elementwise_op.cc 12.2 KB
Newer Older
N
nhzlx 已提交
1 2 3 4 5 6
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
    http://www.apache.org/licenses/LICENSE-2.0
N
nhzlx 已提交
8 9 10 11 12 13 14 15

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
16
#include "paddle/fluid/inference/tensorrt/plugin/elementwise_op_plugin.h"
N
nhzlx 已提交
17 18 19 20 21

namespace paddle {
namespace inference {
namespace tensorrt {

22 23 24 25 26 27
static bool CheckDims(const nvinfer1::Dims& dims_x,
                      const nvinfer1::Dims& dims_y) {
  if (dims_x.nbDims != dims_y.nbDims) {
    return false;
  }
  for (int i = 0; i < dims_x.nbDims; i++) {
W
wenbin 已提交
28 29 30 31
    // conservative judgment
    if (dims_x.d[i] == -1 || dims_y.d[i] == -1) {
      return false;
    }
32 33 34 35 36 37 38
    if (dims_x.d[i] != dims_y.d[i]) {
      return false;
    }
  }
  return true;
}

N
nhzlx 已提交
39 40 41 42 43 44 45
class ElementwiseWeightOpConverter : public OpConverter {
 public:
  ElementwiseWeightOpConverter() {}
  void operator()(const framework::proto::OpDesc& op,
                  const framework::Scope& scope, bool test_mode) override {
    // Here the two nullptr looks strange, that's because the
    // framework::OpDesc's constructor is strange.
46
    nvinfer1::ILayer* layer = nullptr;
N
nhzlx 已提交
47
    framework::OpDesc op_desc(op, nullptr);
48
    VLOG(3) << "Convert a fluid elementwise op to TensorRT IScaleLayer";
N
nhzlx 已提交
49 50 51

    auto* X = engine_->GetITensor(op_desc.Input("X").front());
    auto* Y_v = scope.FindVar(op_desc.Input("Y").front());
S
Shang Zhizhou 已提交
52 53 54
    PADDLE_ENFORCE_NOT_NULL(
        Y_v, platform::errors::NotFound("Variable %s not found in scope.",
                                        op_desc.Input("Y").front().c_str()));
N
nhzlx 已提交
55
    auto* Y_t = Y_v->GetMutable<framework::LoDTensor>();
56 57 58
    float* weight_data = nullptr;
    weight_data =
        engine_->GetWeightCPUData(op_desc.Input("Y").front(), Y_t, false);
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
    nvinfer1::Dims dims_x = X->getDimensions();

    auto regist_eltwise_weight = [&](nvinfer1::ScaleMode scale_mode) {
      TensorRTEngine::Weight shift_weights{nvinfer1::DataType::kFLOAT,
                                           static_cast<void*>(weight_data),
                                           static_cast<size_t>(Y_t->numel())};
      TensorRTEngine::Weight scale_weights{nvinfer1::DataType::kFLOAT, nullptr,
                                           0};
      TensorRTEngine::Weight power_weights{nvinfer1::DataType::kFLOAT, nullptr,
                                           0};
      if (op_type_ == "add") {
        nvinfer1::IScaleLayer* scale_layer = TRT_ENGINE_ADD_LAYER(
            engine_, Scale, *X, scale_mode, shift_weights.get(),
            scale_weights.get(), power_weights.get());
        layer = scale_layer;
      } else if (op_type_ == "mul") {
        nvinfer1::IScaleLayer* scale_layer = TRT_ENGINE_ADD_LAYER(
            engine_, Scale, *X, scale_mode, scale_weights.get(),
            shift_weights.get(), power_weights.get());
        layer = scale_layer;
      }

      auto output_name = op_desc.Output("Out")[0];
      RreplenishLayerAndOutput(layer, "elementwise_" + op_type_, {output_name},
                               test_mode);
      if (op_desc.HasAttr("enable_int8")) {
#if IS_TRT_VERSION_GE(5000)
        CHECK(op_desc.HasAttr("X_scale"));
87
        float x_scale = BOOST_GET_CONST(float, op_desc.GetAttr("X_scale"));
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
        engine_->SetTensorDynamicRange(X, x_scale);
#endif
      }
    };

    if (engine_->with_dynamic_shape()) {
      if (Y_t->dims().size() == 1) {
        auto scale_mode = nvinfer1::ScaleMode::kCHANNEL;
        PADDLE_ENFORCE_EQ(Y_t->dims()[0], dims_x.d[1],
                          platform::errors::InvalidArgument(
                              "The Bias's size(%d) should be equal to the "
                              "first dim(%d) of the Input.",
                              Y_t->dims()[0], dims_x.d[1]));
        regist_eltwise_weight(scale_mode);
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
104 105 106
            "The size of input bias's dims is %d, but TensorRT dynamic shape "
            "only support size = 1 for Elementwise op!",
            Y_t->dims().size()));
107 108 109 110 111 112 113 114 115
      }
      return;
    }

    std::vector<int> no_batch_dims;
    int start_index = 0;

    for (; start_index < dims_x.nbDims; start_index++)
      no_batch_dims.push_back(dims_x.d[start_index]);
N
nhzlx 已提交
116

