ImageExpandOp.cpp 10.6 KB
Newer Older
H
hedaoyuan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "Function.h"
#include "GemmConvOp.h"

namespace paddle {

/*
 * imData = [input_channels, input_height, input_width]
 * colData = [output_height, output_width,
 *            input_channels, filter_height, filter_width]
 */
template <class T>
class Im2ColFunctor<kOCF, DEVICE_TYPE_CPU, T> {
public:
  void operator()(const T* imData,
                  int inputChannels,
                  int inputHeight,
                  int inputWidth,
                  int filterHeight,
                  int filterWidth,
                  int strideHeight,
                  int strideWidth,
                  int paddingHeight,
                  int paddingWidth,
                  int outputHeight,
                  int outputWidth,
                  T* colData) {
    for (int outputH = 0; outputH < outputHeight; ++outputH) {
      for (int outputW = 0; outputW < outputWidth; ++outputW) {
        for (int channel = 0; channel < inputChannels; ++channel) {
          for (int filterH = 0; filterH < filterHeight; ++filterH) {
            for (int filterW = 0; filterW < filterWidth; ++filterW) {
              int imRowOffset =
                  outputH * strideHeight + filterH - paddingHeight;
              int imColOffset = outputW * strideWidth + filterW - paddingWidth;
              int colDataOffset =
                  (((outputH * outputWidth + outputW) * inputChannels +
                    channel) *
                       filterHeight +
                   filterH) *
                      filterWidth +
                  filterW;
              if (imRowOffset < 0 || imRowOffset >= inputHeight ||
                  imColOffset < 0 || imColOffset >= inputWidth) {
                colData[colDataOffset] = T(0);
              } else {
                int imDataOffset =
                    (channel * inputHeight + imRowOffset) * inputWidth +
                    imColOffset;
                colData[colDataOffset] = imData[imDataOffset];
              }
            }
          }
        }
      }
    }
  }
};

H
hedaoyuan 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
template <class T>
class Col2ImFunctor<kOCF, DEVICE_TYPE_CPU, T> {
public:
  void operator()(const T* colData,
                  int inputChannels,
                  int inputHeight,
                  int inputWidth,
                  int filterHeight,
                  int filterWidth,
                  int strideHeight,
                  int strideWidth,
                  int paddingHeight,
                  int paddingWidth,
                  int outputHeight,
                  int outputWidth,
                  T* imData) {
    for (int outputH = 0; outputH < outputHeight; ++outputH) {
      for (int outputW = 0; outputW < outputWidth; ++outputW) {
        for (int channel = 0; channel < inputChannels; ++channel) {
          for (int filterH = 0; filterH < filterHeight; ++filterH) {
            for (int filterW = 0; filterW < filterWidth; ++filterW) {
              int imRowOffset =
                  outputH * strideHeight + filterH - paddingHeight;
              int imColOffset = outputW * strideWidth + filterW - paddingWidth;
              int colDataOffset =
                  (((outputH * outputWidth + outputW) * inputChannels +
                    channel) *
                       filterHeight +
                   filterH) *
                      filterWidth +
                  filterW;
              if (imRowOffset >= 0 && imRowOffset < inputHeight &&
                  imColOffset >= 0 && imColOffset < inputWidth) {
                int imDataOffset =
                    (channel * inputHeight + imRowOffset) * inputWidth +
                    imColOffset;
                imData[imDataOffset] += colData[colDataOffset];
              }
            }
          }
        }
      }
    }
  }
};

H
hedaoyuan 已提交
119 120
/*
 * \brief Converts the image data of four dimensions(NCHW) into
H
hedaoyuan 已提交
121 122 123 124
 *        a sequence data of three dimensions(NST) in the forward calculation,
 *        which is reversed in the backward calculation.
 *        Where N is batch size, S is the length of the sequence after each
 *        image is expanded, T is the size of each time step in the sequence.
H
hedaoyuan 已提交
125
 *
H
hedaoyuan 已提交
126
 * Arguments in forward function:
H
hedaoyuan 已提交
127 128
 * \param inputs[0]  Image data of NCHW format.
 * \param outputs[0] Sequence data of NST format.
H
hedaoyuan 已提交
129 130 131 132
 *
 * Arguments in backward function:
 * \param inputs[0]  Sequence data of NST format.
 * \param outputs[0] Image data of NCHW format.
H
hedaoyuan 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145 146
 */
class ImageExpandFunction : public FunctionBase {
public:
  void init(const FuncConfig& config) override {
    // function arguments
    strides_ = config.get<std::vector<size_t>>("strides");
    paddings_ = config.get<std::vector<size_t>>("paddings");
    blocks_ = config.get<std::vector<size_t>>("blocks");

    // number of inputs and outputs
    numInputs_ = 1;
    numOutputs_ = 1;
  }

H
hedaoyuan 已提交
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
  virtual void calc(const BufferArgs& inputs, const BufferArgs& outputs) {}

  void check(const TensorShape& image, const TensorShape& sequence) {
    // image shape should be 4-dimensional.
    CHECK_EQ(image.ndims(), (size_t)4);
    // sequence shape should be 3-dimensional.
    CHECK_EQ(sequence.ndims(), (size_t)3);
    // The batchSize of the image needs to be equal to
    // the batchSize of the sequence.
    CHECK_EQ(image[0], sequence[0]);
  }

