jit_code.cc 9.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/math/jit_code.h"
T
tensor-tang 已提交
16
#include <stddef.h>                                  // offsetof
T
tensor-tang 已提交
17
#include "paddle/fluid/operators/math/jit_kernel.h"  // TODO(TJ): remove me
18 19 20 21 22 23 24 25 26

namespace paddle {
namespace operators {
namespace math {
namespace jitkernel {
namespace gen {

using namespace platform::jit;  // NOLINT

T
tensor-tang 已提交
27
bool VXXJitCode::init(int d, int scalar_index) {
28 29
  // It's not necessary to use avx512 since it would slow down the frequency
  // and this kernel is not compute bound.
T
tensor-tang 已提交
30
  return MayIUse(avx) && scalar_index >= 0 && scalar_index <= 2;
31 32
}

T
tensor-tang 已提交
33
void VXXJitCode::generate() {
T
tensor-tang 已提交
34
  // do not need push stack, and do not need save avx512reg if do not use avx512
T
tensor-tang 已提交
35
  int offset = 0;
T
tensor-tang 已提交
36 37 38
  if (with_relu_) {
    vxorps(ymm_zero, ymm_zero, ymm_zero);
  }
T
tensor-tang 已提交
39 40 41 42 43
  if (scalar_index_ == 1) {
    vbroadcastss(ymm_src1, ptr[param1]);
  } else if (scalar_index_ == 2) {
    vbroadcastss(ymm_src2, ptr[param2]);
  }
44
  for (int i = 0; i < num_ / YMM_FLOAT_BLOCK; ++i) {
T
tensor-tang 已提交
45 46 47 48 49 50
    if (scalar_index_ != 1) {
      vmovups(ymm_src1, ptr[param1 + offset]);
    }
    if (scalar_index_ != 2) {
      vmovups(ymm_src2, ptr[param2 + offset]);
    }
T
tensor-tang 已提交
51 52 53 54 55
    if (type_ == operand_type::mul) {
      vmulps(ymm_dst, ymm_src1, ymm_src2);
    } else if (type_ == operand_type::add) {
      vaddps(ymm_dst, ymm_src1, ymm_src2);
    }
T
tensor-tang 已提交
56 57 58
    if (with_relu_) {
      vmaxps(ymm_dst, ymm_zero, ymm_dst);
    }
T
tensor-tang 已提交
59
    vmovups(ptr[param3 + offset], ymm_dst);
60
    offset += sizeof(float) * YMM_FLOAT_BLOCK;
T
tensor-tang 已提交
61
  }
62
  int rest = num_ % YMM_FLOAT_BLOCK;
T
tensor-tang 已提交
63
  while (rest > 0) {
T
tensor-tang 已提交
64
    int block = XMM_FLOAT_BLOCK;
T
tensor-tang 已提交
65
    if (rest >= 4) {
T
tensor-tang 已提交
66
      block = 4;
T
tensor-tang 已提交
67 68 69 70 71 72 73
      if (scalar_index_ != 1) {
        vmovups(xmm_src1, ptr[param1 + offset]);
      }
      if (scalar_index_ != 2) {
        vmovups(xmm_src2, ptr[param2 + offset]);
      }
    } else if (rest >= 2) {
T
tensor-tang 已提交
74
      block = 2;
T
tensor-tang 已提交
75 76 77 78 79 80 81
      if (scalar_index_ != 1) {
        vmovq(xmm_src1, ptr[param1 + offset]);
      }
      if (scalar_index_ != 2) {
        vmovq(xmm_src2, ptr[param2 + offset]);
      }
    } else {
T
tensor-tang 已提交
82
      block = 1;
T
tensor-tang 已提交
83 84 85 86 87 88
      if (scalar_index_ != 1) {
        vmovss(xmm_src1, ptr[param1 + offset]);
      }
      if (scalar_index_ != 2) {
        vmovss(xmm_src2, ptr[param2 + offset]);
      }
T
tensor-tang 已提交
89
    }
T
tensor-tang 已提交
90 91 92 93 94 95 96 97 98
    switch (type_) {
      case operand_type::mul:
        vmulps(xmm_dst, xmm_src1, xmm_src2);
        break;
      case operand_type::add:
        vaddps(xmm_dst, xmm_src1, xmm_src2);
        break;
      default:
        break;
T
tensor-tang 已提交
99
    }
T
tensor-tang 已提交
100 101 102
    if (with_relu_) {
      vmaxps(xmm_dst, xmm_zero, xmm_dst);
    }
T
tensor-tang 已提交
103 104 105 106 107 108
    if (rest >= 4) {
      vmovups(ptr[param3 + offset], xmm_dst);
    } else if (rest >= 2) {
      vmovq(ptr[param3 + offset], xmm_dst);
    } else {
      vmovss(ptr[param3 + offset], xmm_dst);
T
tensor-tang 已提交
109
    }
T
tensor-tang 已提交
110 111
    offset += sizeof(float) * block;
    rest -= block;
T
tensor-tang 已提交
112 113 114
  }
  ret();
}
T
tensor-tang 已提交
115

