auto_parallel_data_parallel_optimization.py 23.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from collections import OrderedDict

import paddle
18
from paddle.fluid import unique_name
19
from paddle.fluid.framework import default_main_program
20
from paddle.distributed.fleet.meta_optimizers.common import OP_ROLE_KEY, OpRole
21
from .pass_base import PassBase, PassType, register_pass
22 23 24 25 26 27 28 29 30
from paddle.distributed.auto_parallel.operators.common import (
    is_data_parallel_scale_op,
    is_data_parallel_reduce_op,
)
from paddle.distributed.auto_parallel.utils import (
    find_higher_order_backward_op,
    is_loss_grad_op,
    is_optimize_op,
    ring_id_to_process_group,
31
    get_var_numel,
32
)
33 34 35

# add new optimizers supporting rescale_grad here
__rescale_grad_supported_opts__ = [
36 37 38 39 40
    'lars_momentum',
    'sparse_momentum',
    'dgc_momentum',
    'momentum',
    'merge_momentum',
41 42
]

43 44 45
# a heuristic number
__max_stream_num_allow__ = 16

46 47 48 49 50

@register_pass("auto_parallel_data_parallel_optimization")
class DataParallelOptimizationPass(PassBase):
    """
    Apply Optimizations that specialized for data parallelism in Auto Parallel.
51
    1. prune grad scaling
52 53 54 55 56
    2. overlap comm and calc
    3. fuse allreduce
    """

    def __init__(self):
57
        super().__init__()
58 59 60
        # NOTE not use depence on loss and param_grads
        self.set_attr("dist_context", None)
        self.set_attr("global_rank", -1)
61
        self.set_attr("use_sharding", False)
62 63 64 65 66 67 68 69 70 71
        # {grad1: group1, grad2: group1, grad3: group2}
        # record the order for fuse grad data memory
        self._grad_name_to_group_map = OrderedDict()
        # {group1:[grad1, grad2] , group2:[grad3]}
        self._group_to_grad_name_map = OrderedDict()
        self._support_rescale_grad = False

    def _check_self(self):
        if self.get_attr("dist_context") is None:
            return False
72 73 74
        if (not isinstance(self.get_attr("global_rank"), int)) or self.get_attr(
            "global_rank"
        ) < 0:
75 76 77 78 79 80 81 82 83 84 85 86 87 88
            return False

        return True

    def _check_conflict(self, other_pass):
        return True

    def _type(self):
        return PassType.COMM_OPT

    def _apply_single_impl(self, main_program, startup_program, context):

        self.dist_context = self.get_attr("dist_context")
        self.global_rank = int(self.get_attr("global_rank"))
89
        self.use_sharding = self.get_attr("use_sharding")
90 91 92

        with paddle.static.program_guard(main_program, startup_program):
            self._analyze_program()
J
JZ-LIANG 已提交
93 94 95 96 97

            if self.is_data_parallel_applied():
                self._prune_grad_scaling()
                self._calc_comm_overlap()
                grad_group = self._fuse_allreduce()
98 99

        # self.summary(grad_group)
100 101 102 103 104 105 106 107 108 109 110 111 112

    def _prune_grad_scaling(self):

        if not self._could_be_prune():
            return

        if self._all_dp_groups_same_degree():
            self._scale_backward_initial_grad()
        else:
            self._update_opt_rescale_grad()

        self._remove_grad_scaling()

113 114 115
    def _calc_comm_overlap(self):
        if not self._could_be_overlap():
            return
116 117
        self._comms_overlap_calc()
        self._calc_wait_comms()
118 119

    def _fuse_allreduce(self):
120 121 122 123 124 125

        if not self._could_be_fuse():
            return []

        grad_group = self._group_grads()
        self._update_program(grad_group)
126

127
        return grad_group
128 129 130

    def _analyze_program(self):
        """
131
        build two maps
132 133 134 135 136 137 138 139 140
        {param_grad_name: data_parallel_group}
        {pdata_parallel_group: aram_grad_name}
        """

        block = default_main_program().global_block()
        ops = block.ops
        scaled_grads = []

        for op in ops:
141

142
            if is_data_parallel_reduce_op(op):
143
                grad_name = op.output_arg_names[0]
144 145 146 147 148 149 150
                if grad_name in self._grad_name_to_group_map:
                    continue
                assert op.has_attr(
                    "ring_id"
                ), "Unexception: comm op [{}] has NOT ring id.".format(str(op))
                group = ring_id_to_process_group(op.attr("ring_id"))

