auto_parallel_data_parallel_optimization.py 28.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from collections import OrderedDict

import paddle
18
from paddle.fluid import unique_name
19
from paddle.fluid.framework import default_main_program
20
from paddle.distributed.fleet.meta_optimizers.common import OP_ROLE_KEY, OpRole
21
from .pass_base import PassBase, PassType, register_pass
22 23 24 25 26 27 28 29
from paddle.distributed.auto_parallel.operators.common import (
    is_data_parallel_scale_op,
    is_data_parallel_reduce_op,
)
from paddle.distributed.auto_parallel.utils import (
    find_higher_order_backward_op,
    is_loss_grad_op,
    is_optimize_op,
30
    is_forward_op,
31
    ring_id_to_process_group,
32
    get_var_numel,
33 34
    use_standalone_executor,
    insert_dependencies_for_two_vars,
35
)
36 37 38

# add new optimizers supporting rescale_grad here
__rescale_grad_supported_opts__ = [
39 40 41 42 43
    'lars_momentum',
    'sparse_momentum',
    'dgc_momentum',
    'momentum',
    'merge_momentum',
44 45
]

46 47 48
# a heuristic number
__max_stream_num_allow__ = 16

49 50 51 52 53

@register_pass("auto_parallel_data_parallel_optimization")
class DataParallelOptimizationPass(PassBase):
    """
    Apply Optimizations that specialized for data parallelism in Auto Parallel.
54
    1. prune grad scaling
55 56 57 58 59
    2. overlap comm and calc
    3. fuse allreduce
    """

    def __init__(self):
60
        super().__init__()
61 62 63
        # NOTE not use depence on loss and param_grads
        self.set_attr("dist_context", None)
        self.set_attr("global_rank", -1)
64
        self.set_attr("use_sharding", False)
65 66 67 68 69 70 71 72 73 74
        # {grad1: group1, grad2: group1, grad3: group2}
        # record the order for fuse grad data memory
        self._grad_name_to_group_map = OrderedDict()
        # {group1:[grad1, grad2] , group2:[grad3]}
        self._group_to_grad_name_map = OrderedDict()
        self._support_rescale_grad = False

    def _check_self(self):
        if self.get_attr("dist_context") is None:
            return False
75 76 77
        if (not isinstance(self.get_attr("global_rank"), int)) or self.get_attr(
            "global_rank"
        ) < 0:
78 79 80 81 82 83 84 85 86 87 88 89 90 91
            return False

        return True

    def _check_conflict(self, other_pass):
        return True

    def _type(self):
        return PassType.COMM_OPT

    def _apply_single_impl(self, main_program, startup_program, context):

        self.dist_context = self.get_attr("dist_context")
        self.global_rank = int(self.get_attr("global_rank"))
92
        self.use_sharding = self.get_attr("use_sharding")
93 94 95
        self.coalesce_prefix = 'coalesce_grad'
        if use_standalone_executor():
            self.gradient_sync_stream = "gradient_sync_stream"
96 97 98

        with paddle.static.program_guard(main_program, startup_program):
            self._analyze_program()
J
JZ-LIANG 已提交
99

100
            # TODO refactor here to first fuse then overlap
J
JZ-LIANG 已提交
101 102 103 104
            if self.is_data_parallel_applied():
                self._prune_grad_scaling()
                self._calc_comm_overlap()
                grad_group = self._fuse_allreduce()
105 106
                self._add_dependencies(grad_group)
                self.summary(grad_group)
107 108 109 110 111 112 113 114 115 116 117 118 119

    def _prune_grad_scaling(self):

        if not self._could_be_prune():
            return

        if self._all_dp_groups_same_degree():
            self._scale_backward_initial_grad()
        else:
            self._update_opt_rescale_grad()

        self._remove_grad_scaling()

