mul_op.cc 11.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

7
    http://www.apache.org/licenses/LICENSE-2.0
8

9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/mul_op.h"
16
#include <memory>
17
#include <string>
18
#include <unordered_map>
19
#include <vector>
P
Physher 已提交
20 21 22
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
23 24 25 26

namespace paddle {
namespace operators {

27
using framework::OpKernelType;
D
dongzhihong 已提交
28 29
using framework::Tensor;

30
class MulOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
31
 public:
32 33 34
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
35 36 37 38 39 40 41
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) of MulOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) of MulOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of MulOp should not be null.");

    auto x_dims = ctx->GetInputDim("X");
    auto y_dims = ctx->GetInputDim("Y");
Y
Yu Yang 已提交
42

Q
Qiao Longfei 已提交
43 44
    int x_num_col_dims = ctx->Attrs().Get<int>("x_num_col_dims");
    int y_num_col_dims = ctx->Attrs().Get<int>("y_num_col_dims");
F
WIP  
fengjiayi 已提交
45

M
minqiyang 已提交
46 47 48
    VLOG(3) << "mul operator x.shape=" << x_dims << " y.shape=" << y_dims
            << " x_num_col_dims=" << x_num_col_dims
            << " y_num_col_dims=" << y_num_col_dims;
Y
Yu Yang 已提交
49

50 51 52 53 54 55 56
    PADDLE_ENFORCE_GT(
        x_dims.size(), x_num_col_dims,
        "The input tensor X's rank of MulOp should be larger than "
        "x_num_col_dims.");
    PADDLE_ENFORCE_GT(
        y_dims.size(), y_num_col_dims,
        "The input tensor Y's rank of MulOp should be larger than "
X
Xin Pan 已提交
57 58
        "y_num_col_dims: %ld vs %ld",
        y_dims.size(), y_num_col_dims);
59

F
fengjiayi 已提交
60 61
    auto x_mat_dims = framework::flatten_to_2d(x_dims, x_num_col_dims);
    auto y_mat_dims = framework::flatten_to_2d(y_dims, y_num_col_dims);
62

63 64
    PADDLE_ENFORCE_EQ(x_mat_dims[1], y_mat_dims[0],
                      "First matrix's width must be equal with second matrix's "
65 66
                      "height. %s, %s",
                      x_mat_dims[1], y_mat_dims[0]);
Y
Yu Yang 已提交
67 68 69 70 71 72 73 74 75 76 77 78 79
    std::vector<int64_t> output_dims;
    output_dims.reserve(
        static_cast<size_t>(x_num_col_dims + y_dims.size() - y_num_col_dims));

    for (int i = 0; i < x_num_col_dims; ++i) {
      output_dims.push_back(x_dims[i]);
    }

    for (int i = y_num_col_dims; i < y_dims.size(); ++i) {
      output_dims.push_back(y_dims[i]);
    }

    ctx->SetOutputDim("Out", framework::make_ddim(output_dims));
Q
Qiao Longfei 已提交
80
    ctx->ShareLoD("X", /*->*/ "Out");
81
  }
P
Physher 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const {
    framework::LibraryType library = framework::LibraryType::kPlain;
    framework::DataLayout layout = framework::DataLayout::kAnyLayout;
    int customized_type_value =
        framework::OpKernelType::kDefaultCustomizedTypeValue;
    auto input_data_type = ctx.Input<Tensor>("X")->type();
#ifdef PADDLE_WITH_MKLDNN
    if (library == framework::LibraryType::kPlain &&
        platform::CanMKLDNNBeUsed(ctx)) {
      library = framework::LibraryType::kMKLDNN;
      layout = framework::DataLayout::kMKLDNN;

      if (input_data_type == framework::DataTypeTrait<int8_t>::DataType ||
          input_data_type == framework::DataTypeTrait<uint8_t>::DataType) {
        customized_type_value = kMULMKLDNNINT8;
      }
    }
#endif

    return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout,
                                   library, customized_type_value);
  }
106 107
};

