle is compiled with CUDA "
          << compile_cuda_version / 10 << "." << compile_cuda_version % 10
          << ", but CUDA runtime version in your machine is "
          << local_cuda_version / 10 << "." << local_cuda_version % 10
          << ", which may cause serious incompatible bug. "
          << "Please recompile or reinstall Paddle with compatible CUDA "
             "version.";
    }

    if (dynload::HasCUDNN()) {
      auto local_cudnn_version = cudnn_dso_ver / 100;
      auto compile_cudnn_version = CUDNN_VERSION / 100;
      if (local_cuda_version < compile_cuda_version) {
        LOG_FIRST_N(WARNING, 1)
            << "WARNING: device: " << place_.device
            << ". The installed Paddle is compiled with CUDNN "
            << compile_cudnn_version / 10 << "." << compile_cudnn_version % 10
            << ", but CUDNN version in your machine is "
            << local_cudnn_version / 10 << "." << local_cudnn_version % 10
            << ", which may cause serious incompatible bug. "
            << "Please recompile or reinstall Paddle with compatible CUDNN "
               "version.";
      }
    }
  }

S
sneaxiy 已提交
258
  callback_manager_.reset(new StreamCallbackManager(stream_));
259 260 261 262
}

CUDADeviceContext::~CUDADeviceContext() {
  SetDeviceId(place_.device);
L
liaogang 已提交
263
  Wait();
S
sneaxiy 已提交
264
  WaitStreamCallback();
265
  PADDLE_ENFORCE(dynload::cublasDestroy(cublas_handle_));
266 267
  eigen_stream_.reset();
  eigen_device_.reset();
Q
init  
qijun 已提交
268
  PADDLE_ENFORCE(cudaStreamDestroy(stream_));
269 270
}

L
liaogang 已提交
271
Place CUDADeviceContext::GetPlace() const { return place_; }
272

L
liaogang 已提交
273
void CUDADeviceContext::Wait() const {
Q
init  
qijun 已提交
274
  PADDLE_ENFORCE(cudaStreamSynchronize(stream_));
275 276 277
  PADDLE_ENFORCE(cudaGetLastError());
}

K
Kexin Zhao 已提交
278
int CUDADeviceContext::GetComputeCapability() const {
C
chengduo 已提交
279
  return compute_capability_;
K
Kexin Zhao 已提交
280 281
}

282
int CUDADeviceContext::GetMaxPhysicalThreadCount() const {
C
chengduo 已提交
283
  return multi_process_ * max_threads_per_mp_;
284 285
}

286 287 288 289
Eigen::GpuDevice* CUDADeviceContext::eigen_device() const {
  return eigen_device_.get();
}

290
cublasHandle_t CUDADeviceContext::cublas_handle() const {
291 292 293
  return cublas_handle_;
}

294 295 296 297
cudnnHandle_t CUDADeviceContext::cudnn_handle() const {
  return cudnn_holder_->cudnn_handle();
}

S
sneaxiy 已提交
298 299
CudnnWorkspaceHandle CUDADeviceContext::cudnn_workspace_handle() const {
  return CudnnWorkspaceHandle(cudnn_holder_.get());
300
}
301

302
cudaStream_t CUDADeviceContext::stream() const { return stream_; }
Q
qijun 已提交
303

C
chengduoZH 已提交
304 305 306 307 308 309 310 311 312 313 314 315 316 317
CUDAPinnedDeviceContext::CUDAPinnedDeviceContext() {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

CUDAPinnedDeviceContext::CUDAPinnedDeviceContext(CUDAPinnedPlace place)
    : place_(place) {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

Eigen::DefaultDevice* CUDAPinnedDeviceContext::eigen_device() const {
  return eigen_device_.get();
}

Place CUDAPinnedDeviceContext::GetPlace() const { return place_; }
L
Luo Tao 已提交
318
#endif
Q
qijun 已提交
319

T
tensor-tang 已提交
320 321
#ifdef PADDLE_WITH_MKLDNN
MKLDNNDeviceContext::MKLDNNDeviceContext(CPUPlace place)
322 323 324
    : CPUDeviceContext(place), engine_(mkldnn::engine::cpu, 0), p_blobmap_() {
  p_blobmap_.reset(new BlobMap());
  p_mutex_.reset(new std::mutex());
T
tensor-tang 已提交
325 326
}

S
Sylwester Fraczek 已提交
327 328 329 330 331 332 333 334
namespace {
// Current thread's id.
thread_local int cur_thread_id = 0;
}

void set_cur_thread_id(int tid) { cur_thread_id = tid; }
int get_cur_thread_id(void) { return cur_thread_id; }

335 336
void MKLDNNDeviceContext::SetBlob(const std::string& name,
                                  std::shared_ptr<void> data) const {
337 338 339 340
  BlobMap* pMap = p_blobmap_.get();
  std::shared_ptr<KeyBlob> pBlob = nullptr;

  int tid = platform::get_cur_thread_id();
T
tensor-tang 已提交
341

342
  std::lock_guard<std::mutex> lock(*p_mutex_.get());
T
tensor-tang 已提交
343

344 345 346 347 348 349 350
  // Find KeyBlob for current thread
  auto map_it = pMap->find(tid);

  if (map_it == pMap->end()) {
    // 1st time to set blob in current thread
    pBlob = std::shared_ptr<KeyBlob>(new KeyBlob());
    (*pMap)[tid] = pBlob;
351
  } else {
352
    pBlob = map_it->second;
353
  }
T
tensor-tang 已提交
354

355 356 357 358 359 360 361 362 363 364
  // Find Key in found (or newly created) KeyBlob
  auto key_it = pBlob->find(name);

  if (key_it == pBlob->end()) {
    (*pBlob)[name] = data;  // create new blob
  } else {
    key_it->second = data;  // set data to existing blob
  }

  // lock will be automatically released when out of scope
365
  return;
T
tensor-tang 已提交
366 367
}

368 369
std::shared_ptr<void> MKLDNNDeviceContext::GetBlob(
    const std::string& name) const {
370 371
  BlobMap* pMap = p_blobmap_.get();
  std::shared_ptr<KeyBlob> pBlob = nullptr;
T
tensor-tang 已提交
372

373
  int tid = platform::get_cur_thread_id();
T
tensor-tang 已提交
374

375 376 377 378 379 380 381 382 383 384 385
  std::lock_guard<std::mutex> lock(*p_mutex_.get());

  // Find KeyBlob for current thread firstly
  auto map_it = pMap->find(tid);
  if (map_it == pMap->end()) return nullptr;
  pBlob = map_it->second;

  // Find Blob via name
  auto key_it = pBlob->find(name);

  if (key_it == pBlob->end()) return nullptr;
386

387 388
  // lock will be automatically released when out of scope
  return key_it->second;
T
tensor-tang 已提交
389 390 391 392
}

#endif

Q
qijun 已提交
393
}  // namespace platform
Q
qijun 已提交
394
}  // namespace paddle