ImageExpandOp.cpp 6.4 KB
Newer Older
H
hedaoyuan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "Function.h"
16
#include "Im2Col.h"
H
hedaoyuan 已提交
17 18 19 20 21

namespace paddle {

/*
 * \brief Converts the image data of four dimensions(NCHW) into
H
hedaoyuan 已提交
22 23 24 25
 *        a sequence data of three dimensions(NST) in the forward calculation,
 *        which is reversed in the backward calculation.
 *        Where N is batch size, S is the length of the sequence after each
 *        image is expanded, T is the size of each time step in the sequence.
H
hedaoyuan 已提交
26
 *
H
hedaoyuan 已提交
27
 * Arguments in forward function:
H
hedaoyuan 已提交
28 29
 * \param inputs[0]  Image data of NCHW format.
 * \param outputs[0] Sequence data of NST format.
H
hedaoyuan 已提交
30 31 32 33
 *
 * Arguments in backward function:
 * \param inputs[0]  Sequence data of NST format.
 * \param outputs[0] Image data of NCHW format.
H
hedaoyuan 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47
 */
class ImageExpandFunction : public FunctionBase {
public:
  void init(const FuncConfig& config) override {
    // function arguments
    strides_ = config.get<std::vector<size_t>>("strides");
    paddings_ = config.get<std::vector<size_t>>("paddings");
    blocks_ = config.get<std::vector<size_t>>("blocks");

    // number of inputs and outputs
    numInputs_ = 1;
    numOutputs_ = 1;
  }

H
hedaoyuan 已提交
48 49
  virtual void calc(const BufferArgs& inputs, const BufferArgs& outputs) {}

50
  void check(const TensorShape& image, const TensorShape& sequence) const {
H
hedaoyuan 已提交
51 52 53 54 55 56 57 58 59 60 61 62
    // image shape should be 4-dimensional.
    CHECK_EQ(image.ndims(), (size_t)4);
    // sequence shape should be 3-dimensional.
    CHECK_EQ(sequence.ndims(), (size_t)3);
    // The batchSize of the image needs to be equal to
    // the batchSize of the sequence.
    CHECK_EQ(image[0], sequence[0]);
  }

  // Calculate the shape of colData based on the shape of the image
  // and the shape of the sequence.
  TensorShape getColShape(const TensorShape& image,
63
                          const TensorShape& sequence) const {
H
hedaoyuan 已提交
64 65 66 67 68
    size_t inputChannels = image[1];
    size_t inputHeight = image[2];
    size_t inputWidth = image[3];
    size_t seqLength = sequence[1];
    size_t stepSize = sequence[2];
H
hedaoyuan 已提交
69 70 71 72 73 74 75
    size_t outputHeight =
        1 +
        (inputHeight + 2 * paddingH() - blockH() + strideH() - 1) / strideH();
    size_t outputWidth =
        1 +
        (inputWidth + 2 * paddingW() - blockW() + strideW() - 1) / strideW();
    CHECK_EQ(seqLength, outputHeight * outputWidth);
76
    CHECK_EQ(stepSize, inputChannels * blockH() * blockW());
H
hedaoyuan 已提交
77

78
    // [outputHeight, outputWidth, inputChannels, filterHeight, filterWidth]
H
hedaoyuan 已提交
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
    return TensorShape({outputHeight,
                        outputWidth,
                        inputChannels,
                        (size_t)blockH(),
                        (size_t)blockW()});
  }

protected:
  std::vector<size_t> strides_;
  std::vector<size_t> paddings_;
  std::vector<size_t> blocks_;

  inline int strideH() const { return strides_[0]; }

  inline int strideW() const { return strides_[1]; }

  inline int paddingH() const { return paddings_[0]; }

  inline int paddingW() const { return paddings_[1]; }

  inline int blockH() const { return blocks_[0]; }

  inline int blockW() const { return blocks_[1]; }
};

template <DeviceType Device>
class ImageExpandForward : public ImageExpandFunction {
public:
  void init(const FuncConfig& config) override {
    ImageExpandFunction::init(config);
  }

  void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
    CHECK_EQ(numInputs_, inputs.size());
    CHECK_EQ(numOutputs_, outputs.size());
    const TensorShape& image = inputs[0].shape();
    const TensorShape& sequence = outputs[0].shape();
    check(image, sequence);