N
nhzlx 已提交
117 118
    auto scale_mode = nvinfer1::ScaleMode::kELEMENTWISE;

119
    std::vector<int> dims_y = framework::vectorize<int>(Y_t->dims());
120
    if (dims_y.size() == no_batch_dims.size() + 1) {
N
nhzlx 已提交
121 122 123
      if (dims_y[0] == 1) dims_y.erase(dims_y.begin());
    }

124
    if (dims_y.size() == 1 && dims_y[0] == no_batch_dims[0]) {
N
nhzlx 已提交
125
      scale_mode = nvinfer1::ScaleMode::kCHANNEL;
126 127
    } else if (dims_y.size() == no_batch_dims.size() &&
               dims_y[0] == no_batch_dims[0]) {
N
nhzlx 已提交
128
      scale_mode = nvinfer1::ScaleMode::kELEMENTWISE;
129 130
      for (size_t i = 1; i < no_batch_dims.size(); i++) {
        if (dims_y[i] != no_batch_dims[i]) {
N
nhzlx 已提交
131 132 133 134 135
          scale_mode = nvinfer1::ScaleMode::kCHANNEL;
          break;
        }
      }
      if (scale_mode == nvinfer1::ScaleMode::kCHANNEL) {
136
        for (size_t i = 1; i < no_batch_dims.size(); i++) {
N
nhzlx 已提交
137
          if (dims_y[i] != 1)
138 139 140 141
            PADDLE_THROW(platform::errors::InvalidArgument(
                "The bias's %d dim is %d, but TensorRT dynamic shape only "
                "support it equals to 1 for Elementwise op!",
                i, dims_y[i]));
N
nhzlx 已提交
142 143 144
        }
      }
    } else {
145 146 147 148 149 150 151 152 153 154 155
      if (dims_y.size() >= 1) {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The size of bias's dims is %d and bias's size is %d. TensorRT "
            "doesn't support this shape for Elementwise op!",
            dims_y.size(), dims_y[0]));
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The size of bias's dims is %d. TensorRT doesn't support "
            "this shape for Elementwise op!",
            dims_y.size()));
      }
N
nhzlx 已提交
156
    }
157
    regist_eltwise_weight(scale_mode);
N
nhzlx 已提交
158
  }
159 160 161

 protected:
  std::string op_type_;
N
nhzlx 已提交
162 163 164 165 166 167 168
};

class ElementwiseTensorOpConverter : public OpConverter {
 public:
  ElementwiseTensorOpConverter() {}
  void operator()(const framework::proto::OpDesc& op,
                  const framework::Scope& scope, bool test_mode) override {
169
    auto op_pair = ops.find(op_type_);
170 171 172 173 174
    PADDLE_ENFORCE_NE(op_pair, ops.end(),
                      platform::errors::InvalidArgument(
                          "Elementwise op's type(%s) is not supported. Please "
                          "check if the op_type is correct.",
                          op_type_));
175

N
nhzlx 已提交
176 177 178
    // Here the two nullptr looks strange, that's because the
    // framework::OpDesc's constructor is strange.
    framework::OpDesc op_desc(op, nullptr);
179
    nvinfer1::ILayer* layer = nullptr;
N
nhzlx 已提交
180 181 182

    auto* X = engine_->GetITensor(op_desc.Input("X").front());
    auto* Y = engine_->GetITensor(op_desc.Input("Y").front());
183 184 185
    std::vector<nvinfer1::ITensor*> itensors;
    itensors.push_back(X);
    itensors.push_back(Y);
N
nhzlx 已提交
186 187 188
    nvinfer1::Dims dims_x = X->getDimensions();
    nvinfer1::Dims dims_y = Y->getDimensions();

189
    int axis = BOOST_GET_CONST(int, op_desc.GetAttr("axis"));
190
    auto output_name = op_desc.Output("Out")[0];
191 192 193 194 195 196 197

    auto common_func = [&](nvinfer1::ILayer* layer) {
      RreplenishLayerAndOutput(layer, "elementwise", {output_name}, test_mode);
      if (op_desc.HasAttr("enable_int8")) {
#if IS_TRT_VERSION_GE(5000)
        CHECK(op_desc.HasAttr("X_scale"));
        CHECK(op_desc.HasAttr("Y_scale"));
198 199
        float x_scale = BOOST_GET_CONST(float, op_desc.GetAttr("X_scale"));
        float y_scale = BOOST_GET_CONST(float, op_desc.GetAttr("Y_scale"));
200 201 202 203 204 205
        engine_->SetTensorDynamicRange(X, x_scale);
        engine_->SetTensorDynamicRange(Y, y_scale);
#endif
      }
    };

206 207 208
    if (CheckDims(dims_x, dims_y)) {
      // The two input tensor should have the same dims
      VLOG(3) << "Convert a fluid elementwise op to TensorRT IElementWiseLayer";
209 210
      nvinfer1::IElementWiseLayer* elet_layer =
          TRT_ENGINE_ADD_LAYER(engine_, ElementWise, *X, *Y, op_pair->second);
N
nhzlx 已提交
211