  // Calculate the shape of colData based on the shape of the image
  // and the shape of the sequence.
  TensorShape getColShape(const TensorShape& image,
                          const TensorShape& sequence) {
    size_t inputChannels = image[1];
    size_t inputHeight = image[2];
    size_t inputWidth = image[3];
    size_t seqLength = sequence[1];
    size_t stepSize = sequence[2];
H
hedaoyuan 已提交
168 169 170 171 172 173 174
    size_t outputHeight =
        1 +
        (inputHeight + 2 * paddingH() - blockH() + strideH() - 1) / strideH();
    size_t outputWidth =
        1 +
        (inputWidth + 2 * paddingW() - blockW() + strideW() - 1) / strideW();
    CHECK_EQ(seqLength, outputHeight * outputWidth);
175
    CHECK_EQ(stepSize, inputChannels * blockH() * blockW());
H
hedaoyuan 已提交
176

H
hedaoyuan 已提交
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
    // [output_height, output_width,
    // input_channels, filter_height, filter_width]
    return TensorShape({outputHeight,
                        outputWidth,
                        inputChannels,
                        (size_t)blockH(),
                        (size_t)blockW()});
  }

protected:
  std::vector<size_t> strides_;
  std::vector<size_t> paddings_;
  std::vector<size_t> blocks_;

  inline int strideH() const { return strides_[0]; }

  inline int strideW() const { return strides_[1]; }

  inline int paddingH() const { return paddings_[0]; }

  inline int paddingW() const { return paddings_[1]; }

  inline int blockH() const { return blocks_[0]; }

  inline int blockW() const { return blocks_[1]; }
};

template <DeviceType Device>
class ImageExpandForward : public ImageExpandFunction {
public:
  void init(const FuncConfig& config) override {
    ImageExpandFunction::init(config);
  }

  void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
    CHECK_EQ(numInputs_, inputs.size());
    CHECK_EQ(numOutputs_, outputs.size());
    const TensorShape& image = inputs[0].shape();
    const TensorShape& sequence = outputs[0].shape();
    check(image, sequence);

    TensorShape colShape = getColShape(image, sequence);
    size_t batchSize = image[0];
    size_t inputChannels = image[1];
    size_t inputHeight = image[2];
    size_t inputWidth = image[3];
    size_t seqLength = sequence[1];
    size_t stepSize = sequence[2];
    size_t outputHeight = colShape[0];
    size_t outputWidth = colShape[1];

    real* imageData = inputs[0].data<real>();
    real* seqData = outputs[0].data<real>();
H
hedaoyuan 已提交
230 231
    Im2ColFunctor<kOCF, Device, real> im2col;
    for (size_t i = 0; i < batchSize; i++) {
232 233 234 235 236
      // The result of im2col is [output_height, output_width,
      // input_channels, filter_height, filter_width], and it is easy to
      // reshape into [seqLength, stepSize], where seqLength is equal
      // output_height * output_width, stepSize is equal
      // input_channels * filter_height * filter_width
H
hedaoyuan 已提交
237
      im2col(imageData,
H
hedaoyuan 已提交
238 239 240 241 242 243 244 245 246 247 248
             inputChannels,
             inputHeight,
             inputWidth,
             blockH(),
             blockW(),
             strideH(),
             strideW(),
             paddingH(),
             paddingW(),
             outputHeight,
             outputWidth,
H
hedaoyuan 已提交
249 250 251
             seqData);
      imageData += inputChannels * inputHeight * inputWidth;
      seqData += seqLength * stepSize;
H
hedaoyuan 已提交
252 253
    }
  }
H
hedaoyuan 已提交
254
};
H
hedaoyuan 已提交
255

H
hedaoyuan 已提交
256 257 258 259 260 261
template <DeviceType Device>
class ImageExpandBackward : public ImageExpandFunction {
public:
  void init(const FuncConfig& config) override {
    ImageExpandFunction::init(config);
  }
H
hedaoyuan 已提交
262

H
hedaoyuan 已提交
263 264 265 266 267 268 269 270 271
  void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
    CHECK_EQ(numInputs_, inputs.size());
    CHECK_EQ(numOutputs_, outputs.size());
    // Since the implementation of Col2ImFunctor is ADD_TO,
    // this function only supports ADD_TO mode.
    CHECK_EQ(outputs[0].getArgType(), ADD_TO);
    const TensorShape& image = outputs[0].shape();
    const TensorShape& sequence = inputs[0].shape();
    check(image, sequence);
H
hedaoyuan 已提交
272

H
hedaoyuan 已提交
273 274 275 276 277 278 279 280 281
    TensorShape colShape = getColShape(image, sequence);
    size_t batchSize = image[0];
    size_t inputChannels = image[1];
    size_t inputHeight = image[2];
    size_t inputWidth = image[3];
    size_t seqLength = sequence[1];
    size_t stepSize = sequence[2];
    size_t outputHeight = colShape[0];
    size_t outputWidth = colShape[1];
H
hedaoyuan 已提交
282

H
hedaoyuan 已提交
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
    real* imageData = outputs[0].data<real>();
    real* seqData = inputs[0].data<real>();
    Col2ImFunctor<kOCF, Device, real> col2im;
    for (size_t i = 0; i < batchSize; i++) {
      col2im(seqData,
             inputChannels,
             inputHeight,
             inputWidth,
             blockH(),
             blockW(),
             strideH(),
             strideW(),
             paddingH(),
             paddingW(),
             outputHeight,
             outputWidth,
             imageData);
      imageData += inputChannels * inputHeight * inputWidth;
      seqData += seqLength * stepSize;
    }
  }
H
hedaoyuan 已提交
304 305
};

H
hedaoyuan 已提交
306 307
REGISTER_TYPED_FUNC(ImageExpand, CPU, ImageExpandForward);
REGISTER_TYPED_FUNC(ImageExpandGrad, CPU, ImageExpandBackward);
308

H
hedaoyuan 已提交
309
}  // namespace paddle