120 121 122
    def _calc_comm_overlap(self):
        if not self._could_be_overlap():
            return
123 124
        self._comms_overlap_calc()
        self._calc_wait_comms()
125 126

    def _fuse_allreduce(self):
127 128 129 130 131 132

        if not self._could_be_fuse():
            return []

        grad_group = self._group_grads()
        self._update_program(grad_group)
133

134
        return grad_group
135 136 137

    def _analyze_program(self):
        """
138
        build two maps
139 140 141 142 143 144 145 146 147
        {param_grad_name: data_parallel_group}
        {pdata_parallel_group: aram_grad_name}
        """

        block = default_main_program().global_block()
        ops = block.ops
        scaled_grads = []

        for op in ops:
148

149
            if is_data_parallel_reduce_op(op):
150
                grad_name = op.output_arg_names[0]
151 152 153 154 155 156 157
                if grad_name in self._grad_name_to_group_map:
                    continue
                assert op.has_attr(
                    "ring_id"
                ), "Unexception: comm op [{}] has NOT ring id.".format(str(op))
                group = ring_id_to_process_group(op.attr("ring_id"))

158 159 160 161 162
                assert (
                    group is not None
                ), "Unexception: data parallel group of [{}] from op [{}] is None".format(
                    grad_name, str(op)
                )
163 164 165 166 167 168 169 170 171

                self._grad_name_to_group_map[grad_name] = group

                if group not in self._group_to_grad_name_map:
                    self._group_to_grad_name_map[group] = [grad_name]
                else:
                    self._group_to_grad_name_map[group].append(grad_name)

            elif is_data_parallel_scale_op(op):
172
                grad_name = op.output_arg_names[0]
173 174 175 176
                scaled_grads.append(grad_name)

            # TODO support multiple optimizers in on network in future.
            # here we assume that the optimizer is unique in network.
177 178 179 180
            elif (
                is_optimize_op(op)
                and op.type in __rescale_grad_supported_opts__
            ):
181 182 183 184 185 186
                self._support_rescale_grad = True

        not_synchronized_grads = []
        for grad_name in scaled_grads:
            if grad_name not in self._grad_name_to_group_map:
                not_synchronized_grads.append(grad_name)
187 188 189
        assert (
            len(not_synchronized_grads) == 0
        ), "Unexception: gradients [{}] is scaled BUT NOT synchronized.".format(
190
            not_synchronized_grads
191
        )
192

J
JZ-LIANG 已提交
193 194 195
    def is_data_parallel_applied(self):
        return len(self._group_to_grad_name_map) > 0

196 197
    def _could_be_prune(self):

198
        return self.dist_context.gradient_scale and (
199 200
            self._support_rescale_grad or self._all_dp_groups_same_degree()
        )
201 202

    def _all_dp_groups_same_degree(self):
203 204 205 206 207 208 209 210 211 212 213
        return (
            len(
                set(
                    [
                        len(group.ranks)
                        for group in self._group_to_grad_name_map.keys()
                    ]
                )
            )
            == 1
        )
214 215 216 217 218 219 220 221

    def _scale_backward_initial_grad(self):

        block = default_main_program().global_block()
        dp_degree = len(list(self._group_to_grad_name_map.keys())[0].ranks)

        for idx, op in reversed(list(enumerate(block.ops))):
            if is_loss_grad_op(op):
222 223
                assert op.type == 'fill_constant', (
                    "loss_grad_op must be fill_constant op, "
224
                    "but this op is {}".format(op.type)
225
                )
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
                assert op.has_attr('value')
                loss_scale = float(op.attr('value'))
                loss_scale = loss_scale / dp_degree
                op._set_attr('value', loss_scale)
                break

    def _remove_grad_scaling(self):
        block = default_main_program().global_block()

        for op_idx, op in reversed(list(enumerate(block.ops))):
            if is_data_parallel_scale_op(op):
                block._remove_op(op_idx, False)

        block._sync_with_cpp()

    def _update_opt_rescale_grad(self):

        block = default_main_program().global_block()
        scaled_grads = set()