151 152 153 154 155
                assert (
                    group is not None
                ), "Unexception: data parallel group of [{}] from op [{}] is None".format(
                    grad_name, str(op)
                )
156 157 158 159 160 161 162 163 164

                self._grad_name_to_group_map[grad_name] = group

                if group not in self._group_to_grad_name_map:
                    self._group_to_grad_name_map[group] = [grad_name]
                else:
                    self._group_to_grad_name_map[group].append(grad_name)

            elif is_data_parallel_scale_op(op):
165
                grad_name = op.output_arg_names[0]
166 167 168 169
                scaled_grads.append(grad_name)

            # TODO support multiple optimizers in on network in future.
            # here we assume that the optimizer is unique in network.
170 171 172 173
            elif (
                is_optimize_op(op)
                and op.type in __rescale_grad_supported_opts__
            ):
174 175 176 177 178 179
                self._support_rescale_grad = True

        not_synchronized_grads = []
        for grad_name in scaled_grads:
            if grad_name not in self._grad_name_to_group_map:
                not_synchronized_grads.append(grad_name)
180 181 182
        assert (
            len(not_synchronized_grads) == 0
        ), "Unexception: gradients [{}] is scaled BUT NOT synchronized.".format(
183
            not_synchronized_grads
184
        )
185

J
JZ-LIANG 已提交
186 187 188
    def is_data_parallel_applied(self):
        return len(self._group_to_grad_name_map) > 0

189 190
    def _could_be_prune(self):

191
        return self.dist_context.gradient_scale and (
192 193
            self._support_rescale_grad or self._all_dp_groups_same_degree()
        )
194 195

    def _all_dp_groups_same_degree(self):
196 197 198 199 200 201 202 203 204 205 206
        return (
            len(
                set(
                    [
                        len(group.ranks)
                        for group in self._group_to_grad_name_map.keys()
                    ]
                )
            )
            == 1
        )
207 208 209 210 211 212 213 214

    def _scale_backward_initial_grad(self):

        block = default_main_program().global_block()
        dp_degree = len(list(self._group_to_grad_name_map.keys())[0].ranks)

        for idx, op in reversed(list(enumerate(block.ops))):
            if is_loss_grad_op(op):
215 216
                assert op.type == 'fill_constant', (
                    "loss_grad_op must be fill_constant op, "
217
                    "but this op is {}".format(op.type)
218
                )
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
                assert op.has_attr('value')
                loss_scale = float(op.attr('value'))
                loss_scale = loss_scale / dp_degree
                op._set_attr('value', loss_scale)
                break

    def _remove_grad_scaling(self):
        block = default_main_program().global_block()

        for op_idx, op in reversed(list(enumerate(block.ops))):
            if is_data_parallel_scale_op(op):
                block._remove_op(op_idx, False)

        block._sync_with_cpp()

    def _update_opt_rescale_grad(self):

        block = default_main_program().global_block()
        scaled_grads = set()

        for idx, op in reversed(list(enumerate(block.ops))):
240 241 242 243
            if (
                is_optimize_op(op)
                and op.type in __rescale_grad_supported_opts__
            ):
244 245 246
                assert op.has_attr(
                    'rescale_grad'
                ), "Unexception: op [{}] is supported to have [rescale_grad] attribute.".format(
247 248 249 250 251 252 253
                    str(op)
                )
                assert (
                    len(op.input("Grad")) == 1
                ), "Unexception: op [{}] is supported to have only one input grad var.".format(
                    str(op)
                )
254 255 256

                grad_name = op.input("Grad")[0]
                dp_degree = len(
257 258
                    list(self._grad_name_to_group_map[grad_name].ranks)
                )
259 260 261 262 263
                scaled_grads.add(grad_name)

                rescale_grad = float(op.attr('rescale_grad')) / dp_degree
                op._set_attr('rescale_grad', rescale_grad)

264 265 266 267 268
        assert scaled_grads == set(
            self._grad_name_to_group_map.keys()
        ), "Unexception: gradients [{}] are unscaled.".format(
            set(self._grad_name_to_group_map.keys()) - scaled_grads
        )
269 270 271 272 273 274 275 276 277

    def _could_be_overlap(self):
        # NOTE current different nccl comm will use different cuda stream
        # so if there too many dp group there will be too many stream need to be
        # created and sync.
        # revise here when framework support custom stream in static mode.
        num_dp_comm_stream = len(set(self._group_to_grad_name_map.keys()))
        if num_dp_comm_stream > __max_stream_num_allow__:
            return False
278 279
        if self.use_sharding:
            return False
280 281
        return True