T
tensor-tang 已提交
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
const float exp_float_consts[] ALIGN32 = {REPEAT_8TIMES(1.f),
                                          REPEAT_8TIMES(2.f),
                                          REPEAT_8TIMES(0.5f),
                                          REPEAT_8TIMES(EXP_HIG),
                                          REPEAT_8TIMES(EXP_LOW),
                                          REPEAT_8TIMES(CEPHES_LOG2EF),
                                          REPEAT_8TIMES(CEPHES_EXP_C1),
                                          REPEAT_8TIMES(CEPHES_EXP_C2),
                                          REPEAT_8TIMES(CEPHES_EXP_P0),
                                          REPEAT_8TIMES(CEPHES_EXP_P1),
                                          REPEAT_8TIMES(CEPHES_EXP_P2),
                                          REPEAT_8TIMES(CEPHES_EXP_P3),
                                          REPEAT_8TIMES(CEPHES_EXP_P4),
                                          REPEAT_8TIMES(CEPHES_EXP_P5),
                                          REPEAT_8TIMES(EXP_MAX_INPUT),
                                          REPEAT_8TIMES(SIGMOID_THRESHOLD_MAX),
                                          REPEAT_8TIMES(SIGMOID_THRESHOLD_MIN)};
T
tensor-tang 已提交
133

T
tensor-tang 已提交
134 135
const int exp_int_0x7f[] ALIGN32 = {REPEAT_8TIMES(0x7f)};
int g_tmp_mem[16] ALIGN32 = {0};
T
tensor-tang 已提交
136

137
bool VActJitCode::init(int d, operand_type type) {
T
tensor-tang 已提交
138 139
  // TODO(TJ): implement avx512, avx_exp is slower than mkl when d >= 256
  return MayIUse(avx);
T
tensor-tang 已提交
140 141
}

