jit_code.cc 3.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/math/jit_code.h"
#include "paddle/fluid/operators/math/jit_kernel.h"
#include "paddle/fluid/platform/cpu_info.h"

namespace paddle {
namespace operators {
namespace math {
namespace jitkernel {
namespace gen {

using namespace platform::jit;  // NOLINT

T
tensor-tang 已提交
27
bool VVVJitCode::init(int d) {
28 29
  // It's not necessary to use avx512 since it would slow down the frequency
  // and this kernel is not compute bound.
T
tensor-tang 已提交
30
  return MayIUse(avx);
31 32
}

T
tensor-tang 已提交
33
void VVVJitCode::generate() {
T
tensor-tang 已提交
34
  // do not need push stack, and do not need save avx512reg if do not use avx512
T
tensor-tang 已提交
35
  int offset = 0;
T
tensor-tang 已提交
36 37 38
  if (with_relu_) {
    vxorps(ymm_zero, ymm_zero, ymm_zero);
  }
T
tensor-tang 已提交
39 40 41
  for (int i = 0; i < num_ / AVX_FLOAT_BLOCK; ++i) {
    vmovups(ymm_src1, ptr[param1 + offset]);
    vmovups(ymm_src2, ptr[param2 + offset]);
T
tensor-tang 已提交
42 43 44 45 46
    if (type_ == operand_type::mul) {
      vmulps(ymm_dst, ymm_src1, ymm_src2);
    } else if (type_ == operand_type::add) {
      vaddps(ymm_dst, ymm_src1, ymm_src2);
    }
T
tensor-tang 已提交
47 48 49
    if (with_relu_) {
      vmaxps(ymm_dst, ymm_zero, ymm_dst);
    }
T
tensor-tang 已提交
50 51 52 53 54 55 56
    vmovups(ptr[param3 + offset], ymm_dst);
    offset += sizeof(float) * AVX_FLOAT_BLOCK;
  }
  int rest = num_ % AVX_FLOAT_BLOCK;
  if (rest >= 4) {
    vmovups(xmm_src1, ptr[param1 + offset]);
    vmovups(xmm_src2, ptr[param2 + offset]);
T
tensor-tang 已提交
57 58 59 60 61
    if (type_ == operand_type::mul) {
      vmulps(xmm_dst, xmm_src1, xmm_src2);
    } else if (type_ == operand_type::add) {
      vaddps(xmm_dst, xmm_src1, xmm_src2);
    }
T
tensor-tang 已提交
62 63 64
    if (with_relu_) {
      vmaxps(xmm_dst, xmm_zero, xmm_dst);
    }
T
tensor-tang 已提交
65 66 67 68 69 70 71
    vmovups(ptr[param3 + offset], xmm_dst);
    offset += sizeof(float) * 4;
    rest -= 4;
  }
  if (rest >= 2) {
    vmovq(xmm_src1, ptr[param1 + offset]);
    vmovq(xmm_src2, ptr[param2 + offset]);
T
tensor-tang 已提交
72 73 74 75 76
    if (type_ == operand_type::mul) {
      vmulps(xmm_dst, xmm_src1, xmm_src2);
    } else if (type_ == operand_type::add) {
      vaddps(xmm_dst, xmm_src1, xmm_src2);
    }
T
tensor-tang 已提交
77 78 79
    if (with_relu_) {
      vmaxps(xmm_dst, xmm_zero, xmm_dst);
    }
T
tensor-tang 已提交
80 81 82 83 84 85 86
    vmovq(ptr[param3 + offset], xmm_dst);
    offset += sizeof(float) * 2;
    rest -= 2;
  }
  if (rest > 0) {
    vmovss(xmm_src1, ptr[param1 + offset]);
    vmovss(xmm_src2, ptr[param2 + offset]);
T
tensor-tang 已提交
87 88 89 90 91
    if (type_ == operand_type::mul) {
      vmulss(xmm_dst, xmm_src1, xmm_src2);
    } else if (type_ == operand_type::add) {
      vaddss(xmm_dst, xmm_src1, xmm_src2);
    }
T
tensor-tang 已提交
92 93 94
    if (with_relu_) {
      vmaxps(xmm_dst, xmm_zero, xmm_dst);
    }
T
tensor-tang 已提交
95 96 97 98
    vmovss(ptr[param3 + offset], xmm_dst);
  }
  ret();
}
99 100 101 102 103
}  // namespace gen
}  // namespace jitkernel
}  // namespace math
}  // namespace operators
}  // namespace paddle