118
    TensorShape imShape = TensorShape({image[1], image[2], image[3]});
H
hedaoyuan 已提交
119 120 121 122 123
    TensorShape colShape = getColShape(image, sequence);
    size_t batchSize = image[0];

    real* imageData = inputs[0].data<real>();
    real* seqData = outputs[0].data<real>();
H
hedaoyuan 已提交
124 125
    Im2ColFunctor<kOCF, Device, real> im2col;
    for (size_t i = 0; i < batchSize; i++) {
126 127
      // The result of im2col is [outputHeight, outputWidth,
      // inputChannels, filterHeight, filterWidth], and it is easy to
128 129 130
      // reshape into [seqLength, stepSize], where seqLength is equal
      // output_height * output_width, stepSize is equal
      // input_channels * filter_height * filter_width
H
hedaoyuan 已提交
131
      im2col(imageData,
132 133 134
             imShape,
             seqData,
             colShape,
H
hedaoyuan 已提交
135 136 137
             strideH(),
             strideW(),
             paddingH(),
138 139 140
             paddingW());
      imageData += imShape.getElements();
      seqData += colShape.getElements();
H
hedaoyuan 已提交
141 142
    }
  }
H
hedaoyuan 已提交
143
};
H
hedaoyuan 已提交
144

H
hedaoyuan 已提交
145 146 147 148 149 150
template <DeviceType Device>
class ImageExpandBackward : public ImageExpandFunction {
public:
  void init(const FuncConfig& config) override {
    ImageExpandFunction::init(config);
  }
H
hedaoyuan 已提交
151

H
hedaoyuan 已提交
152 153 154 155 156 157 158 159 160
  void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
    CHECK_EQ(numInputs_, inputs.size());
    CHECK_EQ(numOutputs_, outputs.size());
    // Since the implementation of Col2ImFunctor is ADD_TO,
    // this function only supports ADD_TO mode.
    CHECK_EQ(outputs[0].getArgType(), ADD_TO);
    const TensorShape& image = outputs[0].shape();
    const TensorShape& sequence = inputs[0].shape();
    check(image, sequence);
H
hedaoyuan 已提交
161

162
    TensorShape imShape = TensorShape({image[1], image[2], image[3]});
H
hedaoyuan 已提交
163 164
    TensorShape colShape = getColShape(image, sequence);
    size_t batchSize = image[0];
H
hedaoyuan 已提交
165

H
hedaoyuan 已提交
166 167 168 169
    real* imageData = outputs[0].data<real>();
    real* seqData = inputs[0].data<real>();
    Col2ImFunctor<kOCF, Device, real> col2im;
    for (size_t i = 0; i < batchSize; i++) {
170 171 172 173
      col2im(imageData,
             imShape,
             seqData,
             colShape,
H
hedaoyuan 已提交
174 175 176
             strideH(),
             strideW(),
             paddingH(),
177 178 179
             paddingW());
      imageData += imShape.getElements();
      seqData += colShape.getElements();
H
hedaoyuan 已提交
180 181
    }
  }
H
hedaoyuan 已提交
182 183
};

H
hedaoyuan 已提交
184 185
REGISTER_TYPED_FUNC(ImageExpand, CPU, ImageExpandForward);
REGISTER_TYPED_FUNC(ImageExpandGrad, CPU, ImageExpandBackward);
186 187
#ifndef PADDLE_ONLY_CPU
REGISTER_TYPED_FUNC(ImageExpand, GPU, ImageExpandForward);
188
REGISTER_TYPED_FUNC(ImageExpandGrad, GPU, ImageExpandBackward);
189
#endif
190

H
hedaoyuan 已提交
191
}  // namespace paddle