mul_op.cc 9.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

7
    http://www.apache.org/licenses/LICENSE-2.0
8

9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/mul_op.h"
16
#include <memory>
17
#include <string>
18
#include <unordered_map>
19
#include <vector>
20 21 22 23

namespace paddle {
namespace operators {

24
using framework::OpKernelType;
D
dongzhihong 已提交
25 26
using framework::Tensor;

27
class MulOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
28
 public:
29 30 31
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
32 33 34 35 36 37 38
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) of MulOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) of MulOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of MulOp should not be null.");

    auto x_dims = ctx->GetInputDim("X");
    auto y_dims = ctx->GetInputDim("Y");
Y
Yu Yang 已提交
39

Q
Qiao Longfei 已提交
40 41
    int x_num_col_dims = ctx->Attrs().Get<int>("x_num_col_dims");
    int y_num_col_dims = ctx->Attrs().Get<int>("y_num_col_dims");
F
WIP  
fengjiayi 已提交
42

M
minqiyang 已提交
43 44 45
    VLOG(3) << "mul operator x.shape=" << x_dims << " y.shape=" << y_dims
            << " x_num_col_dims=" << x_num_col_dims
            << " y_num_col_dims=" << y_num_col_dims;
Y
Yu Yang 已提交
46

47 48 49 50 51 52 53
    PADDLE_ENFORCE_GT(
        x_dims.size(), x_num_col_dims,
        "The input tensor X's rank of MulOp should be larger than "
        "x_num_col_dims.");
    PADDLE_ENFORCE_GT(
        y_dims.size(), y_num_col_dims,
        "The input tensor Y's rank of MulOp should be larger than "
X
Xin Pan 已提交
54 55
        "y_num_col_dims: %ld vs %ld",
        y_dims.size(), y_num_col_dims);
56

F
fengjiayi 已提交
57 58
    auto x_mat_dims = framework::flatten_to_2d(x_dims, x_num_col_dims);
    auto y_mat_dims = framework::flatten_to_2d(y_dims, y_num_col_dims);
59

60 61
    PADDLE_ENFORCE_EQ(x_mat_dims[1], y_mat_dims[0],
                      "First matrix's width must be equal with second matrix's "
62 63
                      "height. %s, %s",
                      x_mat_dims[1], y_mat_dims[0]);
Y
Yu Yang 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76
    std::vector<int64_t> output_dims;
    output_dims.reserve(
        static_cast<size_t>(x_num_col_dims + y_dims.size() - y_num_col_dims));

    for (int i = 0; i < x_num_col_dims; ++i) {
      output_dims.push_back(x_dims[i]);
    }

    for (int i = y_num_col_dims; i < y_dims.size(); ++i) {
      output_dims.push_back(y_dims[i]);
    }

    ctx->SetOutputDim("Out", framework::make_ddim(output_dims));
Q
Qiao Longfei 已提交
77
    ctx->ShareLoD("X", /*->*/ "Out");
78 79 80
  }
};

D
dongzhihong 已提交
81
class MulOpMaker : public framework::OpProtoAndCheckerMaker {
82
 public:
Y
Yu Yang 已提交
83
  void Make() override {
C
caoying03 已提交
84 85 86
    AddInput("X", "(Tensor), The first input tensor of mul op.");
    AddInput("Y", "(Tensor), The second input tensor of mul op.");
    AddOutput("Out", "(Tensor), The output tensor of mul op.");
F
WIP  
fengjiayi 已提交
87
    AddAttr<int>(
F
fengjiayi 已提交
88
        "x_num_col_dims",
C
caoying03 已提交
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
        R"DOC((int, default 1), The mul_op can take tensors with more than two
              dimensions as its inputs. If the input $X$ is a tensor with more
              than two dimensions, $X$ will be flattened into a two-dimensional
              matrix first. The flattening rule is: the first `num_col_dims`
              will be flattened to form the first dimension of the final matrix
              (the height of the matrix), and the rest `rank(X) - num_col_dims`
              dimensions are flattened to form the second dimension of the final
              matrix (the width of the matrix). As a result, height of the
              flattened matrix is equal to the product of $X$'s first
              `x_num_col_dims` dimensions' sizes, and width of the flattened
              matrix is equal to the product of $X$'s last `rank(x) - num_col_dims`
              dimensions' size. For example, suppose $X$ is a 6-dimensional
              tensor with the shape [2, 3, 4, 5, 6], and `x_num_col_dims` = 3.
              Thus, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] =
              [24, 30].
F
fengjiayi 已提交
104
        )DOC")
F
WIP  
fengjiayi 已提交
105
        .SetDefault(1)
F
fengjiayi 已提交
106
        .EqualGreaterThan(1);
F
WIP  
fengjiayi 已提交
107
    AddAttr<int>(
F
fengjiayi 已提交
108
        "y_num_col_dims",
C
caoying03 已提交
109 110 111 112
        R"DOC((int, default 1), The mul_op can take tensors with more than two,
              dimensions as its inputs. If the input $Y$ is a tensor with more
              than two dimensions, $Y$ will be flattened into a two-dimensional
              matrix first. The attribute `y_num_col_dims` determines how $Y$ is
C
caoying03 已提交
113
              flattened. See comments of `x_num_col_dims` for more details.
F
fengjiayi 已提交
114
        )DOC")
F
WIP  
fengjiayi 已提交
115
        .SetDefault(1)
F
fengjiayi 已提交
116
        .EqualGreaterThan(1);
117
    AddComment(R"DOC(
C
caoying03 已提交
118
Mul Operator.
K
kexinzhao 已提交
119

