jit_code.cc 15.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/math/jit_code.h"
#include "paddle/fluid/operators/math/jit_kernel.h"
#include "paddle/fluid/platform/cpu_info.h"

namespace paddle {
namespace operators {
namespace math {
namespace jitkernel {
namespace gen {

using namespace platform::jit;  // NOLINT

T
tensor-tang 已提交
27
bool VXXJitCode::init(int d, int scalar_index) {
28 29
  // It's not necessary to use avx512 since it would slow down the frequency
  // and this kernel is not compute bound.
T
tensor-tang 已提交
30
  return MayIUse(avx) && scalar_index >= 0 && scalar_index <= 2;
31 32
}

T
tensor-tang 已提交
33
void VXXJitCode::generate() {
T
tensor-tang 已提交
34
  // do not need push stack, and do not need save avx512reg if do not use avx512
T
tensor-tang 已提交
35
  int offset = 0;
T
tensor-tang 已提交
36 37 38
  if (with_relu_) {
    vxorps(ymm_zero, ymm_zero, ymm_zero);
  }
T
tensor-tang 已提交
39 40 41 42 43
  if (scalar_index_ == 1) {
    vbroadcastss(ymm_src1, ptr[param1]);
  } else if (scalar_index_ == 2) {
    vbroadcastss(ymm_src2, ptr[param2]);
  }
44
  for (int i = 0; i < num_ / YMM_FLOAT_BLOCK; ++i) {
T
tensor-tang 已提交
45 46 47 48 49 50
    if (scalar_index_ != 1) {
      vmovups(ymm_src1, ptr[param1 + offset]);
    }
    if (scalar_index_ != 2) {
      vmovups(ymm_src2, ptr[param2 + offset]);
    }
T
tensor-tang 已提交
51 52 53 54 55
    if (type_ == operand_type::mul) {
      vmulps(ymm_dst, ymm_src1, ymm_src2);
    } else if (type_ == operand_type::add) {
      vaddps(ymm_dst, ymm_src1, ymm_src2);
    }
T
tensor-tang 已提交
56 57 58
    if (with_relu_) {
      vmaxps(ymm_dst, ymm_zero, ymm_dst);
    }
T
tensor-tang 已提交
59
    vmovups(ptr[param3 + offset], ymm_dst);
60
    offset += sizeof(float) * YMM_FLOAT_BLOCK;
T
tensor-tang 已提交
61
  }
62
  int rest = num_ % YMM_FLOAT_BLOCK;
T
tensor-tang 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
  int block = XMM_FLOAT_BLOCK;
  while (rest > 0) {
    if (rest >= 4) {
      if (scalar_index_ != 1) {
        vmovups(xmm_src1, ptr[param1 + offset]);
      }
      if (scalar_index_ != 2) {
        vmovups(xmm_src2, ptr[param2 + offset]);
      }
    } else if (rest >= 2) {
      if (scalar_index_ != 1) {
        vmovq(xmm_src1, ptr[param1 + offset]);
      }
      if (scalar_index_ != 2) {
        vmovq(xmm_src2, ptr[param2 + offset]);
      }
    } else {
      if (scalar_index_ != 1) {
        vmovss(xmm_src1, ptr[param1 + offset]);
      }
      if (scalar_index_ != 2) {
        vmovss(xmm_src2, ptr[param2 + offset]);
      }
T
tensor-tang 已提交
86
    }
T
tensor-tang 已提交
87 88 89 90 91 92 93 94 95
    switch (type_) {
      case operand_type::mul:
        vmulps(xmm_dst, xmm_src1, xmm_src2);
        break;
      case operand_type::add:
        vaddps(xmm_dst, xmm_src1, xmm_src2);
        break;
      default:
        break;
T
tensor-tang 已提交
96
    }
T
tensor-tang 已提交
97 98 99
    if (with_relu_) {
      vmaxps(xmm_dst, xmm_zero, xmm_dst);
    }
T
tensor-tang 已提交
100 101 102 103 104 105
    if (rest >= 4) {
      vmovups(ptr[param3 + offset], xmm_dst);
    } else if (rest >= 2) {
      vmovq(ptr[param3 + offset], xmm_dst);
    } else {
      vmovss(ptr[param3 + offset], xmm_dst);
T
tensor-tang 已提交
106
    }
T
tensor-tang 已提交
107 108 109
    offset += sizeof(float) * block;
    rest -= block;
    block /= 2;
T
tensor-tang 已提交
110 111 112
  }
  ret();
}
T
tensor-tang 已提交
113