        for idx, op in reversed(list(enumerate(block.ops))):
247 248 249 250
            if (
                is_optimize_op(op)
                and op.type in __rescale_grad_supported_opts__
            ):
251 252 253
                assert op.has_attr(
                    'rescale_grad'
                ), "Unexception: op [{}] is supported to have [rescale_grad] attribute.".format(
254 255 256 257 258 259 260
                    str(op)
                )
                assert (
                    len(op.input("Grad")) == 1
                ), "Unexception: op [{}] is supported to have only one input grad var.".format(
                    str(op)
                )
261 262 263

                grad_name = op.input("Grad")[0]
                dp_degree = len(
264 265
                    list(self._grad_name_to_group_map[grad_name].ranks)
                )
266 267 268 269 270
                scaled_grads.add(grad_name)

                rescale_grad = float(op.attr('rescale_grad')) / dp_degree
                op._set_attr('rescale_grad', rescale_grad)

271 272 273 274 275
        assert scaled_grads == set(
            self._grad_name_to_group_map.keys()
        ), "Unexception: gradients [{}] are unscaled.".format(
            set(self._grad_name_to_group_map.keys()) - scaled_grads
        )
276 277 278 279 280 281 282 283 284

    def _could_be_overlap(self):
        # NOTE current different nccl comm will use different cuda stream
        # so if there too many dp group there will be too many stream need to be
        # created and sync.
        # revise here when framework support custom stream in static mode.
        num_dp_comm_stream = len(set(self._group_to_grad_name_map.keys()))
        if num_dp_comm_stream > __max_stream_num_allow__:
            return False
285 286
        if self.use_sharding:
            return False
287 288
        return True

289
    def _comms_overlap_calc(self):
290 291 292 293 294 295 296 297 298 299 300 301 302
        # TODO support InterpreterCore executor for overlap.
        # InterpreterCore has a different logic for overlapping
        # which is different from use_calc_stream
        block = default_main_program().global_block()

        # comm wait calc to finish
        for idx, op in reversed(list(enumerate(block.ops))):
            if is_data_parallel_reduce_op(op):
                assert op.has_attr('use_calc_stream')
                assert op.has_attr('ring_id')

                op._set_attr('use_calc_stream', False)
                ring_id = op.attr("ring_id")
303 304 305 306 307 308 309
                block._insert_op_without_sync(
                    idx,
                    type='c_wait_compute',
                    inputs={'X': []},
                    outputs={'Out': []},
                    attrs={'op_role': OpRole.Backward, 'ring_id': ring_id},
                )
310 311 312

        block._sync_with_cpp()

313
    def _calc_wait_comms(self):
314

315 316 317
        if use_standalone_executor():
            return

318 319
        block = default_main_program().global_block()

320 321 322 323 324 325 326 327 328 329 330
        # NOTE the naive overlap implement in static hybird parallel only sync comm stream
        # at the end of Backward phase, based on a strong constraint that
        # all communicating gradient would NOT be used after communication in Backward phase.
        # BUT this constraint will fail for scenario like Weight-Sharing and Higher-Order Differentiation,
        # where gradient will be involved in other calculation between data-parallel allreduce kernel submmited
        # into comm streams and the synchronization of comm stream at the end of Backward phase.
        # synchronization of  comm stream should add according to the usage of communicating gradients
        # to support Overlapping for Weight-Sharing and Higher-Order Differentiation.

        ring_id_to_un_sync_grad_map = {}
        op_idx_to_sync_ring_id_map = {}
331
        for group in self._group_to_grad_name_map.keys():
332 333 334
            ring_id_to_un_sync_grad_map[group.id] = []