282
    def _comms_overlap_calc(self):
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
        # TODO support InterpreterCore executor for overlap.
        # InterpreterCore has a different logic for overlapping
        # which is different from use_calc_stream
        block = default_main_program().global_block()
        ops = block.ops

        # comm wait calc to finish
        for idx, op in reversed(list(enumerate(block.ops))):
            if is_data_parallel_reduce_op(op):
                assert op.has_attr('use_calc_stream')
                assert op.has_attr('ring_id')

                op._set_attr('use_calc_stream', False)
                ring_id = op.attr("ring_id")

298 299 300 301 302 303 304
                block._insert_op_without_sync(
                    idx,
                    type='c_wait_compute',
                    inputs={'X': []},
                    outputs={'Out': []},
                    attrs={'op_role': OpRole.Backward, 'ring_id': ring_id},
                )
305 306 307

        block._sync_with_cpp()

308
    def _calc_wait_comms(self):
309 310 311 312

        block = default_main_program().global_block()
        ops = block.ops

313 314 315 316 317 318 319 320 321 322 323
        # NOTE the naive overlap implement in static hybird parallel only sync comm stream
        # at the end of Backward phase, based on a strong constraint that
        # all communicating gradient would NOT be used after communication in Backward phase.
        # BUT this constraint will fail for scenario like Weight-Sharing and Higher-Order Differentiation,
        # where gradient will be involved in other calculation between data-parallel allreduce kernel submmited
        # into comm streams and the synchronization of comm stream at the end of Backward phase.
        # synchronization of  comm stream should add according to the usage of communicating gradients
        # to support Overlapping for Weight-Sharing and Higher-Order Differentiation.

        ring_id_to_un_sync_grad_map = {}
        op_idx_to_sync_ring_id_map = {}
324
        for group in self._group_to_grad_name_map.keys():
325 326 327 328 329 330 331 332 333 334 335 336 337
            ring_id_to_un_sync_grad_map[group.id] = []

        # analyze the where need to sync
        for i, op in enumerate(ops):
            if is_data_parallel_reduce_op(op):
                ring_id = op.attr("ring_id")
                grad_name = op.output_arg_names[0]
                ring_id_to_un_sync_grad_map[ring_id].append(grad_name)
            elif is_data_parallel_scale_op(op):
                continue
            # other ops that might use communicating grad
            else:
                for input_var_name in op.input_arg_names:
338 339 340 341
                    for (
                        ring_id,
                        unsync_grad_names,
                    ) in ring_id_to_un_sync_grad_map.items():
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
                        if input_var_name in unsync_grad_names:
                            # need to sync before op_i
                            if i in op_idx_to_sync_ring_id_map:
                                op_idx_to_sync_ring_id_map[i].append(ring_id)
                            else:
                                op_idx_to_sync_ring_id_map[i] = [ring_id]
                            # all grads in this comm stream are synced
                            ring_id_to_un_sync_grad_map[ring_id] = []

        # insert synchronization
        indices = list(op_idx_to_sync_ring_id_map.keys())
        # TODO the synchronization could be optimized
        # we should record the event of a gradient is communicating and
        # only wait for that event to be completed.
        # BUT paddle static currently not support op api for event record only, so
        # here we try to wait for all kernel in that comm stream to be finish which is not that optimized.
        for i in sorted(indices, reverse=True):
            for ring_id in op_idx_to_sync_ring_id_map[i]:

361 362 363 364 365 366 367
                block._insert_op_without_sync(
                    i,
                    type='c_wait_comm',
                    inputs={'X': []},
                    outputs={'Out': []},
                    attrs={'op_role': OpRole.Backward, 'ring_id': ring_id},
                )
368 369 370 371 372 373 374 375 376 377 378 379 380 381

    def _could_be_fuse(self):
        # TODO  support gradient fuse higher order gradient.
        # should analyse the dependencies of gradient in backward.
        if find_higher_order_backward_op(default_main_program()):
            return False
        if self.use_sharding:
            return False
        return True

    def _group_grads(self):
        """
        conditions for gradients to be grouped:
        1. group size < max_fuse_numel
382
        2. same dp group
383
        3. same dtype
384
        4. dependency: grad would NOT be used by other ops within group segment
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428

        gradients inside same group would be fuse into one coalesce tensor
        """