T
tensor-tang 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
#define ALIGN32 __attribute__((aligned(32)))
#define EXP_HIG 88.3762626647949f
#define EXP_LOW -88.3762626647949f
#define CEPHES_LOG2EF 1.44269504088896341
#define CEPHES_EXP_C1 0.693359375
#define CEPHES_EXP_C2 -2.12194440e-4
#define CEPHES_EXP_P0 1.9875691500E-4
#define CEPHES_EXP_P1 1.3981999507E-3
#define CEPHES_EXP_P2 8.3334519073E-3
#define CEPHES_EXP_P3 4.1665795894E-2
#define CEPHES_EXP_P4 1.6666665459E-1
#define CEPHES_EXP_P5 5.0000001201E-1

#define REPEAT_8TIMES(val) val, val, val, val, val, val, val, val

129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
#define OFFSET_EXP_ONE 0 * YMM_FLOAT_BLOCK * sizeof(float)
#define OFFSET_EXP_TWO 1 * YMM_FLOAT_BLOCK * sizeof(float)
#define OFFSET_EXP_0P5 2 * YMM_FLOAT_BLOCK * sizeof(float)
#define OFFSET_EXP_HIG 3 * YMM_FLOAT_BLOCK * sizeof(float)
#define OFFSET_EXP_LOW 4 * YMM_FLOAT_BLOCK * sizeof(float)
#define OFFSET_EXP_LOG2EF 5 * YMM_FLOAT_BLOCK * sizeof(float)
#define OFFSET_EXP_C1 6 * YMM_FLOAT_BLOCK * sizeof(float)
#define OFFSET_EXP_C2 7 * YMM_FLOAT_BLOCK * sizeof(float)
#define OFFSET_EXP_P0 8 * YMM_FLOAT_BLOCK * sizeof(float)
#define OFFSET_EXP_P1 9 * YMM_FLOAT_BLOCK * sizeof(float)
#define OFFSET_EXP_P2 10 * YMM_FLOAT_BLOCK * sizeof(float)
#define OFFSET_EXP_P3 11 * YMM_FLOAT_BLOCK * sizeof(float)
#define OFFSET_EXP_P4 12 * YMM_FLOAT_BLOCK * sizeof(float)
#define OFFSET_EXP_P5 13 * YMM_FLOAT_BLOCK * sizeof(float)
#define OFFSET_EXP_MAX_INPUT 14 * YMM_FLOAT_BLOCK * sizeof(float)
#define OFFSET_SIGMOID_MAX 15 * YMM_FLOAT_BLOCK * sizeof(float)
#define OFFSET_SIGMOID_MIN 16 * YMM_FLOAT_BLOCK * sizeof(float)
T
tensor-tang 已提交
146 147

static const float exp_float_consts[] ALIGN32 = {
T
tensor-tang 已提交
148
    REPEAT_8TIMES(1.f),
T
tensor-tang 已提交
149
    REPEAT_8TIMES(2.f),
T
tensor-tang 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
    REPEAT_8TIMES(0.5f),
    REPEAT_8TIMES(EXP_HIG),
    REPEAT_8TIMES(EXP_LOW),
    REPEAT_8TIMES(CEPHES_LOG2EF),
    REPEAT_8TIMES(CEPHES_EXP_C1),
    REPEAT_8TIMES(CEPHES_EXP_C2),
    REPEAT_8TIMES(CEPHES_EXP_P0),
    REPEAT_8TIMES(CEPHES_EXP_P1),
    REPEAT_8TIMES(CEPHES_EXP_P2),
    REPEAT_8TIMES(CEPHES_EXP_P3),
    REPEAT_8TIMES(CEPHES_EXP_P4),
    REPEAT_8TIMES(CEPHES_EXP_P5),
    REPEAT_8TIMES(EXP_MAX_INPUT),
    REPEAT_8TIMES(SIGMOID_THRESHOLD_MAX),
    REPEAT_8TIMES(SIGMOID_THRESHOLD_MIN)};
T
tensor-tang 已提交
165 166 167 168

static const int exp_int_0x7f[] ALIGN32 = {REPEAT_8TIMES(0x7f)};
static int g_tmp_mem[16] ALIGN32 = {0};