        # analyze the where need to sync
335
        for i, op in enumerate(block.ops):
336 337 338 339 340 341 342 343 344
            if is_data_parallel_reduce_op(op):
                ring_id = op.attr("ring_id")
                grad_name = op.output_arg_names[0]
                ring_id_to_un_sync_grad_map[ring_id].append(grad_name)
            elif is_data_parallel_scale_op(op):
                continue
            # other ops that might use communicating grad
            else:
                for input_var_name in op.input_arg_names:
345 346 347 348
                    for (
                        ring_id,
                        unsync_grad_names,
                    ) in ring_id_to_un_sync_grad_map.items():
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
                        if input_var_name in unsync_grad_names:
                            # need to sync before op_i
                            if i in op_idx_to_sync_ring_id_map:
                                op_idx_to_sync_ring_id_map[i].append(ring_id)
                            else:
                                op_idx_to_sync_ring_id_map[i] = [ring_id]
                            # all grads in this comm stream are synced
                            ring_id_to_un_sync_grad_map[ring_id] = []

        # insert synchronization
        indices = list(op_idx_to_sync_ring_id_map.keys())
        # TODO the synchronization could be optimized
        # we should record the event of a gradient is communicating and
        # only wait for that event to be completed.
        # BUT paddle static currently not support op api for event record only, so
        # here we try to wait for all kernel in that comm stream to be finish which is not that optimized.
        for i in sorted(indices, reverse=True):
            for ring_id in op_idx_to_sync_ring_id_map[i]:

368 369 370 371 372 373 374
                block._insert_op_without_sync(
                    i,
                    type='c_wait_comm',
                    inputs={'X': []},
                    outputs={'Out': []},
                    attrs={'op_role': OpRole.Backward, 'ring_id': ring_id},
                )
375
        block._sync_with_cpp()
376 377 378 379 380 381 382 383 384 385 386 387 388 389

    def _could_be_fuse(self):
        # TODO  support gradient fuse higher order gradient.
        # should analyse the dependencies of gradient in backward.
        if find_higher_order_backward_op(default_main_program()):
            return False
        if self.use_sharding:
            return False
        return True

    def _group_grads(self):
        """
        conditions for gradients to be grouped:
        1. group size < max_fuse_numel
390
        2. same dp group
391
        3. same dtype
392
        4. dependency: grad would NOT be used by other ops within group segment
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434

        gradients inside same group would be fuse into one coalesce tensor
        """

        block = default_main_program().global_block()
        ops = block.ops

        # group individual grad vars
        # TODO consider fuse gradient for sharding reduce
        # TODO let user to set fuse_grad_size
        # emb = 50000 * h, ffn = 8 * h * h, mha = 4 * h * h
        h = 2048
        ffn_numel = 2 * (4 * h) * h
        mha_numel = 3 * h * h + h * h
        max_fuse_numel = ffn_numel + mha_numel
        grad_groups = []
        cur_group = GradientsGroup(ops, max_fuse_numel)
        grouped_grad_names = set()

        def collect_group(cur_group, grad_var, ring_id, i):
            if len(cur_group.gradients) == 0:
                cur_group = None
            else:
                cur_group.finalize()
                grad_groups.append(cur_group)

            new_group = GradientsGroup(ops, max_fuse_numel)
            if grad_var:
                new_group.add(grad_var, ring_id, i)
                grouped_grad_names.add(grad_var.name)
            return new_group

        def op_depend_on_group(op, group):
            vars_ = set(op.input_arg_names + op.output_arg_names)
            grad_names = set([grad.name for grad in group.gradients])
            return len(vars_.intersection(grad_names)) > 0

        for i, op in enumerate(ops):
            if is_data_parallel_reduce_op(op):
                ring_id = op.attr("ring_id")
                grad_name = op.output_arg_names[0]
                grad_var = block.var(grad_name)
435
                grad_numel = get_var_numel(grad_var)
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459

                if cur_group.acceptable(grad_var, ring_id):
                    assert grad_name not in grouped_grad_names
                    grouped_grad_names.add(grad_name)
                    cur_group.add(grad_var, ring_id, i)
                else:
                    cur_group = collect_group(cur_group, grad_var, ring_id, i)
            else:
                if op_depend_on_group(op, cur_group):
                    cur_group = collect_group(cur_group, None, None, None)