        block = default_main_program().global_block()
        ops = block.ops

        # group individual grad vars
        # TODO consider fuse gradient for sharding reduce
        # TODO let user to set fuse_grad_size
        # emb = 50000 * h, ffn = 8 * h * h, mha = 4 * h * h
        h = 2048
        ffn_numel = 2 * (4 * h) * h
        mha_numel = 3 * h * h + h * h
        max_fuse_numel = ffn_numel + mha_numel
        grad_groups = []
        cur_group = GradientsGroup(ops, max_fuse_numel)
        grouped_grad_names = set()

        def collect_group(cur_group, grad_var, ring_id, i):
            if len(cur_group.gradients) == 0:
                cur_group = None
            elif len(cur_group.gradients) == 1:
                grouped_grad_names.remove(cur_group.gradients[0].name)
            else:
                cur_group.finalize()
                grad_groups.append(cur_group)

            new_group = GradientsGroup(ops, max_fuse_numel)
            if grad_var:
                new_group.add(grad_var, ring_id, i)
                grouped_grad_names.add(grad_var.name)
            return new_group

        def op_depend_on_group(op, group):
            vars_ = set(op.input_arg_names + op.output_arg_names)
            grad_names = set([grad.name for grad in group.gradients])
            return len(vars_.intersection(grad_names)) > 0

        for i, op in enumerate(ops):
            if is_data_parallel_reduce_op(op):
                ring_id = op.attr("ring_id")
                grad_name = op.output_arg_names[0]
                grad_var = block.var(grad_name)
429
                grad_numel = get_var_numel(grad_var)
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454

                if cur_group.acceptable(grad_var, ring_id):
                    assert grad_name not in grouped_grad_names
                    grouped_grad_names.add(grad_name)
                    cur_group.add(grad_var, ring_id, i)
                else:
                    cur_group = collect_group(cur_group, grad_var, ring_id, i)
            else:
                if op_depend_on_group(op, cur_group):
                    cur_group = collect_group(cur_group, None, None, None)

        # collect last group
        collect_group(cur_group, None, None, None)

        return grad_groups

    def _update_program(self, grad_groups):

        block = default_main_program().global_block()

        remove_op_types = ['scale', 'c_allreduce_sum', 'c_wait_compute']

        for i, group in enumerate(grad_groups[::-1]):

            # create coalecse tensor
455 456 457 458 459 460
            group.coalesce_var = block.create_var(
                name=unique_name.generate('coalecse_grad_{}'.format(i)),
                dtype=group.dtype,
                persistable=False,
                stop_gradient=True,
            )
461 462 463 464

            # update allreduce & scale op
            if group.scale_op_idx != -1:
                scale_op = block.ops[group.scale_op_idx]
465 466 467 468 469 470 471 472 473
                assert (
                    scale_op.type == 'scale'
                ), "should found scale op but found {}".format(str(scale_op))
                scale_op._rename_input(
                    scale_op.input_arg_names[0], group.coalesce_var.name
                )
                scale_op._rename_output(
                    scale_op.output_arg_names[0], group.coalesce_var.name
                )
474 475

            allreduce_op = block.ops[group.allreduce_op_idx]
476 477 478 479 480 481 482 483 484 485 486
            assert (
                allreduce_op.type == 'c_allreduce_sum'
            ), "should found c_allreduce_sum op but found {}".format(
                str(allreduce_op)
            )
            allreduce_op._rename_input(
                allreduce_op.input_arg_names[0], group.coalesce_var.name
            )
            allreduce_op._rename_output(
                allreduce_op.output_arg_names[0], group.coalesce_var.name
            )
487 488

            # remvoe un-used op
489 490 491 492 493
            remove_op_indices = (
                group.remove_wait_op_indices
                + group.remove_allreduce_op_indices
                + group.remove_scale_op_indices
            )
494
            for idx in sorted(remove_op_indices, reverse=True):
495 496
                assert (
                    block.ops[idx].type in remove_op_types
497 498 499
                ), "Unexception: try to remove op {}".format(
                    str(block.ops[idx])
                )
500 501 502 503 504 505 506 507 508 509 510
                block._remove_op(idx)

            # insert coalecse op
            concated_shapes = []
            concated_ranks = []
            for grad_ in group.gradients:
                shape = grad_.shape
                concated_shapes.extend(shape)
                concated_ranks.append(len(shape))

            grad_names = [grad.name for grad in group.gradients]
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
            block._insert_op_without_sync(
                group.coalesce_op_idx,
                type="coalesce_tensor",
                inputs={"Input": grad_names},
                outputs={
                    "Output": grad_names,
                    "FusedOutput": group.coalesce_var,
                },
                attrs={
                    "copy_data": False,
                    "use_align": True,
                    "dtype": group.dtype,
                    "concated_shapes": concated_shapes,
                    "concated_ranks": concated_ranks,
                    OP_ROLE_KEY: OpRole.Backward,
                },
            )
528 529 530 531 532 533 534

        block._sync_with_cpp()
        # TODO update dist attr

    def summary(self, grad_groups=[]):
        # TODO: add logger module
        import logging
535