C
caoying03 已提交
120
This operator is used to perform matrix multiplication for input $X$ and $Y$.
121

122 123
The equation is:

C
caoying03 已提交
124
$$Out = X * Y$$
125

C
caoying03 已提交
126 127
Both the input $X$ and $Y$ can carry the LoD (Level of Details) information,
or not. But the output only shares the LoD information with input $X$.
K
kexinzhao 已提交
128

129 130 131 132
)DOC");
  }
};

C
chengduo 已提交
133 134 135 136 137 138 139 140
class MulOpInferVarType : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
  std::unordered_map<std::string, std::string> GetInputOutputWithSameType()
      const override {
    return std::unordered_map<std::string, std::string>{{"X", /*->*/ "Out"}};
  }
};

141
class MulGradOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
142 143 144
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

145
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
146 147 148 149 150 151
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
    PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) should not be null");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) should not be null");
    auto x_dims = ctx->GetInputDim("X");
    auto y_dims = ctx->GetInputDim("Y");
152

Q
Qiao Longfei 已提交
153 154 155 156 157 158 159 160 161
    auto x_grad_name = framework::GradVarName("X");
    auto y_grad_name = framework::GradVarName("Y");

    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, x_dims);
    }
    if (ctx->HasOutput(y_grad_name)) {
      ctx->SetOutputDim(y_grad_name, y_dims);
    }
D
dongzhihong 已提交
162 163 164
  }
};

S
sneaxiy 已提交
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
class MulOpGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    std::unique_ptr<framework::OpDesc> retv(new framework::OpDesc());
    retv->SetType("mul_grad");
    retv->SetInput("X", Input("X"));
    retv->SetInput("Y", Input("Y"));
    retv->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
    retv->SetOutput(framework::GradVarName("X"), InputGrad("X"));
    retv->SetOutput(framework::GradVarName("Y"), InputGrad("Y"));
    retv->SetAttrMap(Attrs());
    return retv;
  }
};

183 184 185 186 187 188 189 190 191
class MulDoubleGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
    PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) should not be null");
    PADDLE_ENFORCE(ctx->HasInput("DOut"), "Input(DOut) should not be null");

192 193 194 195
    if (ctx->HasOutput("DDOut") && ctx->HasInput("DDX")) {
      ctx->ShareDim("DOut", "DDOut");
    }
    if (ctx->HasOutput("DX") && ctx->HasInput("DDY")) {
196 197
      ctx->ShareDim("X", "DX");
    }
198
    if (ctx->HasOutput("DY") && ctx->HasInput("DDX")) {
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
      ctx->ShareDim("Y", "DY");
    }
  }
};

class MulDoubleGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    std::unique_ptr<framework::OpDesc> retv(new framework::OpDesc());
    retv->SetType("mul_grad_grad");

    retv->SetInput("X", Input("X"));
    retv->SetInput("Y", Input("Y"));
    retv->SetInput("DOut", Input(framework::GradVarName("Out")));
    retv->SetInput("DDX", OutputGrad(framework::GradVarName("X")));
    retv->SetInput("DDY", OutputGrad(framework::GradVarName("Y")));

219 220 221 222 223 224 225 226 227
    auto ddx = OutputGrad(framework::GradVarName("X"));
    auto ddw = OutputGrad(framework::GradVarName("Y"));
    std::vector<std::string> empty_str = {};

    retv->SetOutput("DDOut", (ddx.empty())
                                 ? empty_str
                                 : InputGrad(framework::GradVarName("Out")));
    retv->SetOutput("DX", ddw.empty() ? empty_str : InputGrad("X"));
    retv->SetOutput("DY", ddx.empty() ? empty_str : InputGrad("Y"));
228 229 230 231 232 233

    retv->SetAttrMap(Attrs());
    return retv;
  }
};

234 235 236
}  // namespace operators
}  // namespace paddle

D
dongzhihong 已提交
237
namespace ops = paddle::operators;
C
chengduo 已提交
238 239
REGISTER_OPERATOR(mul, ops::MulOp, ops::MulOpMaker, ops::MulOpInferVarType,
                  ops::MulOpGradMaker);
240 241
REGISTER_OPERATOR(mul_grad, ops::MulGradOp, ops::MulDoubleGradMaker);
REGISTER_OPERATOR(mul_grad_grad, ops::MulDoubleGradOp);
Q
QI JUN 已提交
242
REGISTER_OP_CPU_KERNEL(
D
dzhwinter 已提交
243 244
    mul, ops::MulKernel<paddle::platform::CPUDeviceContext, float>,
    ops::MulKernel<paddle::platform::CPUDeviceContext, double>);
Q
QI JUN 已提交
245
REGISTER_OP_CPU_KERNEL(
D
dzhwinter 已提交
246 247
    mul_grad, ops::MulGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::MulGradKernel<paddle::platform::CPUDeviceContext, double>);
248 249 250 251
REGISTER_OP_CPU_KERNEL(
    mul_grad_grad,
    ops::MulDoubleGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::MulDoubleGradKernel<paddle::platform::CPUDeviceContext, double>);