169 170
bool VActJitCode::init(int d, operand_type type) {
  bool ok = MayIUse(avx);
T
tensor-tang 已提交
171 172
  if (type == operand_type::relu || type == operand_type::exp) {
    // TODO(TJ): implement avx512, avx_exp is slower than mkl when d >= 256
173 174
    return ok;
  } else {
T
tensor-tang 已提交
175
    // TODO(TJ): support more
176
    return ok && d % 8 == 0;
177
  }
T
tensor-tang 已提交
178 179
}

180 181 182 183
void VActJitCode::relu_ymm(ymm_t& ymm_dst, ymm_t& ymm_src, ymm_t& ymm_zero) {
  vmaxps(ymm_dst, ymm_zero, ymm_src);
}

T
tensor-tang 已提交
184 185 186 187
void VActJitCode::relu_xmm(xmm_t& xmm_dst, xmm_t& xmm_src, xmm_t& xmm_zero) {
  vmaxps(xmm_dst, xmm_zero, xmm_src);
}

188 189
void VActJitCode::exp_ymm(ymm_t& ymm_dst, ymm_t& ymm_src, int fx_idx,
                          int fy_idx, int mask_idx, int tmp_idx) {
T
tensor-tang 已提交
190
  assert(ymm_src.getIdx() != ymm_dst.getIdx());  // TODO(TJ): use enfore
191 192 193 194 195 196
  // check all idx can not equal
  ymm_t ymm_fx = ymm_t(fx_idx);
  ymm_t ymm_fy = ymm_t(fy_idx);
  ymm_t ymm_mask = ymm_t(mask_idx);
  ymm_t ymm_tmp = ymm_t(tmp_idx);
  reg64_t reg_ptr_global = rax;
T
tensor-tang 已提交
197
  push(reg_ptr_global);
T
tensor-tang 已提交
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
  mov(reg_ptr_global, reinterpret_cast<size_t>(exp_float_consts));
  vmovaps(ymm_tmp, ptr[reg_ptr_global + OFFSET_EXP_HIG]);
  vminps(ymm_src, ymm_src, ymm_tmp);
  vmovaps(ymm_tmp, ptr[reg_ptr_global + OFFSET_EXP_LOW]);
  vmaxps(ymm_src, ymm_src, ymm_tmp);
  // express exp(x) as exp(g + n*log(2))
  vmovaps(ymm_tmp, ptr[reg_ptr_global + OFFSET_EXP_LOG2EF]);
  vmulps(ymm_fx, ymm_src, ymm_tmp);
  vmovaps(ymm_tmp, ptr[reg_ptr_global + OFFSET_EXP_0P5]);
  vaddps(ymm_fx, ymm_fx, ymm_tmp);
  vroundps(ymm_fy, ymm_fx, 0x01);
  // if greater, substract 1
  vcmpgtps(ymm_mask, ymm_fy, ymm_fx);
  vmovaps(ymm_tmp, ptr[reg_ptr_global]);
  vandps(ymm_mask, ymm_mask, ymm_tmp);
  vsubps(ymm_fx, ymm_fy, ymm_mask);
  vmovaps(ymm_tmp, ptr[reg_ptr_global + OFFSET_EXP_C1]);
  vmulps(ymm_fy, ymm_fx, ymm_tmp);
  vmovaps(ymm_tmp, ptr[reg_ptr_global + OFFSET_EXP_C2]);
T
tensor-tang 已提交
217 218
  ymm_t ymm_z = ymm_t(ymm_mask.getIdx());
  vmulps(ymm_z, ymm_fx, ymm_tmp);
T
tensor-tang 已提交
219 220 221 222 223 224
  vsubps(ymm_src, ymm_src, ymm_fy);
  vsubps(ymm_src, ymm_src, ymm_z);
  vmulps(ymm_z, ymm_src, ymm_src);
  vmovaps(ymm_tmp, ptr[reg_ptr_global + OFFSET_EXP_P0]);
  vmulps(ymm_dst, ymm_src, ymm_tmp);
  for (size_t i = OFFSET_EXP_P1; i < OFFSET_EXP_P5;
225
       i += (YMM_FLOAT_BLOCK * sizeof(float))) {
T
tensor-tang 已提交
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
    vmovaps(ymm_tmp, ptr[reg_ptr_global + i]);  // P1~P4
    vaddps(ymm_dst, ymm_dst, ymm_tmp);
    vmulps(ymm_dst, ymm_dst, ymm_src);
  }
  vmovaps(ymm_tmp, ptr[reg_ptr_global + OFFSET_EXP_P5]);
  vaddps(ymm_dst, ymm_dst, ymm_tmp);
  vmulps(ymm_dst, ymm_dst, ymm_z);
  vaddps(ymm_dst, ymm_dst, ymm_src);
  vmovaps(ymm_tmp, ptr[reg_ptr_global]);
  vaddps(ymm_dst, ymm_dst, ymm_tmp);
  // build 2^n
  ymm_t ymm_int = ymm_fx;
  vcvttps2dq(ymm_int, ymm_fx);
  mov(reg_ptr_global, reinterpret_cast<size_t>(exp_int_0x7f));
  vmovdqa(ymm_tmp, ptr[reg_ptr_global]);
  if (MayIUse(avx2)) {
    vpaddd(ymm_int, ymm_int, ymm_tmp);
    vpslld(ymm_int, ymm_int, 23);
  } else if (MayIUse(avx)) {
T
tensor-tang 已提交
245 246 247 248 249
    xmm_t xtmp1 = xmm_t(ymm_int.getIdx());
    xmm_t xtmp2 = xmm_t(ymm_tmp.getIdx());
    reg64_t reg_ptr_tmp = reg_ptr_global;
    mov(reg_ptr_tmp, reinterpret_cast<size_t>(g_tmp_mem));
    vmovdqa(ptr[reg_ptr_tmp], ymm_int);
250
    vmovdqa(ptr[reg_ptr_tmp + YMM_FLOAT_BLOCK * sizeof(float)], ymm_tmp);
T
tensor-tang 已提交
251 252
    vpaddd(xtmp1, xtmp1, xtmp2);
    vpslld(xtmp1, xtmp1, 23);
T
tensor-tang 已提交
253
    vmovdqa(ptr[reg_ptr_tmp], xtmp1);
T
tensor-tang 已提交
254
    // next 128bits
T
tensor-tang 已提交
255
    vmovdqa(xtmp1, ptr[reg_ptr_tmp + 4 /*xmm float block*/ * sizeof(float)]);
T
tensor-tang 已提交
256
    vmovdqa(xtmp2,
T
tensor-tang 已提交
257
            ptr[reg_ptr_tmp +
258
                (YMM_FLOAT_BLOCK + 4 /*xmm float block*/) * sizeof(float)]);
T
tensor-tang 已提交
259 260
    vpaddd(xtmp1, xtmp1, xtmp2);
    vpslld(xtmp1, xtmp1, 23);
T
tensor-tang 已提交
261
    vmovdqa(ptr[reg_ptr_tmp + 4 /*xmm float block*/ * sizeof(float)], xtmp1);
T
tensor-tang 已提交
262
    // load out
T
tensor-tang 已提交
263
    vmovdqa(ymm_int, ptr[reg_ptr_tmp]);
T
tensor-tang 已提交
264 265
  }
  vmulps(ymm_dst, ymm_dst, ymm_int);
T
tensor-tang 已提交
266 267 268
  pop(reg_ptr_global);
}