142 143 144 145 146 147
void VActJitCode::generate() {
  xmm_t xmm_zero = xmm_t(2);
  ymm_t ymm_zero = ymm_t(2);
  if (type_ == operand_type::relu) {
    vxorps(ymm_zero, ymm_zero, ymm_zero);
  }
T
tensor-tang 已提交
148
  int offset = 0;
149
  for (int i = 0; i < num_ / YMM_FLOAT_BLOCK; ++i) {
150 151 152
    vmovups(ymm_src, ptr[param1 + offset]);
    switch (type_) {
      case operand_type::relu:
T
tensor-tang 已提交
153
        relu_jmm<ymm_t>(ymm_dst, ymm_src, ymm_zero);
154 155
        break;
      case operand_type::exp:
T
tensor-tang 已提交
156
        exp_jmm<ymm_t>(ymm_dst, ymm_src, 2, 3, 4, 5);
157 158
        break;
      case operand_type::sigmoid:
T
tensor-tang 已提交
159
        sigmoid_jmm<ymm_t>(ymm_dst, ymm_src, 2, 3, 4, 5);
160 161
        break;
      case operand_type::tanh:
T
tensor-tang 已提交
162
        tanh_jmm<ymm_t>(ymm_dst, ymm_src, 2, 3, 4, 5);
163 164 165 166 167 168 169
        break;
      case operand_type::identity:
        break;
      default:
        break;
    }
    vmovups(ptr[param2 + offset], ymm_dst);
170
    offset += sizeof(float) * YMM_FLOAT_BLOCK;
171
  }
172
  int rest = num_ % YMM_FLOAT_BLOCK;
T
tensor-tang 已提交
173
  while (rest > 0) {
T
tensor-tang 已提交
174
    int block = XMM_FLOAT_BLOCK;
T
tensor-tang 已提交
175
    if (rest >= 4) {
T
tensor-tang 已提交
176
      block = 4;
T
tensor-tang 已提交
177 178
      vmovups(xmm_src, ptr[param1 + offset]);
    } else if (rest >= 2) {
T
tensor-tang 已提交
179
      block = 2;
T
tensor-tang 已提交
180 181
      vmovq(xmm_src, ptr[param1 + offset]);
    } else {
T
tensor-tang 已提交
182
      block = 1;
T
tensor-tang 已提交
183
      vmovss(xmm_src, ptr[param1 + offset]);
T
tensor-tang 已提交
184 185 186
    }
    switch (type_) {
      case operand_type::relu:
T
tensor-tang 已提交
187
        relu_jmm<xmm_t>(xmm_dst, xmm_src, xmm_zero);
T
tensor-tang 已提交
188 189
        break;
      case operand_type::exp:
T
tensor-tang 已提交
190
        exp_jmm<xmm_t>(xmm_dst, xmm_src, 2, 3, 4, 5);
T
tensor-tang 已提交
191
        break;
T
tensor-tang 已提交
192 193 194 195 196 197
      case operand_type::sigmoid:
        sigmoid_jmm<xmm_t>(xmm_dst, xmm_src, 2, 3, 4, 5);
        break;
      case operand_type::tanh:
        tanh_jmm<xmm_t>(xmm_dst, xmm_src, 2, 3, 4, 5);
        break;
T
tensor-tang 已提交
198 199 200
      default:
        break;
    }
T
tensor-tang 已提交
201 202 203 204 205 206
    if (rest >= 4) {
      vmovups(ptr[param2 + offset], xmm_dst);
    } else if (rest >= 2) {
      vmovq(ptr[param2 + offset], xmm_dst);
    } else {
      vmovss(ptr[param2 + offset], xmm_dst);
T
tensor-tang 已提交
207
    }
T
tensor-tang 已提交
208 209
    offset += sizeof(float) * block;
    rest -= block;
210
  }
T
tensor-tang 已提交
211 212 213
  ret();
}

T
tensor-tang 已提交
214 215 216
bool LSTMJitCode::init(int d) { return MayIUse(avx) && d % 8 == 0; }

void LSTMJitCode::generate() {
217 218 219
  if (use_peephole_) {
    preCode();
  }
T
tensor-tang 已提交
220 221 222 223
  reg64_t reg_ptr_gates = rax;
  reg64_t reg_ptr_ct_1 = r9;
  reg64_t reg_ptr_ct = r10;
  reg64_t reg_ptr_ht = r11;
T
tensor-tang 已提交
224
  reg64_t reg_ptr_wp = r12;
T
tensor-tang 已提交
225 226 227 228
  mov(reg_ptr_gates, ptr[param1 + offsetof(lstm_t, gates)]);
  mov(reg_ptr_ct_1, ptr[param1 + offsetof(lstm_t, ct_1)]);
  mov(reg_ptr_ct, ptr[param1 + offsetof(lstm_t, ct)]);
  mov(reg_ptr_ht, ptr[param1 + offsetof(lstm_t, ht)]);
T
tensor-tang 已提交
229 230 231
  if (use_peephole_) {
    mov(reg_ptr_wp, ptr[param1 + offsetof(lstm_t, wp)]);
  }
T
tensor-tang 已提交
232 233