        # collect last group
        collect_group(cur_group, None, None, None)

        return grad_groups

    def _update_program(self, grad_groups):

        block = default_main_program().global_block()

        remove_op_types = ['scale', 'c_allreduce_sum', 'c_wait_compute']

        for i, group in enumerate(grad_groups[::-1]):

460 461 462 463 464
            # skip unfused big tensor
            if len(group.gradients) <= 1:
                group.coalesce_var = group.gradients[0]
                continue

465
            # create coalecse tensor
466
            group.coalesce_var = block.create_var(
467 468 469
                name=unique_name.generate(
                    self.coalesce_prefix + '_{}'.format(i)
                ),
470 471 472 473
                dtype=group.dtype,
                persistable=False,
                stop_gradient=True,
            )
474 475 476 477

            # update allreduce & scale op
            if group.scale_op_idx != -1:
                scale_op = block.ops[group.scale_op_idx]
478 479 480 481 482 483 484 485 486
                assert (
                    scale_op.type == 'scale'
                ), "should found scale op but found {}".format(str(scale_op))
                scale_op._rename_input(
                    scale_op.input_arg_names[0], group.coalesce_var.name
                )
                scale_op._rename_output(
                    scale_op.output_arg_names[0], group.coalesce_var.name
                )
487 488

            allreduce_op = block.ops[group.allreduce_op_idx]
489 490 491 492 493 494 495 496 497 498 499
            assert (
                allreduce_op.type == 'c_allreduce_sum'
            ), "should found c_allreduce_sum op but found {}".format(
                str(allreduce_op)
            )
            allreduce_op._rename_input(
                allreduce_op.input_arg_names[0], group.coalesce_var.name
            )
            allreduce_op._rename_output(
                allreduce_op.output_arg_names[0], group.coalesce_var.name
            )
500 501

            # remvoe un-used op
502 503 504 505 506
            remove_op_indices = (
                group.remove_wait_op_indices
                + group.remove_allreduce_op_indices
                + group.remove_scale_op_indices
            )
507
            for idx in sorted(remove_op_indices, reverse=True):
508 509
                assert (
                    block.ops[idx].type in remove_op_types
510 511 512
                ), "Unexception: try to remove op {}".format(
                    str(block.ops[idx])
                )
513
                block._remove_op(idx, False)
514 515 516 517 518 519 520 521 522 523

            # insert coalecse op
            concated_shapes = []
            concated_ranks = []
            for grad_ in group.gradients:
                shape = grad_.shape
                concated_shapes.extend(shape)
                concated_ranks.append(len(shape))

            grad_names = [grad.name for grad in group.gradients]
524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
            block._insert_op_without_sync(
                group.coalesce_op_idx,
                type="coalesce_tensor",
                inputs={"Input": grad_names},
                outputs={
                    "Output": grad_names,
                    "FusedOutput": group.coalesce_var,
                },
                attrs={
                    "copy_data": False,
                    "use_align": True,
                    "dtype": group.dtype,
                    "concated_shapes": concated_shapes,
                    "concated_ranks": concated_ranks,
                    OP_ROLE_KEY: OpRole.Backward,
                },
            )
541 542 543 544

        block._sync_with_cpp()
        # TODO update dist attr

545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
    def _add_dependencies(self, grad_groups):
        # NOTE Currently, auto_parallel need to adopt for two executors: Sequential executor (old exe) and Graph based
        # multiple stream executor(standalone exe). This function just for standalone exe. Refactor here
        # in future when only one executor stay.

        if not use_standalone_executor() or len(grad_groups) == 0:
            return
        block = default_main_program().global_block()

        # Build maps
        vars_to_coalesce_map = {}
        coalesce_to_vars_map = {}

        for group in grad_groups:
            grad_names = []
            coalesce_name = group.coalesce_var.name
            for grad in group.gradients:
                vars_to_coalesce_map[grad.name] = coalesce_name
                grad_names.append(grad.name)
            coalesce_to_vars_map[coalesce_name] = grad_names