D
dongzhihong 已提交
108
class MulOpMaker : public framework::OpProtoAndCheckerMaker {
109
 public:
Y
Yu Yang 已提交
110
  void Make() override {
C
caoying03 已提交
111 112 113
    AddInput("X", "(Tensor), The first input tensor of mul op.");
    AddInput("Y", "(Tensor), The second input tensor of mul op.");
    AddOutput("Out", "(Tensor), The output tensor of mul op.");
P
Physher 已提交
114 115 116
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false);
F
WIP  
fengjiayi 已提交
117
    AddAttr<int>(
F
fengjiayi 已提交
118
        "x_num_col_dims",
C
caoying03 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
        R"DOC((int, default 1), The mul_op can take tensors with more than two
              dimensions as its inputs. If the input $X$ is a tensor with more
              than two dimensions, $X$ will be flattened into a two-dimensional
              matrix first. The flattening rule is: the first `num_col_dims`
              will be flattened to form the first dimension of the final matrix
              (the height of the matrix), and the rest `rank(X) - num_col_dims`
              dimensions are flattened to form the second dimension of the final
              matrix (the width of the matrix). As a result, height of the
              flattened matrix is equal to the product of $X$'s first
              `x_num_col_dims` dimensions' sizes, and width of the flattened
              matrix is equal to the product of $X$'s last `rank(x) - num_col_dims`
              dimensions' size. For example, suppose $X$ is a 6-dimensional
              tensor with the shape [2, 3, 4, 5, 6], and `x_num_col_dims` = 3.
              Thus, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] =
              [24, 30].
F
fengjiayi 已提交
134
        )DOC")
F
WIP  
fengjiayi 已提交
135
        .SetDefault(1)
F
fengjiayi 已提交
136
        .EqualGreaterThan(1);
F
WIP  
fengjiayi 已提交
137
    AddAttr<int>(
F
fengjiayi 已提交
138
        "y_num_col_dims",
C
caoying03 已提交
139 140 141 142
        R"DOC((int, default 1), The mul_op can take tensors with more than two,
              dimensions as its inputs. If the input $Y$ is a tensor with more
              than two dimensions, $Y$ will be flattened into a two-dimensional
              matrix first. The attribute `y_num_col_dims` determines how $Y$ is
C
caoying03 已提交
143
              flattened. See comments of `x_num_col_dims` for more details.
F
fengjiayi 已提交
144
        )DOC")
F
WIP  
fengjiayi 已提交
145
        .SetDefault(1)
F
fengjiayi 已提交
146
        .EqualGreaterThan(1);
P
Physher 已提交
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
    AddAttr<float>("scale_x",
                   "scale_x to used for int8 input data x."
                   "Only used with MKL-DNN INT8")
        .SetDefault(1.0f);
    AddAttr<std::vector<float>>("scale_y",
                                "scale_y to used for int8 input data y."
                                "Only used with MKL-DNN INT8")
        .SetDefault({1.0f});
    AddAttr<float>("scale_out",
                   "scale_out to be used for int8 output data."
                   "Only used with MKL-DNN INT8")
        .SetDefault(1.0f);
    AddAttr<bool>(
        "force_fp32_output",
        "(bool, default false) Force quantize kernel output FP32, only "
        "used in quantized MKL-DNN.")
        .SetDefault(false);
164
    AddComment(R"DOC(
C
caoying03 已提交
165
Mul Operator.
K
kexinzhao 已提交
166

C
caoying03 已提交
167
This operator is used to perform matrix multiplication for input $X$ and $Y$.
168

169 170
The equation is:

C
caoying03 已提交
171
$$Out = X * Y$$
172

C
caoying03 已提交
173 174
Both the input $X$ and $Y$ can carry the LoD (Level of Details) information,
or not. But the output only shares the LoD information with input $X$.
K
kexinzhao 已提交
175

176 177 178 179
)DOC");
  }
};

C
chengduo 已提交
180 181 182 183 184 185 186 187
class MulOpInferVarType : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
  std::unordered_map<std::string, std::string> GetInputOutputWithSameType()
      const override {
    return std::unordered_map<std::string, std::string>{{"X", /*->*/ "Out"}};
  }
};

188
class MulGradOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
189 190 191
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

192
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
193 194 195 196 197 198
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
    PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) should not be null");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) should not be null");
    auto x_dims = ctx->GetInputDim("X");
    auto y_dims = ctx->GetInputDim("Y");
199