212
      layer = elet_layer;
213 214 215
    } else {
      VLOG(3) << "Convert a fluid elementwise op to TensorRT "
                 "ElementWisePluginLayer";
216 217 218 219
      if (engine_->with_dynamic_shape()) {
#if IS_TRT_VERSION_GE(6000)
        plugin::ElementwisePluginDynamic* plugin =
            new plugin::ElementwisePluginDynamic(op_type_, axis);
220
        layer = engine_->AddDynamicPlugin(itensors.data(), 2, plugin);
221 222 223 224
#else
        PADDLE_THROW(platform::errors::Fatal(
            "You are running the TRT Dynamic Shape mode, need to confirm that "
            "your TRT version is no less than 6.0"));
225
#endif
226 227 228 229 230 231 232 233 234 235 236
      } else {
        plugin::ElementWisePlugin* plugin =
            new plugin::ElementWisePlugin(op_type_, dims_x, dims_y, axis);
        plugin->AddInput(X);
        plugin->AddInput(Y);
        nvinfer1::IPluginLayer* plugin_layer = engine_->AddPlugin(
            plugin->GetInputs().data(), 2,
            reinterpret_cast<plugin::PluginTensorRT*>(plugin));

        layer = plugin_layer;
      }
N
nhzlx 已提交
237
    }
238
    common_func(layer);
N
nhzlx 已提交
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
  }

 protected:
  static const std::unordered_map<std::string, nvinfer1::ElementWiseOperation>
      ops;
  std::string op_type_;
};

const std::unordered_map<std::string, nvinfer1::ElementWiseOperation>
    ElementwiseTensorOpConverter::ops = {
        {"add", nvinfer1::ElementWiseOperation::kSUM},
        {"mul", nvinfer1::ElementWiseOperation::kPROD},
        {"sub", nvinfer1::ElementWiseOperation::kSUB},
        {"div", nvinfer1::ElementWiseOperation::kDIV},
        {"min", nvinfer1::ElementWiseOperation::kMIN},
        {"pow", nvinfer1::ElementWiseOperation::kPOW},
        {"max", nvinfer1::ElementWiseOperation::kMAX},
};

258 259 260 261 262 263 264 265 266 267
class ElementwiseWeightAddOpConverter : public ElementwiseWeightOpConverter {
 public:
  ElementwiseWeightAddOpConverter() { op_type_ = "add"; }
};

class ElementwiseWeightMulOpConverter : public ElementwiseWeightOpConverter {
 public:
  ElementwiseWeightMulOpConverter() { op_type_ = "mul"; }
};

N
nhzlx 已提交
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
class ElementwiseTensorAddOpConverter : public ElementwiseTensorOpConverter {
 public:
  ElementwiseTensorAddOpConverter() { op_type_ = "add"; }
};

class ElementwiseTensorMulOpConverter : public ElementwiseTensorOpConverter {
 public:
  ElementwiseTensorMulOpConverter() { op_type_ = "mul"; }
};

class ElementwiseTensorSubOpConverter : public ElementwiseTensorOpConverter {
 public:
  ElementwiseTensorSubOpConverter() { op_type_ = "sub"; }
};

class ElementwiseTensorDivOpConverter : public ElementwiseTensorOpConverter {
 public:
  ElementwiseTensorDivOpConverter() { op_type_ = "div"; }
};

class ElementwiseTensorMinOpConverter : public ElementwiseTensorOpConverter {
 public:
  ElementwiseTensorMinOpConverter() { op_type_ = "min"; }
};

class ElementwiseTensorMaxOpConverter : public ElementwiseTensorOpConverter {
 public:
  ElementwiseTensorMaxOpConverter() { op_type_ = "max"; }
};

class ElementwiseTensorPowOpConverter : public ElementwiseTensorOpConverter {
 public:
  ElementwiseTensorPowOpConverter() { op_type_ = "pow"; }
};

}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle

307 308 309 310
REGISTER_TRT_OP_CONVERTER(elementwise_add_weight,
                          ElementwiseWeightAddOpConverter);
REGISTER_TRT_OP_CONVERTER(elementwise_mul_weight,
                          ElementwiseWeightMulOpConverter);
N
nhzlx 已提交
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325

REGISTER_TRT_OP_CONVERTER(elementwise_add_tensor,
                          ElementwiseTensorAddOpConverter);
REGISTER_TRT_OP_CONVERTER(elementwise_sub_tensor,
                          ElementwiseTensorSubOpConverter);
REGISTER_TRT_OP_CONVERTER(elementwise_div_tensor,
                          ElementwiseTensorDivOpConverter);
REGISTER_TRT_OP_CONVERTER(elementwise_mul_tensor,
                          ElementwiseTensorMulOpConverter);
REGISTER_TRT_OP_CONVERTER(elementwise_max_tensor,
                          ElementwiseTensorMaxOpConverter);
REGISTER_TRT_OP_CONVERTER(elementwise_min_tensor,
                          ElementwiseTensorMinOpConverter);
REGISTER_TRT_OP_CONVERTER(elementwise_pow_tensor,
                          ElementwiseTensorPowOpConverter);