        # analyze dependencies
        # Record ONLY the last grad that generated before allreduce
        # NOTE need to be update when we allow multiple calc stream for backward calc
        not_sync_coalesces = []
        prior_allreduce_deps = {}
        for idx, op in reversed(list(enumerate(block.ops))):
            if is_forward_op(op):
                break
            if is_optimize_op(op):
                continue

            if is_data_parallel_reduce_op(op):
                coalesce_var_name = op.output_arg_names[0]

                # NOTE only add extra deps for fused tensor, other tensor rely on
                # data flow analysis of executor.
                if self.coalesce_prefix in coalesce_var_name:
                    prior_allreduce_deps[coalesce_var_name] = [
                        idx,
                        None,
                        coalesce_var_name,
                    ]
                    not_sync_coalesces.append(coalesce_var_name)
                continue

            for out_name in op.output_arg_names:
                var_name = vars_to_coalesce_map.get(out_name, None)
                if var_name in not_sync_coalesces:
                    prior_allreduce_deps[var_name][1] = out_name
                    not_sync_coalesces.remove(var_name)
        assert (
            len(not_sync_coalesces) == 0
        ), "Unexception: {} has NOT been add prior Dep before allreduce.".format(
            not_sync_coalesces
        )

        # Record ONLY the first grad that used after allreduce
        # NOTE need to be update when we allow multiple calc stream for backward calc
        not_sync_coalesces = []
        post_allreduce_deps = {}
        for idx, op in enumerate(block.ops):
            if is_forward_op(op):
                continue

            if is_data_parallel_reduce_op(op):
                coalesce_var_name = op.input_arg_names[0]
                if self.coalesce_prefix in coalesce_var_name:
                    post_allreduce_deps[coalesce_var_name] = [
                        None,
                        coalesce_var_name,
                        None,
                    ]
                    not_sync_coalesces.append(coalesce_var_name)
                continue

            for out_name in op.input_arg_names:
                var_name = vars_to_coalesce_map.get(out_name, None)
                if var_name in not_sync_coalesces:
                    post_allreduce_deps[var_name][0] = idx
                    post_allreduce_deps[var_name][2] = out_name
                    not_sync_coalesces.remove(var_name)

        assert (
            len(not_sync_coalesces) == 0
        ), "Unexception: {} has NOT been add post Dep after allreduce.".format(
            not_sync_coalesces
        )

        # Update program IR insert dependencise op
        dep_var_pairs = []
        for deps in [prior_allreduce_deps, post_allreduce_deps]:
            for pair in deps.values():
                dep_var_pairs.append(pair)

        dep_var_pairs.sort(key=lambda x: x[0], reverse=True)
        for idx, prior_name, post_name in dep_var_pairs:
            prior_var = block.var(prior_name)
            post_var = block.var(post_name)
            depend_op = insert_dependencies_for_two_vars(
                block,
                idx,
                prior_var,
                post_var,
                self.dist_context,
                OpRole.Backward,
                process_mesh=[
                    -1
                ],  # hack to avoid initialize the dist attr for coalesc var
                is_recompute=False,
                sync=False,
            )
            depend_op.dist_attr.execution_stream = self.gradient_sync_stream
        block._sync_with_cpp()

        # remove naive synchronization & assign allreduce stream
        def remove_cond(op):
            if op.type != "c_wait_compute":
                return False
            if len(op.input_arg_names) != 0:
                return False
            if len(op.output_arg_names) != 0:
                return False
            return True

        for idx, op in reversed(list(enumerate(block.ops))):
            if is_data_parallel_reduce_op(op):
                op._set_attr('use_calc_stream', True)
                op.dist_attr.execution_stream = self.gradient_sync_stream

            if remove_cond(op):
                block._remove_op(idx, sync=False)

        block._sync_with_cpp()

680 681 682
    def summary(self, grad_groups=[]):
        # TODO: add logger module
        import logging
683

