ImageExpandOp.cpp 5.9 KB
Newer Older
H
hedaoyuan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "Function.h"
#include "GemmConvOp.h"

namespace paddle {

/*
 * imData = [input_channels, input_height, input_width]
 * colData = [output_height, output_width,
 *            input_channels, filter_height, filter_width]
 */
template <class T>
class Im2ColFunctor<kOCF, DEVICE_TYPE_CPU, T> {
public:
  void operator()(const T* imData,
                  int inputChannels,
                  int inputHeight,
                  int inputWidth,
                  int filterHeight,
                  int filterWidth,
                  int strideHeight,
                  int strideWidth,
                  int paddingHeight,
                  int paddingWidth,
                  int outputHeight,
                  int outputWidth,
                  T* colData) {
    for (int outputH = 0; outputH < outputHeight; ++outputH) {
      for (int outputW = 0; outputW < outputWidth; ++outputW) {
        for (int channel = 0; channel < inputChannels; ++channel) {
          for (int filterH = 0; filterH < filterHeight; ++filterH) {
            for (int filterW = 0; filterW < filterWidth; ++filterW) {
              int imRowOffset =
                  outputH * strideHeight + filterH - paddingHeight;
              int imColOffset = outputW * strideWidth + filterW - paddingWidth;
              int colDataOffset =
                  (((outputH * outputWidth + outputW) * inputChannels +
                    channel) *
                       filterHeight +
                   filterH) *
                      filterWidth +
                  filterW;
              if (imRowOffset < 0 || imRowOffset >= inputHeight ||
                  imColOffset < 0 || imColOffset >= inputWidth) {
                colData[colDataOffset] = T(0);
              } else {
                int imDataOffset =
                    (channel * inputHeight + imRowOffset) * inputWidth +
                    imColOffset;
                colData[colDataOffset] = imData[imDataOffset];
              }
            }
          }
        }
      }
    }
  }
};

/*
 * \brief Converts the image data of four dimensions(NCHW) into
 *        a sequence data of three dimensions(NST). Where N is batch size,
 *        S is the length of the sequence after each image is expanded,
 *        T is the size of each time step in the sequence.
 *
 * \param inputs[0]  Image data of NCHW format.
 * \param outputs[0] Sequence data of NST format.
 */
template <DeviceType Device>
class ImageExpandFunction : public FunctionBase {
public:
  void init(const FuncConfig& config) override {
    // function arguments
    strides_ = config.get<std::vector<size_t>>("strides");
    paddings_ = config.get<std::vector<size_t>>("paddings");
    blocks_ = config.get<std::vector<size_t>>("blocks");

    // number of inputs and outputs
    numInputs_ = 1;
    numOutputs_ = 1;
  }

  void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
    CHECK_EQ(numInputs_, inputs.size());
    CHECK_EQ(numOutputs_, outputs.size());
    const TensorShape& input = inputs[0].shape();
    const TensorShape& output = outputs[0].shape();
    // input argument should be 4-dimensional.
    CHECK_EQ(input.ndims(), (size_t)4);
    // output argument should be 3-dimensional.
    CHECK_EQ(output.ndims(), (size_t)3);
    // The batchSize of the input needs to be equal to
    // the batchSize of the output.
    CHECK_EQ(input[0], output[0]);

    size_t batchSize = input[0];
    size_t inputChannels = input[1];
    size_t inputHeight = input[2];
    size_t inputWidth = input[3];
    size_t seqLength = output[1];
    size_t stepSize = output[2];
    size_t outputHeight =
        1 +
        (inputHeight + 2 * paddingH() - blockH() + strideH() - 1) / strideH();
    size_t outputWidth =
        1 +
        (inputWidth + 2 * paddingW() - blockW() + strideW() - 1) / strideW();
    CHECK_EQ(seqLength, outputHeight * outputWidth);
122
    CHECK_EQ(stepSize, inputChannels * blockH() * blockW());
H
hedaoyuan 已提交
123 124 125 126 127

    real* inputData = inputs[0].data<real>();
    real* outputData = outputs[0].data<real>();
    Im2ColFunctor<kOCF, Device, real> im2col;
    for (size_t i = 0; i < batchSize; i++) {
128 129 130 131 132
      // The result of im2col is [output_height, output_width,
      // input_channels, filter_height, filter_width], and it is easy to
      // reshape into [seqLength, stepSize], where seqLength is equal
      // output_height * output_width, stepSize is equal
      // input_channels * filter_height * filter_width
H
hedaoyuan 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
      im2col(inputData,
             inputChannels,
             inputHeight,
             inputWidth,
             blockH(),
             blockW(),
             strideH(),
             strideW(),
             paddingH(),
             paddingW(),
             outputHeight,
             outputWidth,
             outputData);
      inputData += inputChannels * inputHeight * inputWidth;
      outputData += seqLength * stepSize;
    }
  }

protected:
  std::vector<size_t> strides_;
  std::vector<size_t> paddings_;
  std::vector<size_t> blocks_;

  inline int strideH() const { return strides_[0]; }

  inline int strideW() const { return strides_[1]; }

  inline int paddingH() const { return paddings_[0]; }

  inline int paddingW() const { return paddings_[1]; }

  inline int blockH() const { return blocks_[0]; }

  inline int blockW() const { return blocks_[1]; }
};

169 170
REGISTER_TYPED_FUNC(ImageExpand, CPU, ImageExpandFunction);

H
hedaoyuan 已提交
171
}  // namespace paddle