  int offset = 0;
234
  int d = num_ * sizeof(float);
T
tensor-tang 已提交
235 236 237 238 239 240
  for (int i = 0; i < num_ / YMM_FLOAT_BLOCK; ++i) {
    /* C_t = C_t-1 * fgated + cand_gated * igated*/
    // c
    vmovups(ymm_src, ptr[reg_ptr_gates + offset]);
    act<ymm_t>(ymm_c, ymm_src, act_cand_);
    // i
241
    vmovups(ymm_src, ptr[reg_ptr_gates + offset + d]);
T
tensor-tang 已提交
242 243 244 245 246 247 248 249
    if (!compute_c1h1_ && use_peephole_) {
      ymm_t ymm_wp = ymm_t(2);
      ymm_t ymm_ct_1 = ymm_t(3);
      vmovups(ymm_wp, ptr[reg_ptr_wp + offset]);
      vmovups(ymm_ct_1, ptr[reg_ptr_ct_1 + offset]);
      vmulps(ymm_wp, ymm_ct_1, ymm_wp);
      vaddps(ymm_src, ymm_src, ymm_wp);
    }
T
tensor-tang 已提交
250 251
    act<ymm_t>(ymm_i, ymm_src, act_gate_);
    vmulps(ymm_c, ymm_c, ymm_i);
252
    if (!compute_c1h1_) {
T
tensor-tang 已提交
253
      // f
254
      vmovups(ymm_src, ptr[reg_ptr_gates + offset + 2 * d]);
T
tensor-tang 已提交
255
      vmovups(ymm_i, ptr[reg_ptr_ct_1 + offset]);
T
tensor-tang 已提交
256 257 258 259 260 261 262
      if (use_peephole_) {
        ymm_t ymm_wp = ymm_t(3);
        vmovups(ymm_wp, ptr[reg_ptr_wp + offset + d]);
        vmulps(ymm_wp, ymm_i, ymm_wp);
        vaddps(ymm_src, ymm_src, ymm_wp);
      }
      act<ymm_t>(ymm_f, ymm_src, act_gate_);
T
tensor-tang 已提交
263 264 265 266
      vmulps(ymm_f, ymm_f, ymm_i);
      vaddps(ymm_f, ymm_f, ymm_c);
    }
    /* H_t = act_cell(C_t) * ogated */
267 268
    ymm_t ymm_ct = compute_c1h1_ ? ymm_c : ymm_f;
    ymm_t ymm_o = compute_c1h1_ ? ymm_f : ymm_c;
T
tensor-tang 已提交
269
    ymm_t ymm_tmp = ymm_i;
270 271
    vmovups(ptr[reg_ptr_ct + offset], ymm_ct);  // save ct
    vmovups(ymm_src, ptr[reg_ptr_gates + offset + 3 * d]);
T
tensor-tang 已提交
272 273 274 275 276 277 278
    if (use_peephole_) {
      ymm_t ymm_wp = ymm_t(2);
      vmovups(ymm_wp, ptr[reg_ptr_wp + offset + d * 2]);
      vmulps(ymm_wp, ymm_ct, ymm_wp);
      vaddps(ymm_src, ymm_src, ymm_wp);
    }
    act<ymm_t>(ymm_tmp, ymm_ct, act_cell_);
T
tensor-tang 已提交
279 280
    act<ymm_t>(ymm_o, ymm_src, act_gate_);
    vmulps(ymm_o, ymm_tmp, ymm_o);
281
    vmovups(ptr[reg_ptr_ht + offset], ymm_o);  // save ht
T
tensor-tang 已提交
282 283 284
    offset += sizeof(float) * YMM_FLOAT_BLOCK;
  }

285 286 287 288 289
  if (use_peephole_) {
    postCode();
  } else {
    ret();
  }
T
tensor-tang 已提交
290 291
}

292 293 294 295 296 297 298 299 300 301 302 303 304 305
bool GRUJitCode::init(int d) { return MayIUse(avx) && d % 8 == 0; }

void GRUJitCode::generate() {
  reg64_t reg_ptr_gates = rax;
  reg64_t reg_ptr_ct_1 = r9;
  reg64_t reg_ptr_ct = r10;
  reg64_t reg_ptr_ht = r11;
  mov(reg_ptr_gates, ptr[param1 + offsetof(lstm_t, gates)]);
  mov(reg_ptr_ct_1, ptr[param1 + offsetof(lstm_t, ct_1)]);
  mov(reg_ptr_ct, ptr[param1 + offsetof(lstm_t, ct)]);
  mov(reg_ptr_ht, ptr[param1 + offsetof(lstm_t, ht)]);

  ret();
}
306 307 308 309 310
}  // namespace gen
}  // namespace jitkernel
}  // namespace math
}  // namespace operators
}  // namespace paddle