684 685 686 687 688 689 690 691 692 693 694 695 696
        self._logger = logging.getLogger()
        self._logger.propagate = False
        if not self._logger.handlers:
            self._logger.setLevel(logging.INFO)
            log_handler = logging.StreamHandler()
            log_format = logging.Formatter(
                '[%(levelname)s %(asctime)s %(filename)s:%(lineno)d] %(message)s'
            )
            log_handler.setFormatter(log_format)
            self._logger.addHandler(log_handler)

        if len(grad_groups) > 0:
            self._logger.info(
697 698 699 700
                "origin {} allreduce ops are fused into {} coalecse allreduce ops.".format(
                    len(self._grad_name_to_group_map.keys()), len(grad_groups)
                )
            )
701 702 703 704 705
            self._logger.info("gradient fusing group are following: ")
            fused_grads = set()
            for i, group in enumerate(grad_groups):
                self._logger.info(
                    "coalecse gradient [{}] is composed by: {}".format(
706 707 708
                        i, [grad.name for grad in group.gradients]
                    )
                )
709
                fused_grads.update([grad.name for grad in group.gradients])
710 711 712
            individual_grads = set(self._grad_name_to_group_map.keys()) - set(
                fused_grads
            )
713 714
            self._logger.info(
                "the following [{}] gradients are not fused: ".format(
715 716 717
                    len(individual_grads)
                )
            )
718 719 720
            self._logger.info("individual gradient {}".format(individual_grads))


721
class GradientsGroup:
722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
    def __init__(self, ops, max_group_size):
        self.max_group_size = max_group_size
        self.ops = ops

        self.gradients = []
        self.numel = 0
        self.dtype = None
        self.ring_id = None
        self.coalesce_var = None
        self.coalesce_op_idx = -1
        self.allreduce_op_idx = -1
        self.scale_op_idx = -1
        self.remove_wait_op_indices = []
        self.remove_allreduce_op_indices = []
        self.remove_scale_op_indices = []

    def acceptable(self, grad_var, ring_id):
        if len(self.gradients) == 0:
            return True
        if ring_id != self.ring_id:
            return False
743
        if get_var_numel(grad_var) + self.numel > self.max_group_size:
744 745 746 747 748 749 750 751 752 753
            return False
        if grad_var.dtype != self.dtype:
            return False

        return True

    def add(self, grad_var, ring_id, i):
        self.gradients.append(grad_var)
        self.ring_id = ring_id
        self.dtype = grad_var.dtype
754
        self.numel += get_var_numel(grad_var)
755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770

        # remove auxiliary ops in non-fuse dp allreduce
        self.remove_allreduce_op_indices.append(i)

        # NOTE this pass rely on the original synchronization add in previous passes
        # (same stream or calc_wait_comm & comm_wait_calc)
        # to guarantee the correctness of comm_calc execution order.
        # so the calc_wait_comm should be keep.
        grad_op_idx = i - 1
        if i > 0 and self.ops[i - 1].type == 'c_wait_compute':
            self.remove_wait_op_indices.append(i - 1)
            grad_op_idx -= 1
        if i + 1 < len(self.ops) and is_data_parallel_scale_op(self.ops[i - 1]):
            self.remove_scale_op_indices.append(i + 1)

        if len(self.gradients) == 1:
771 772 773 774 775
            # TODO Remove this is a temporary hack for Tensor Parallel. the logic
            # for find grad_op should be more general.
            if self.ops[grad_op_idx].type == "c_allreduce_sum":
                grad_op_idx -= 1

776
            grad_op = self.ops[grad_op_idx]
777 778 779 780 781
            assert (
                grad_var.name in grad_op.output_arg_names
            ), "grad [{}] should be output of {}".format(
                grad_var.name, str(grad_op)
            )
782 783 784 785 786 787 788 789
            self.coalesce_op_idx = grad_op_idx

    def finalize(self):
        self.allreduce_op_idx = self.remove_allreduce_op_indices.pop()
        if len(self.remove_wait_op_indices) > 1:
            self.remove_wait_op_indices.pop()
        if len(self.remove_scale_op_indices) > 1:
            self.scale_op_idx = self.remove_scale_op_indices.pop()