536 537 538 539 540 541 542 543 544 545 546 547 548
        self._logger = logging.getLogger()
        self._logger.propagate = False
        if not self._logger.handlers:
            self._logger.setLevel(logging.INFO)
            log_handler = logging.StreamHandler()
            log_format = logging.Formatter(
                '[%(levelname)s %(asctime)s %(filename)s:%(lineno)d] %(message)s'
            )
            log_handler.setFormatter(log_format)
            self._logger.addHandler(log_handler)

        if len(grad_groups) > 0:
            self._logger.info(
549 550 551 552
                "origin {} allreduce ops are fused into {} coalecse allreduce ops.".format(
                    len(self._grad_name_to_group_map.keys()), len(grad_groups)
                )
            )
553 554 555 556 557
            self._logger.info("gradient fusing group are following: ")
            fused_grads = set()
            for i, group in enumerate(grad_groups):
                self._logger.info(
                    "coalecse gradient [{}] is composed by: {}".format(
558 559 560
                        i, [grad.name for grad in group.gradients]
                    )
                )
561
                fused_grads.update([grad.name for grad in group.gradients])
562 563 564
            individual_grads = set(self._grad_name_to_group_map.keys()) - set(
                fused_grads
            )
565 566
            self._logger.info(
                "the following [{}] gradients are not fused: ".format(
567 568 569
                    len(individual_grads)
                )
            )
570 571 572
            self._logger.info("individual gradient {}".format(individual_grads))


573
class GradientsGroup:
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
    def __init__(self, ops, max_group_size):
        self.max_group_size = max_group_size
        self.ops = ops

        self.gradients = []
        self.numel = 0
        self.dtype = None
        self.ring_id = None
        self.coalesce_var = None
        self.coalesce_op_idx = -1
        self.allreduce_op_idx = -1
        self.scale_op_idx = -1
        self.remove_wait_op_indices = []
        self.remove_allreduce_op_indices = []
        self.remove_scale_op_indices = []

    def acceptable(self, grad_var, ring_id):
        if len(self.gradients) == 0:
            return True
        if ring_id != self.ring_id:
            return False
595
        if get_var_numel(grad_var) + self.numel > self.max_group_size:
596 597 598 599 600 601 602 603 604 605
            return False
        if grad_var.dtype != self.dtype:
            return False

        return True

    def add(self, grad_var, ring_id, i):
        self.gradients.append(grad_var)
        self.ring_id = ring_id
        self.dtype = grad_var.dtype
606
        self.numel += get_var_numel(grad_var)
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622

        # remove auxiliary ops in non-fuse dp allreduce
        self.remove_allreduce_op_indices.append(i)

        # NOTE this pass rely on the original synchronization add in previous passes
        # (same stream or calc_wait_comm & comm_wait_calc)
        # to guarantee the correctness of comm_calc execution order.
        # so the calc_wait_comm should be keep.
        grad_op_idx = i - 1
        if i > 0 and self.ops[i - 1].type == 'c_wait_compute':
            self.remove_wait_op_indices.append(i - 1)
            grad_op_idx -= 1
        if i + 1 < len(self.ops) and is_data_parallel_scale_op(self.ops[i - 1]):
            self.remove_scale_op_indices.append(i + 1)

        if len(self.gradients) == 1:
623 624 625 626 627
            # TODO Remove this is a temporary hack for Tensor Parallel. the logic
            # for find grad_op should be more general.
            if self.ops[grad_op_idx].type == "c_allreduce_sum":
                grad_op_idx -= 1

628
            grad_op = self.ops[grad_op_idx]
629 630 631 632 633
            assert (
                grad_var.name in grad_op.output_arg_names
            ), "grad [{}] should be output of {}".format(
                grad_var.name, str(grad_op)
            )
634 635 636 637 638 639 640 641
            self.coalesce_op_idx = grad_op_idx

    def finalize(self):
        self.allreduce_op_idx = self.remove_allreduce_op_indices.pop()
        if len(self.remove_wait_op_indices) > 1:
            self.remove_wait_op_indices.pop()
        if len(self.remove_scale_op_indices) > 1:
            self.scale_op_idx = self.remove_scale_op_indices.pop()