T
tensor-tang 已提交
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
void VActJitCode::exp_xmm(xmm_t& ymm_dst, xmm_t& ymm_src, int fx_idx,
                          int fy_idx, int mask_idx, int tmp_idx) {
  assert(ymm_src.getIdx() != ymm_dst.getIdx());  // TODO(TJ): use enfore
  // check all idx can not equal
  xmm_t ymm_fx = xmm_t(fx_idx);
  xmm_t ymm_fy = xmm_t(fy_idx);
  xmm_t ymm_mask = xmm_t(mask_idx);
  xmm_t ymm_tmp = xmm_t(tmp_idx);
  reg64_t reg_ptr_global = rax;
  push(reg_ptr_global);
  mov(reg_ptr_global, reinterpret_cast<size_t>(exp_float_consts));
  vmovaps(ymm_tmp, ptr[reg_ptr_global + OFFSET_EXP_HIG]);
  vminps(ymm_src, ymm_src, ymm_tmp);
  vmovaps(ymm_tmp, ptr[reg_ptr_global + OFFSET_EXP_LOW]);
  vmaxps(ymm_src, ymm_src, ymm_tmp);
  // express exp(x) as exp(g + n*log(2))
  vmovaps(ymm_tmp, ptr[reg_ptr_global + OFFSET_EXP_LOG2EF]);
  vmulps(ymm_fx, ymm_src, ymm_tmp);
  vmovaps(ymm_tmp, ptr[reg_ptr_global + OFFSET_EXP_0P5]);
  vaddps(ymm_fx, ymm_fx, ymm_tmp);
  vroundps(ymm_fy, ymm_fx, 0x01);
  // if greater, substract 1
  vcmpgtps(ymm_mask, ymm_fy, ymm_fx);
  vmovaps(ymm_tmp, ptr[reg_ptr_global]);
  vandps(ymm_mask, ymm_mask, ymm_tmp);
  vsubps(ymm_fx, ymm_fy, ymm_mask);
  vmovaps(ymm_tmp, ptr[reg_ptr_global + OFFSET_EXP_C1]);
  vmulps(ymm_fy, ymm_fx, ymm_tmp);
  vmovaps(ymm_tmp, ptr[reg_ptr_global + OFFSET_EXP_C2]);
  xmm_t ymm_z = xmm_t(ymm_mask.getIdx());
  vmulps(ymm_z, ymm_fx, ymm_tmp);
  vsubps(ymm_src, ymm_src, ymm_fy);
  vsubps(ymm_src, ymm_src, ymm_z);
  vmulps(ymm_z, ymm_src, ymm_src);
  vmovaps(ymm_tmp, ptr[reg_ptr_global + OFFSET_EXP_P0]);
  vmulps(ymm_dst, ymm_src, ymm_tmp);
  for (size_t i = OFFSET_EXP_P1; i < OFFSET_EXP_P5;
       i += (YMM_FLOAT_BLOCK * sizeof(float))) {
    vmovaps(ymm_tmp, ptr[reg_ptr_global + i]);  // P1~P4
    vaddps(ymm_dst, ymm_dst, ymm_tmp);
    vmulps(ymm_dst, ymm_dst, ymm_src);
  }
  vmovaps(ymm_tmp, ptr[reg_ptr_global + OFFSET_EXP_P5]);
  vaddps(ymm_dst, ymm_dst, ymm_tmp);
  vmulps(ymm_dst, ymm_dst, ymm_z);
  vaddps(ymm_dst, ymm_dst, ymm_src);
  vmovaps(ymm_tmp, ptr[reg_ptr_global]);
  vaddps(ymm_dst, ymm_dst, ymm_tmp);
  // build 2^n
  xmm_t ymm_int = ymm_fx;
  vcvttps2dq(ymm_int, ymm_fx);
  mov(reg_ptr_global, reinterpret_cast<size_t>(exp_int_0x7f));
  vmovdqa(ymm_tmp, ptr[reg_ptr_global]);
  vpaddd(ymm_int, ymm_int, ymm_tmp);
  vpslld(ymm_int, ymm_int, 23);
  vmulps(ymm_dst, ymm_dst, ymm_int);
  pop(reg_ptr_global);
}