Q
Qiao Longfei 已提交
200 201 202 203 204 205 206 207 208
    auto x_grad_name = framework::GradVarName("X");
    auto y_grad_name = framework::GradVarName("Y");

    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, x_dims);
    }
    if (ctx->HasOutput(y_grad_name)) {
      ctx->SetOutputDim(y_grad_name, y_dims);
    }
D
dongzhihong 已提交
209 210 211
  }
};

S
sneaxiy 已提交
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
class MulOpGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    std::unique_ptr<framework::OpDesc> retv(new framework::OpDesc());
    retv->SetType("mul_grad");
    retv->SetInput("X", Input("X"));
    retv->SetInput("Y", Input("Y"));
    retv->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
    retv->SetOutput(framework::GradVarName("X"), InputGrad("X"));
    retv->SetOutput(framework::GradVarName("Y"), InputGrad("Y"));
    retv->SetAttrMap(Attrs());
    return retv;
  }
};

230 231 232 233 234 235 236 237 238
class MulDoubleGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
    PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) should not be null");
    PADDLE_ENFORCE(ctx->HasInput("DOut"), "Input(DOut) should not be null");

239 240 241 242
    if (ctx->HasOutput("DDOut") && ctx->HasInput("DDX")) {
      ctx->ShareDim("DOut", "DDOut");
    }
    if (ctx->HasOutput("DX") && ctx->HasInput("DDY")) {
243 244
      ctx->ShareDim("X", "DX");
    }
245
    if (ctx->HasOutput("DY") && ctx->HasInput("DDX")) {
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
      ctx->ShareDim("Y", "DY");
    }
  }
};

class MulDoubleGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    std::unique_ptr<framework::OpDesc> retv(new framework::OpDesc());
    retv->SetType("mul_grad_grad");

    retv->SetInput("X", Input("X"));
    retv->SetInput("Y", Input("Y"));
    retv->SetInput("DOut", Input(framework::GradVarName("Out")));
    retv->SetInput("DDX", OutputGrad(framework::GradVarName("X")));
    retv->SetInput("DDY", OutputGrad(framework::GradVarName("Y")));

266 267 268 269 270 271 272 273 274
    auto ddx = OutputGrad(framework::GradVarName("X"));
    auto ddw = OutputGrad(framework::GradVarName("Y"));
    std::vector<std::string> empty_str = {};

    retv->SetOutput("DDOut", (ddx.empty())
                                 ? empty_str
                                 : InputGrad(framework::GradVarName("Out")));
    retv->SetOutput("DX", ddw.empty() ? empty_str : InputGrad("X"));
    retv->SetOutput("DY", ddx.empty() ? empty_str : InputGrad("Y"));
275 276 277 278 279 280

    retv->SetAttrMap(Attrs());
    return retv;
  }
};

281 282 283
}  // namespace operators
}  // namespace paddle

D
dongzhihong 已提交
284
namespace ops = paddle::operators;
C
chengduo 已提交
285 286
REGISTER_OPERATOR(mul, ops::MulOp, ops::MulOpMaker, ops::MulOpInferVarType,
                  ops::MulOpGradMaker);
P
Physher 已提交
287

288
REGISTER_OPERATOR(mul_grad, ops::MulGradOp, ops::MulDoubleGradMaker);
P
Physher 已提交
289

290
REGISTER_OPERATOR(mul_grad_grad, ops::MulDoubleGradOp);
P
Physher 已提交
291

Q
QI JUN 已提交
292
REGISTER_OP_CPU_KERNEL(
D
dzhwinter 已提交
293 294
    mul, ops::MulKernel<paddle::platform::CPUDeviceContext, float>,
    ops::MulKernel<paddle::platform::CPUDeviceContext, double>);
P
Physher 已提交
295

Q
QI JUN 已提交
296
REGISTER_OP_CPU_KERNEL(
D
dzhwinter 已提交
297 298
    mul_grad, ops::MulGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::MulGradKernel<paddle::platform::CPUDeviceContext, double>);
P
Physher 已提交
299

300 301 302 303
REGISTER_OP_CPU_KERNEL(
    mul_grad_grad,
    ops::MulDoubleGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::MulDoubleGradKernel<paddle::platform::CPUDeviceContext, double>);