328 329 330 331
void VActJitCode::sigmoid_ymm(ymm_t& ymm_dst, ymm_t& ymm_src, int fx_idx,
                              int fy_idx, int mask_idx, int tmp_idx) {
  // y = 1 / (1 + e^-x)
  ymm_t ymm_tmp = ymm_t(tmp_idx);
T
tensor-tang 已提交
332 333 334 335 336 337 338 339 340
  reg64_t reg_ptr_global = rax;
  push(reg_ptr_global);
  mov(reg_ptr_global, reinterpret_cast<size_t>(exp_float_consts));
  vmovaps(ymm_tmp, ptr[reg_ptr_global + OFFSET_SIGMOID_MAX]);
  vminps(ymm_src, ymm_src, ymm_tmp);
  vmovaps(ymm_tmp, ptr[reg_ptr_global + OFFSET_SIGMOID_MIN]);
  vmaxps(ymm_src, ymm_src, ymm_tmp);
  vxorps(ymm_tmp, ymm_tmp, ymm_tmp);
  vsubps(ymm_src, ymm_tmp, ymm_src);
341
  exp_ymm(ymm_dst, ymm_src, fx_idx, fy_idx, mask_idx, tmp_idx);
T
tensor-tang 已提交
342 343 344 345 346 347
  vmovaps(ymm_tmp, ptr[reg_ptr_global + OFFSET_EXP_ONE]);
  vaddps(ymm_dst, ymm_dst, ymm_tmp);
  vdivps(ymm_dst, ymm_tmp, ymm_dst);
  pop(reg_ptr_global);
}

348 349
void VActJitCode::tanh_ymm(ymm_t& ymm_dst, ymm_t& ymm_src, int fx_idx,
                           int fy_idx, int mask_idx, int tmp_idx) {
T
tensor-tang 已提交
350
  // y = 2 / (1 + e^(-2x)) - 1
351 352
  ymm_t ymm_tmp = ymm_t(tmp_idx);
  ymm_t ymm_zero = ymm_t(mask_idx);
T
tensor-tang 已提交
353 354 355 356 357 358 359
  reg64_t reg_ptr_global = rax;
  push(reg_ptr_global);
  mov(reg_ptr_global, reinterpret_cast<size_t>(exp_float_consts));
  vmovaps(ymm_tmp, ptr[reg_ptr_global + OFFSET_EXP_TWO]);
  vxorps(ymm_zero, ymm_zero, ymm_zero);
  vsubps(ymm_tmp, ymm_zero, ymm_tmp);
  vmulps(ymm_src, ymm_src, ymm_tmp);
360
  exp_ymm(ymm_dst, ymm_src, fx_idx, fy_idx, mask_idx, tmp_idx);
T
tensor-tang 已提交
361 362 363 364 365 366 367 368 369
  vmovaps(ymm_tmp, ptr[reg_ptr_global + OFFSET_EXP_ONE]);
  vaddps(ymm_dst, ymm_dst, ymm_tmp);
  vmovaps(ymm_tmp, ptr[reg_ptr_global + OFFSET_EXP_TWO]);
  vdivps(ymm_dst, ymm_tmp, ymm_dst);
  vmovaps(ymm_tmp, ptr[reg_ptr_global + OFFSET_EXP_ONE]);
  vsubps(ymm_dst, ymm_dst, ymm_tmp);
  pop(reg_ptr_global);
}

370 371 372 373 374 375
void VActJitCode::generate() {
  xmm_t xmm_zero = xmm_t(2);
  ymm_t ymm_zero = ymm_t(2);
  if (type_ == operand_type::relu) {
    vxorps(ymm_zero, ymm_zero, ymm_zero);
  }
T
tensor-tang 已提交
376
  int offset = 0;
377
  for (int i = 0; i < num_ / YMM_FLOAT_BLOCK; ++i) {
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
    vmovups(ymm_src, ptr[param1 + offset]);
    switch (type_) {
      case operand_type::relu:
        relu_ymm(ymm_dst, ymm_src, ymm_zero);
        break;
      case operand_type::exp:
        exp_ymm(ymm_dst, ymm_src, 2, 3, 4, 5);
        break;
      case operand_type::sigmoid:
        sigmoid_ymm(ymm_dst, ymm_src, 2, 3, 4, 5);
        break;
      case operand_type::tanh:
        tanh_ymm(ymm_dst, ymm_src, 2, 3, 4, 5);
        break;
      case operand_type::identity:
        break;
      default:
        break;
    }
    vmovups(ptr[param2 + offset], ymm_dst);
398
    offset += sizeof(float) * YMM_FLOAT_BLOCK;
399
  }
T
tensor-tang 已提交
400
  if (type_ != operand_type::relu && type_ != operand_type::exp) {
401 402 403 404
    // TODO(TJ): remove me
    ret();
    return;
  }
405
  int rest = num_ % YMM_FLOAT_BLOCK;
T
tensor-tang 已提交
406 407 408 409 410 411 412 413
  int block = XMM_FLOAT_BLOCK;
  while (rest > 0) {
    if (rest >= 4) {
      vmovups(xmm_src, ptr[param1 + offset]);
    } else if (rest >= 2) {
      vmovq(xmm_src, ptr[param1 + offset]);
    } else {
      vmovss(xmm_src, ptr[param1 + offset]);
T
tensor-tang 已提交
414 415 416 417 418 419 420 421 422 423 424
    }
    switch (type_) {
      case operand_type::relu:
        relu_xmm(xmm_dst, xmm_src, xmm_zero);
        break;
      case operand_type::exp:
        exp_xmm(xmm_dst, xmm_src, 2, 3, 4, 5);
        break;
      default:
        break;
    }
T
tensor-tang 已提交
425 426 427 428 429 430
    if (rest >= 4) {
      vmovups(ptr[param2 + offset], xmm_dst);
    } else if (rest >= 2) {
      vmovq(ptr[param2 + offset], xmm_dst);
    } else {
      vmovss(ptr[param2 + offset], xmm_dst);
T
tensor-tang 已提交
431
    }
T
tensor-tang 已提交
432 433 434
    offset += sizeof(float) * block;
    rest -= block;
    block /= 2;
435
  }
T
tensor-tang 已提交
436 437 438
  ret();
}

439 440 441 442 443
}  // namespace gen
}  // namespace jitkernel
}  // namespace math
}  // namespace operators
}  // namespace paddle